

QFTHEP, June 29, 2015, Samara, Russia

Flavor physics in the SM

Bosonic sector of the SM
5 free parameters:
o one defines the scale (vacuum expectation value)
o 4 dimensionless coupling constants

Fermionic (flavor) sector

- o 3 Yukawa constants for charged leptons
- 6 Yukawa constants for quarks
- 4 quark-mixing parameters

This is a really miraculous part of the SM. There is no idea
why do we have many (3) generations?
why are these 13 constants such as they are?
why is there a hierarchy & smallness structure?
why is the mixing matrix almost unit, but not exactly?

All these Whys?:the SM flavor puzzle

Physics at (Super) B factories

- B mesons : CP Violation, Rare decays, CKM matrix elements
 - **D mesons** : mixing, CP Violation, Rare decays

Access to (almost all, including complex phase) CKM matrix elements

Tau leptons : search for Lepton Flavor Violation

• **Hadron spectroscopy**: <u>quarkonium (+like)</u>, charm and light mesons & baryons + exotics?

Important input to QCD models

ο γγ physics

Direct search for light sterile particles (sterile neutrino, dark photons etc)

etc

molecules

tetraquarks

nodel:

standard

New spectroscopy beyond

Ο

Physics at (Super) B factories

Flavor Physics studies processes via loop diagram:
○ FCNC (b→s, b→d)
○ mixing (box diagram)
○ CP Violation (box, box+loop)

New Physics (e.g. SUSY) even at high mass scale can compete with SM

If New Physics will be found at LHC its flavor and CP violating couplings should be studied at Flavor experiments If New Physics will NOT be found at LHC

Flavor experiments give a chance to observe NP manifestation even for the mass scale > TeV

Benefits of (Super) B factories at e⁺e⁻ colliders

 \circ Low backgrounds, high trigger efficiency, high γ and π^0 reconstruction efficiency, high flavor tagging efficiency with low dilution

Negligible trigger bias and good kinematic resolution (due to low background)
 Dalits analyses, absolute branchings, missing mass and missing energy measurements

 \circ Systematics differ from LHCb

Belle experiment at KEKB

8 GeV (e⁻) × 3.5 GeV (e⁺) designed luminosity: 10.0×10^{33} cm⁻²s⁻¹ achieved 21.2×10^{33} cm⁻²s⁻¹ (>2 times larger!)

Completed data taking on June, 2010 to start SuperKEKB/Belle II upgrade

Belle II Detector

Belle II with respect to Belle

Belle The energy asymmetry 8 GeV (e⁻) × 3.5 GeV (e⁺) $\rightarrow \beta\gamma$ =0.425

 \circ sin(2 β) the main goal of the experiment

 \circ measurement of Δt between the two **B** mesons with high precision

<u>Belle II</u> The energy asymmetry 7 GeV (e^-) × 4 GeV (e^+) $\Rightarrow \beta\gamma = 0.28$

→ better hermiticity

 \circ modes with neutrino in the final state (e.g. $B \rightarrow \tau v$)

 \circ A smaller beam pipe radius (1.5 cm to 1.0 cm) allows for the innermost silicon detector layer to be positioned closer to the IP (2.0 cm to 1.3 cm)

 \circ significantly improve the resolution in the z direction

• Significantly increased outer radius of the SVD (from 8.8 to 14.0 cm)

 \circ more $K^0{}_S$ for the time-dependent using $K^0{}_S$ vertexing

 \circ Higher reconstruction efficiency of **D**^{*} slow pions and better flavor tagging

• PID improvements

 \circ improve K/ π separation, flavor tagging, rare charmless decays or b \rightarrow sy efficiencies, background rejection

 \circ Improvements to the KLM

 \circ higher K_L veto efficiencies used in missing energy analyses (B $\rightarrow \tau v$)

CP violation in B decays

Unitarity triangle angles

Unitarity Triangle for CP violation in B⁰ mesons

Belle II

- Precise measurements of UT angles
- Tight constrained on CKM matrix elements
- \circ If inconsistency between angles or/and angles + sides \rightarrow indication for NP

Precise measurement of $sin(2\beta)$ in $B^0 \rightarrow ccK^0$

<u>Belle 2012</u>: $B \rightarrow J/\psi K_s^0$, $\psi(2S)K_s^0$, $\chi_{c1}K_s^0$ & $B \rightarrow J/\psi K_L^0$

 $sin(2\phi_1) = 0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$ $A_f = 0.006 \pm 0.016 \pm 0.012$ (parameter of direct CPV) Belle II **sin(2β)** LHCb 5 ab⁻¹ 50 ab⁻¹ 8 fb⁻¹(2018) 50 fb⁻¹ 0.4° 0.3° 0.6° 0.3°

α measurements: $B^0 \rightarrow \pi \pi$

The decay amplitudes $B \rightarrow \pi^+\pi^-(\rho^+\rho^-)$ include:

- a tree term $T \sim V_{ub}^* V_{ud}$ (dominant)
- a penguin term $P \sim V_{tb}^* V_{td}$ (suppressed, but not small)

$$A_{CP}(\Delta t) = \frac{N(B^0 \to \pi^+ \pi^-) - N(\overline{B}^0 \to \pi^+ \pi^-)}{N(B^0 \to \pi^+ \pi^-) + N(\overline{B}^0 \to \pi^+ \pi^-)} = S \cdot \sin(\Delta m \Delta t) + A \cdot \cos(\Delta m \Delta t)$$

Parameter S of indirect CPV:

$$S = \sin 2\alpha + 2r\cos \delta \sin(\beta + \alpha)\cos 2\alpha + O(r^2)$$

- $\circ \delta$ the relative strong phase between T and P amplitudes
- r < 1 ratio of P to T amplitude

We can measure effective α (α_{eff}) shifted by extra angle

$$S = \sqrt{1 - C^2} \sin(2\alpha_{eff}) \qquad \alpha_{eff} = \alpha + \theta$$

^{ub}

To measure α additional inputs are required

The cleanest method is the isospin analysis (Gronau and London) We need to measure all 6 BR's of B⁰ and B⁺ to $\pi\pi$ decays: $\pi^+\pi^-$, $\pi^0\pi^0$, $\pi^+\pi^0$

a: experimental results

120

140

160

180

Combined

HI CKM fit

Complicated analysis (especially for p⁰p⁰)
BUT method was checked many times by Belle & BaBar
Belle & BaBar consistent results
Statistics limited (not systematic)
B factories only (a lot of neutrals in the final states)

• Expected errors : 5 ab⁻¹ to be 2°, 50 ab⁻¹ to be 1°

Direct CPV and $\boldsymbol{\gamma}$

B→DK: the angle between two amplitudes is really γ, but the final states are different $D^0 \neq \overline{D}^0$

GLW method (Gronau, London, Wyler) *PLB 253, 483 (1991)* D^0 decays into CP eigenstate (rarely – Cabibbo suppressed modes, *e.g.* K⁺K⁻, K_S π^0)

ADS method (Atwood, Dunietz, Soni) PRL 78, 3357 (1997)

D⁰ decays into final state typical for D⁰ (very rarely – doubly Cabibbo suppressed modes, *e.g.* $K^+\pi^-$). Enhance CP asymmetry by suppression (in D-decay) of allowed (in B-decays)

GGSZ method (Giri, Grossman, Soffer, Zupan) *PRD 68, 054018 (2003)* Used by experimentalists (*A.Bondar*) before suggested by theoreticians D^0 decays into three body state (*e.g.* $K_S \pi^+ \pi^-$): mixture of opposite CP eigenvalues +1/-1 also contain doubly Cabibbo suppressed decays. Resolve by Dalitz analysis.

Fit to all measurements

 γ (combined - 2014) = (73.2^{+6.3}_{-7.0})°

GLW+ADS GGSZ Combined 1.0 0.8 p-value 0.6 0.4 0.2 0.0 20 40 60 80 140 100 120 160 180

The accuracy of present measurements are limited by statistics (we really study VERY rare decay). The systematic and model uncertainties are much smaller.

LHCb can measure this with better accuracy (charged modes) Belle-II provides important and independant cross check

Sensitivity of Belle II and LHCb upgrade

Decay mode	LHCb	upgrade	Belle II
$B \to DK$ with $D \to hh', D \to K\pi\pi\pi$	1.3°	[15]	2.0°
$B \to DK$ with $D \to K^0_S \pi \pi$	1.9°	[15]	2.0°
$B \to DK$ with $D \to 4\pi$	1.7°		_
$B \to D K \pi$ with $D \to h h', D \to K^0_S \pi \pi$	1.5°	[16]	_
$B \to D K \pi \pi$ with $D \to h h'$	3.0°		_
Combined	1.1°		1.5°
Time-dependent $B_s^0 \to D_s^{\mp} K^{\pm}$	2.4°	[15]	_

Sides of UT

 \circ B_d and B_s mixing: $\Delta m_d / \Delta m_s$ *Hadron colliders*

o Radiative decays
 b→ sγ, b→ dγ

B factories

Observables	Belle	Belle II	\mathcal{L}_s
	(2014)	$5 \text{ ab}^{-1} 50 \text{ ab}^{-1}$	$[ab^{-1}]$
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$	< 1
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\% \ \pm 1.4\%$	< 1
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\% \pm 3.0\%$	2
$ V_{ub} $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\% \pm 2.4\%$	20
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\% \ \pm 2.2\%$	3

 $\sim |\mathbf{V}_{ub}/\mathbf{V}_{cb}|$

○ Inclusive semileptonic decays $|V_{cb}| B \rightarrow X_c 1 v$ $|V_{ub}| B \rightarrow X_u 1 v$

◦ Exclusive semileptonic decays $|V_{cb}| B → D^{(*)}| v$ $|V_{ub}| B → π | v$

Search for New Physics

beyond UT

sin(2β) in b→sqq decays

Belle II measurement of sin(2\beta) \circ To check the consistency of Unitarity Triangle \circ Search for new CP violating phases in b \rightarrow s transitions by testing SM predictions sin(2 β) (b \rightarrow s qq) = sin(2 β) (J/ ψ K⁰)

Expected errors for the golden modes

Mode	5 ab^{-1}		50 ab^{-1}	
	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$
$\eta' K^0$	0.028	0.020	0.011	0.009
ϕK^0_S	0.053	0.070	0.018	0.023
$K_S K_S K_S$	0.101	0.064	0.033	0.021

Radiative penquin decays

	$b \rightarrow s\gamma S_{CP}$	HFAG CKM 2014 PRELIMINARY
۲	BaBar PRD 78 (2008) 071102 4 Belle	-0.03 ± 0.29 ± 0.03 -0.32 +0.38 -0.33 ± 0.05
Ŷ	Average L	-0.16 ± 0.22
π°	BaBar PRD 78 (2008) 071 ⁴ 102 ⁴ 5 ⁴ Belle	-0.17 ± 0.26 ± 0.03 -0.10 ± 0.31 ± 0.07
Å	Average HFAG correlated average	-0.15 ± 0.20
۲ŗ	PRD 79 (2009)"011102	-0.18 $_{0.46}^{+} \pm 0.12$ -1.32 ± 0.77 ± 0.36
¥"	Average HFAG correlated average	-0.49 ± 0.42
۶°۲	BEACH 2014 preliminary	0.11 ± 0.33 +0.09
Ľ.	Average HFAG correlated average	0.14 ± 0.27
Κ _S φγ	PRD 84 (2011) 071101 Average HFAG correlated average	₹ 0.74 ± 0.90
-2	-1 0	1

Belle IIExpected errors for \mathcal{S} measurements

Radiative penquin decays are the most sensitive probes for physics beyond SM:

o occur at loop level and their rates can be accurately predicted in SM
o loops could contain also
new particles (e.g. SUSY)
o Rate ≠ SM → hint for NP

Time-dependent analyses of CPV in $B^0 \rightarrow K_S \pi^0 \gamma$ probes the polarization of the photon:

 \circ in the SM for $b \rightarrow s\gamma$ the photon helicity is dominantly left-handed

 mixing-induced CP violation in SM is expected to be small

 $S \sim -2(m_s/m_b)\sin(2\beta) \equiv -2(m_s/m_b)\sin(2\varphi_1)$

Mode	5 ab^{-1}	50 ab^{-1}
$K_S \pi^0 \gamma$	0.11	0.035
$ ho^0\gamma$	0.23	0.07

 $\mathbf{B} \rightarrow \mathbf{X}_{s} \boldsymbol{\gamma}$ To reduce model uncertainty need to measure at as smaller 0.40r PRL98, 022002(2009) 0.35 0.30 $\sigma_{\rm exp}*10^4$ 0.25 400 500

WA: Br(B \rightarrow X_s γ) = (3.43 ±0.21± 0.007)10⁻⁴

Complicated analysis: purely leptonic decay
o Signal: two neutrinos and one charged track
o Tag: full reconstruction of leptonic or hadronic decays
o Signal is seen as NO extra energy deposition in the ECL

The discrepancy between SM prediction and measurement is 1.6 σ

Search for charged Higgs in $B \rightarrow D^{(*)}\tau v$

Charged Higgs

via branching fractions and the kinematic distributions of the final state

 $(\tan\beta)$

2-Higgs doublet model:

 $\mathcal{B}(B \rightarrow D^{(*)} \tau \nu) \propto \mathcal{B}_{SM} \cdot m_W \left(\frac{\tan \mu}{m_W} \right)$

R _{D(*)} measurements o using two decay modes with very similar experimental signatures (with only the leptonic decay modes of the τ) \circ cancellation of form factor uncertainties & experimental systematic uncertainties

Hadron & inclusive lepton tagged

₩-, **H**-

b

B-

V

C

u

D(*)

Belle II: resolve discrepancy with the SM

LFV τ decays

• Lepton Flavor Violation is highly suppressed in the SM • LFV τ decays are clean and ambiguous probes for New Physics effects **Belle II** : Sensitivity for LFV decay rates is over 100 times higher than Belle for the cleanest channels ($\tau \rightarrow 31$) and over 10 times higher for other modes, such as $\tau \rightarrow l\gamma$ (due to irreducible background contributions)

Much more to be done at Belle II

	Observables	Belle or LHCb [*]	Belle II		LHCb	
		(2014)	$5 {\rm ~ab^{-1}}$	$50~{\rm ab^{-1}}$	$8~{\rm fb}^{-1}(2018)$	$50~{\rm fb^{-1}}$
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^\circ)$	0.4°	0.3°	0.6°	0.3°
	α [°]	85 ± 4 (Belle+BaBar)	2	1		
	$\gamma \ [^{\circ}] \ (B \to D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	1
	$2\beta_s(B_s \to J/\psi\phi)$ [rad]	$0.07\pm 0.09\pm 0.01^*$			0.025	0.009
Gluonic penguins	$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.053	0.018	0.2	0.04
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011		
	$S(B \to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$			0.12	0.03
	$\beta^{\rm eff}_s(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	_			0.13	0.03
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		
UT sides	$ V_{cb} $ incl.	$41.6\cdot 10^{-3} (1\pm 2.4\%)$	1.2%			
	$ V_{cb} $ excl.	$37.5\cdot 10^{-3}(1\pm 3.0\%_{\rm ex.}\pm 2.7\%_{\rm th.})$	1.8%	1.4%		
	$ V_{ub} $ incl.	$4.47\cdot 10^{-3}(1\pm 6.0\%_{\rm ex.}\pm 2.5\%_{\rm th.})$	3.4%	3.0%		
	$ V_{ub} $ excl. (had. tag.)	$3.52\cdot 10^{-3} (1\pm 10.8\%)$	4.7%	2.4%		
Leptonic and Semi-tauonic	$\mathcal{B}(B \rightarrow \tau \nu) \ [10^{-6}]$	$96(1 \pm 26\%)$	10%	5%		
	$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%		
	$R(B \to D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		
	$R(B \to D^* \tau \nu)^\dagger$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45\cdot 10^{-4} (1\pm 4.3\%\pm 11.6\%)$	7%	6%		
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$	1	0.5		
	$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$	_			0.13	0.03
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	0.3	_		
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 \ (B \to X_s \ell \ell)$	${\sim}20\%$	10%	5%		
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 2	_		
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$	$2.9^{+1.1*}_{-1.0}$			0.5	0.2

To be done at Belle II else

	Observables	Belle or LHCb [*]	Be	lle II	L	HCb
		(2014)	$5 {\rm ~ab^{-1}}$	50 ab^{-1}	2018	$50~{\rm fb^{-1}}$
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%		
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-4}]$	$-32\pm21\pm9$	11	6		
	$\Delta A_{CP}(D^0 \to K^+ K^-) \ [10^{-3}]$	3.4^{*}			0.5	0.1
	$A_{\Gamma} \ [10^{-2}]$	0.22	0.1	0.03	0.02	0.005
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03		
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	0.14	0.11		
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.05}{0.08}$	0.08	0.05		
	$ q/p (D^0 \to K^0_S \pi^+ \pi^-)$	$0.90 \pm \frac{0.16}{0.15} \pm \frac{0.08}{0.06}$	0.10	0.07		
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) ~[^\circ]$	$-6 \pm 11 \pm rac{4}{5}$	6	4		
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12		
	$\tau \to \mu \mu \mu ~[10^{-9}]$	< 21.0	< 3.0	< 0.3		

& charm spectroscopy, rare D decays, $\Upsilon(5S)$ physics, <u>quarkonium(+like)</u>

New quarkonium spectroscopy

Charmonium(+like) production at (Super) B factories

yy fusion

Any quantum numbers are possible, can be measured in angular analysis (Dalitz plot)

 $J^{PC} = 0^{\pm +}, 2^{\pm +}$

 e^+e^- annihilation with ISR

 $J^{PC} = 1^{--}$

double charmonium production

in association with J/ψ only $J^{PC} = 0^{\pm +}$ seen

Charmonium(+like)

$(n+1)^{(2S+1)}L_1$

- n radial quantum number
- S total spin of quarkantiquark
- L relative orbital ang. mom.
 - L = 0, 1, 2 ... corresponds to S, P, D...
- J = S + L
- $P = (-1)^{L+1}$ parity
- C = $(-1)^{L+S}$ charge conj.

After 2002 6 standard states and 13(+4?) exotic

<u>Multiquark states</u>

two loosely bound charm mesons

<u>Charmonium hybrids</u>

States with excited gluonic degrees of freedom

Specific charmonium state "coated" by excited light-hadron matter

M_X close to D⁰D^{*0} threshold M = 3871.68 \pm 0.17 MeV not clear below or above: $\Delta m = -0.11 \pm 0.22$ MeV surprisingly narrow: $\Gamma_{tot} < 1.2$ MeV at 90% CL

$$J^{PC} = 1^{++}$$

finally
established

X(3872)

Belle topcited: 1000+

First observed by Belle in $B \rightarrow K J/\psi \pi^+ \pi^-$ Confirmed: BaBar, LHCb, CMS, ATLAS, CDF

<u>Hadronic collisions</u>: produced mostly promptly; only 0.263±0.023±0.016 from B-decays (CMS)

The most popular interpretation Mixture of P-wave charmonium level $\chi_{c1}(2P)$ and S-wave DD^{*0} molecule

Known	BR relative	Comments
decays	to	
	J/ψp mode	
J/ψρ	1	isospin violation
J/ψω	0.8 ± 0.3	isospin violation
J/ψγ	0.21 ± 0.06	Belle&Babar good
		agreement
ψ(2S)γ	0.50 ± 0.15	Belle&Babar
		disagreement
		LHCb confirms
		BaBar
D^0D^{*0}	~10	dominant mode

X(3872): tasks for Belle II

Search for X(3872) partners decays	Comments
χ _{c1} γ χ _{c2} γ	Forbidden by C-parity conservation C-odd partners: tetraquark, molecule UL : $< 1/4$ from J/ $\psi \pi^+\pi^-$
J/ψ η	C-odd partners: tetraquark UL : $< 1/2$ from J/ $\psi \pi^+\pi^-$
$ \eta_c \eta $ $ \eta_c \pi^0 $ $ \eta_c \pi^+ \pi^- $ $ \eta_c \omega $	Search for other X-like molecular states UL : $\sim J/\psi \pi^+\pi$

 \circ Detailed pattern of X(3872) to charmonium transitions (radiative and hadronic) with significantly improved accuracy

• Search for partners of X(3872) molecules with $J^{PC} = 0^{++}, 1^{+-}, 2^{++}...$

○ Measurements of absolute BR of $B \rightarrow KX(3872)$

• Measurements of line shape of X(3872) decaying to DD^{*} at threshold and to $J/\psi\pi^+\pi^$ to clarify nature of X(3872): virtual or bound state *Yu.S.Kalashnikova, A.V.Nefediev PRD80, 074004 (2009)*

 \circ Measurements of the total width of X(3872)

Vector states in e⁺e⁻ annihilation with ISR

Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \to (\pi^+\pi^-J/\psi)$	Belle $[1046, 1094]$ (7.4)	2007	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \to (\pi\pi J/\psi)$	BaBar [1104, 1105] (8), CLEO [1106, 1107] (11) Belle [1046, 1094] (15), BES III [1045] (np)	2005	Ok
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1108] (5.3)	2013	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
X(4630) Y(4660)	$\begin{array}{c} 4634^{+9}_{-11} \\ 4665 \pm 10 \end{array}$	92^{+41}_{-32} 53 ± 14	1 1	$e^+e^- \to (\Lambda_c^+ \bar{\Lambda}_c^-)$ $e^+e^- \to (\pi^+ \pi^- \psi(2S))$	Belle [1116] (8.2) Belle [1110] (5.8), BaBar [1111] (5)	2007 2007	NC! Ok

10th anniversary of Y family discovery

It seems that up to now we have not found an ISR state that has more than one decay mode. Hopefully Belle II will show that these states have multiple decay modes like the X(3872)

Open question: nature of Yfamily

Belle II tasks

- Improve accuracy
- Confirmation of Y(4008)
- \circ Confirm X(4630) found by Belle only
- Resolve X(4630) &Y(4660) puzzle
- Search for other final states: χ_{c1} , χ_{c2} , η_c , X(3872) + and/or other light hadrons • Up to now only J/ ψ , $\psi(2S) + \pi\pi$, η

Charged charmonium-like states at Belle

Charged Z_c^+ states cannot be conventional charmonium or hybrid

From four states found by Belle in B decays only Z(4430)⁺ is confirmed (by LHCb)

Two states are found by Belle in $e^+e^$ annihilation + five more by BESIII

$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$B^0 \to K^-(\pi^+ \psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4) LHCb [1115] (13.9)	2007	Ok
				$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (1.1)	2008	NC!
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
$Z(4250)^{+}$	4248_{-45}^{+185}	177_{-72}^{+321}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (2.0)	2008	NC!

$B \rightarrow Z^+_{c}K^-$

Z(4430)⁺: three different analysis, J^P = 1⁺ \circ Fit to M($\psi(2S)\pi^+$) with K^{*}(890)&K^{*}(1430) veto \circ Dalitz analysis

• Full amplitude analysis to obtain spin-parity Mass values are the same, width depends on method

Z(4050)⁺ & Z(4050)⁺ in $\chi_{c1}\pi^+$ final state \circ Daliz analysis

- $Z_c(4200)^+$ in J/ $\psi \pi^+$ final state, J^P=1⁺
- \circ 4D-fit: Dalitz + angular variables
- New decay mode $Z_c(4430)^+$ →J/ψ π

 \circ order of magnitude suppressed (to $\psi(2S)\pi$) despite larger phase space

> BaBar does not confirm Belle, but also does not rule it out! <u>Task for Belle II</u> and LHCb (charged final states)

Z_c family in e^+e^- annihilation

DD^{*} threshold

Belle only

Only one charged state from the long BESIII list is confirmed by Belle (due to limited statistic) $Z_{c}(3900)^{+} \rightarrow J/\psi\pi^{+}, Z_{c}(3900)^{0} \rightarrow J/\psi\pi^{0}, Z_{c}(3885)^{+} \rightarrow DD^{*}, Z_{c}(4020)^{+} \rightarrow \pi^{+}h_{c}, Z_{c}(4020)^{0} \rightarrow \pi^{0}h_{c}, J^{+}\mu^{-}h_{c}, Z^{+}\mu^{-}h_{c}, Z^{+}\mu^{-}h_{c}$ $Z_c(4025)^+ \rightarrow D^*D^*$

Belle II

Confirm (or not) the BESIII & Belle charmonium-like states & to look for new structures in $\pi \psi(2S)$ et al using ISR

Charged bottomonium-like states

Anomalous production of $\Upsilon(nS) \pi^+\pi^ \Gamma(\Upsilon(5S) \rightarrow \Upsilon(1S)\pi^+\pi^-) = 260 \text{ keV}$ $\Gamma(\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^+\pi^-) = 430 \text{ keV}$ $\Gamma(\Upsilon(5S) \rightarrow \Upsilon(3S)\pi^+\pi^-) = 290 \text{ keV}$ $\Gamma(\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-) = 6 \text{ keV}$

 $\Upsilon(5S) \rightarrow Z_{b}(10610)^{+} \pi^{-}, Z_{b}(10650)^{+} \pi^{-}$

The most popular interpretation BB* and B*B* molecules Masses near BB* and B*B* thresholds

R.Mizuk

$$\begin{split} &\Gamma[\Upsilon(5S) \to \Upsilon(1S/2S)\eta] = 40/200 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \Upsilon(1D)(\pi^{+}\pi^{-})/\eta] = 60/140 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \chi_{b1/2}(1P) \ \omega] = 80/30 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \chi_{b1/2}(1P) \ (\pi^{+}\pi^{-}\pi^{0})_{\text{non-res}}] = 30/30 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \Upsilon(1S) \text{ K}^{+}\text{K}^{-}] = 30 \text{ keV} \end{split}$$

Molecule, diquark-antidiquark, hadrocharmonium...

R.Mizuk

Charmonium double production

 J/ψ production study with/without additional charm

Belle II

○ Angular analysis for solid identification η_c(3S), η_c(4S), χ_{c0}. Search in B decays.
○ Search for new states in e⁺e⁻→J/ψD^(*)D^(*)π and in e⁺e⁻→χ_{c1} D^(*)D^(*)

• Production: reconstruction of the exclusive final states

 \circ Production studies with other charmonium states (e.g. $\psi(2S), \chi_{c1}$)

Confirmed by BaBar, prefer J^P=0⁺

Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$\begin{array}{l} B \rightarrow K(\omega J/\psi) \\ e^+e^- \rightarrow e^+e^-(\omega J/\psi) \end{array}$	Belle [1088] (8), BaBar [1038, 1089] (19) Belle [1090] (7.7), BaBar [1091] (7.6)	$2004 \\ 2009$	Ok Ok
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!

PDG: **Y**(3940) = **Y**(3915)= $\chi_{c0}(2P)$ **Theory** \bigotimes

 $\circ \chi_{c0}(2P)$ production in two body B decays is suppressed

 \circ χ_{c0}(2P) → DD should be dominant, but not seen

 \circ a better candidate for $\chi_{c0}(2P)$ seen in $e^+e^-\!\rightarrow J/\psi DD$

Tasks for Belle II \circ (Not) confirm that $Y(3940) = Y(3915) = \chi_{c0}(2P)$

Seach for tetraquark

Y(4140) & Y(4274) narrow peak at threshold and one more nearby

Belle: low momentum kaon detection efficiency is small. 50X more data should help

Task for Belle II

NC!

2009

CDF [1098] (5.0), Belle [1099] (1.9), LHCb [1100] (1.4), CMS [1101] (>5) D0 [1102] (3.1)

CDF [1098] (3.1), LHCb [1100] (1.0), 2011 NC! CMS [1101] (>3), D0 [1102] (np)

In conclusion

Physics beyond the Standard Model has successfully avoided detection up to now, but we are sure it is somewhere nearby

At Belle II we expect

- Measure UT (angles & sides) with much better precision. If new phases contribute to any measurable → inconsistency of UT.
- CPV in $b \rightarrow sqq$ vs $b \rightarrow ccs$: extra new phases in the penguin loop makes CPV parameters different
- Search for CPV in radiative decays $B \to K^{*0}(K_S^0 \pi^0) \gamma$ is a test of right-handed current in the penguin loop
- Rare decays, even Br's constrain mass of NP
- Electro-weak penguins $b \rightarrow s\mu\mu$, see, svv: Br's, Q²-distribution, FB asymmetry are sensitive to NP
- Charm Physics
- Many new decay channels hardly/not seen with the present Belle statistics

About three dozens of quarkonium-like states was found recently and this list continues to increase

At Belle II we expect

- Precise measurements of known and search for new quarkonium and quarkonium-like states
- Many opportunities for analysis on exotic hadron physics
- A lot of surprises