Overview of recent ALICE results

Evgeny Kryshen (CERN, PNPI) for the ALICE collaboration

The XXII International Workshop High Energy Physics and Quantum Field Theory Samara, Russia, June 24 – July 1, 2015

Relativistic heavy-ion collisions

ALICE experimental setup

Evgeny Kryshen

Overview of ALICE results

ALICE

PID, vertexing and tracking capabilities

- particle identification (practically all known techniques)
- extremely low-mass tracker ~ 10% of X_0
- excellent vertexing capability
- efficient low-momentum tracking down to ~ 100 MeV/*c*

Int.J.Mod.Phys. A29 (2014) 1430044

ALI-PUB-72259

ALICE data taking harvest

System	Year	Energy	∫ L dt
Pb-Pb	2010	2.76 TeV	10 µb ^{-1 *}
Pb-Pb	2011	2.76 TeV	0.1 nb ^{-1 **}
рр	2010	7 TeV	11 nb ^{-1 *}
рр	2011	2.76 TeV	1.1 nb ^{-1 *}
рр	2011	7 TeV	4.8 nb ^{-1 *}
рр	2012	8 TeV	9.7 pb ^{-1 **}
p-Pb	2013	5.02 TeV	15 nb ^{-1 **}
Pb-p	2013	5.02 TeV	15 nb ^{-1 **}

- * Minimum bias triggers
- ** Rare triggers (muon, EMCAL, PHOS etc)

Global properties

Evgeny Kryshen

ALI-PREL-27968

Overview of ALICE results

Low p_{T} particle production

- Low p_T particle spectra (p_T < 3-4 GeV/c) sensitive to bulk properties and collective radial flow
- Particle spectra harder than at RHIC
- Low-p_T identified particle spectra in central Pb-Pb collisions are well described by modern hydrodynamic models

Blast-Wave fits to p_T spectra:
 → Radial flow velocity <β> ≈ 0.65 (10 % larger than at RHIC)
 → Kinetic freeze-out temp. T_K ≈ 95 MeV (same as RHIC within errors)

Evgeny Kryshen

Particle yields vs thermal model

Thermal model: hadron yields as produced in **chemical equilibrium**, described with baryon chemical potential μ_B and freeze-out temperature T, A. Andronic et al. NPA772 (2006) 167

K* suppression

ALICE, PRC91 (2015) 2, 024609

Most favoured explanation: rescattering of the decay daughters with final-state hadronic medium τ_{K^*} (~4 fm/c) $\ll \tau_{\phi}$ K*/K shows clear suppression going from pp and peripheral Pb-Pb collisions to central Pb-Pb

not observed in φ/K

Evgeny Kryshen

Baryon enhancement

p/φ ratio in Pb-Pb

Test baryon enhancement:

- p: 938 MeV/c² qqq
- φ: 1018 MeV/c² qq

p/φ ratio is constant: spectral shapes are **very** similar if particles have similar mass

the data seems to indicate that mass is the main parameter driving particle spectra (as foreseen by hydro)

In-medium energy loss

- Partons travel ~4 fm in the high colour-density medium created in central Pb-Pb collisions
- Energy loss mainly due to mediuminduced gluon radiation

• Nuclear modification factor:

- suppression stronger than at RHIC
- strongest for p_T ~6-7 GeV/c
- Essential constraint for parton energy loss models

No modification in p-Pb

ALICE results on charged particle R_{pPb} and charged jet R_{pPb} consistent with no modification

Evgeny Kryshen

Suppression of light flavour

 p_{T} >10 GeV/*c*: R_{AA} for π , K and p are compatible

No modification of jet chemistry

D nuclear modification factor

- Strong suppression of prompt D mesons in central collisions compatible with suppression of charged hadrons at high p_T .
- D meson R_{pPb} consistent with no modification in cold nuclear matter

J/ψ suppression in Pb-Pb

Two competing processes:

- Melting of quarkonium states in QGP
- Regeneration (~60 c-cbar pairs per central event @ 2.76 TeV)

Strong evidence of regeneration processes:

- Suppression smaller than at RHIC
- Suppression smaller at midrapidity
- Suppression smaller at low p_{T}

J/ψ suppression in p-Pb

Evgeny Kryshen

$\psi(2S)$ suppression in p-Pb

- Strong ψ(2S) suppression wrt J/ψ cannot be explained by initial state effects
 → Clear indication for final state effects
- **Difficult to explain with** *cc* **pair break-up** by interaction in CNM (short crossing time)

ALICE, JHEP 12 (2014) 073

J/ψ in ultraperipheral collisions

Ultraperipheral collisions: b > R₁+R₂

→Hadronic interactions strongly suppressed

- \rightarrow Large flux of quasi-real photons from Pb nuclei
- pQCD LO: coherent J/ψ cross section ~ (gluon density)²

No significant change in the gluon density behaviour between HERA and LHC energies

Best agreement with EPS09 shadowing (shadowing factor ~0.6 at x ~ 10⁻³)

Anisotropic flow

$$\frac{dN}{d(\varphi_i - \Psi_n)} \sim 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi_i - \Psi_n)]$$

ALICE, PRL 107, 032301 (2011)

- Large elliptic flow (v₂) observed at RHIC confirmed at LHC
- v₂ vs p_T well described by hydrodynamics of strongly coupled medium with low shear viscosity
- η /s close to quantum lower limit 1/4 π (AdS/CFT bound)

Identified particle v₂

 v_2 measured for π^{\pm} , K^{\pm} , K^0_s , p, φ , Λ , Ξ , Ω

- Mass ordering at low p_T driven by radial flow
- ϕv_2 at low p_T follows proton v_2
- Overall qualitative agreement with viscous hydrodynamics

Initial state fluctuations with odd moments

- Ideal case: symmetric shape, odd moments (v₃, v₅ ...) should be 0
- Initial state fluctuations result in nonzero odd moments

Triangular flow (v_3) :

- show mass ordering similar to v₂
- sensitive to initial state conditions
- sensitive to viscosity-to-entropy ratio

Odd moments provide promising tools to constrain the models. Example:

VISH2+1 model with CGC initial conditions and η/s = 0.20 (tuned to reproduce identified particle v₂) underestimates triangular flow

Charm flow?

Non-zero D-meson elliptic flow:

- consistent among D-meson species
- comparable to v_2 of light hadrons
- Thermalization of heavy quarks?

Hint for **non-zero J/\psi v₂**

- not observed at RHIC
- Significance up to 3.5σ
- Qualitative agreement with transport models including regeneration

Discovery of double ridge in p-Pb

- Near-side ridge first observed by CMS in p-p and p-Pb collisions
- New method proposed by ALICE: subtract the jet contribution (per-trigger yields in low-multiplicity events) from the structure in high-multiplicity events

Double ridge resembles the structure attributed to collective flow in Pb-Pb

Collective flow in pA?

- Models including hydrodynamical expansion can describe the observations
- Alternative interpretations:
 - CGC: many-gluon correlations, Dusling, Venugopalan, PRD 87 (2013) 094034
 - MPIs and "colour reconnections", e.g. Ortiz et al, PRL 111 (2013) 042001

Forward-central correlations in p-Pb

 v_2 extracted from correlations of muons (2.5 < $|\eta|$ < 4) and track(lets) in $|\eta|$ < 1

- v₂(Pb-going) > v₂(p-going) as qualitatively expected in hydro
- Quantitatively different \textbf{p}_{T} and η dependence in data compared to AMPT model
- Possible scenarios at $p_T > 2$ GeV/c (dominated by heavy flavour muons):
 - v_2 (heavy flavour) > 0
 - Different composition of the parent distribution and their v₂
 ALICE, arxiv:1506.08032

Run 2 preparation and restart

Commissioning with cosmics

The Economist 📀 @TheFconomist

Scientists at CERN announce a milestone turning knobs at the #LHC: this one goes to #13TeV econ.st/1dkYzqJ

Entering 13 TeV LHC Era

6/7/15, 10:44 AM

Conclusions

ALICE obtained a wealth of physics results from Run1 data:

- Hadron yields in Pb-Pb well described by thermal model. Deviations probably attributed to rescatterings after chemical freeze-out
- Baryon enhancement driven by mass-dependent radial flow
- Strong suppression at high- p_T is due parton in-medium energy loss, no jet chemistry modification observed
- Hints of heavy quark thermalization
- Signals of J/ψ regeneration
- Shadowing effects with photoproduced J/ψ
- Puzzle of $\psi(2S)$ suppression in p-Pb
- Azimuthal flow: hydrodynamics at work, establish QGP as strongly interacting liquid
- Collective phenomena in p-Pb

Entering the precision measurement era:

- Successful commissioning and restart after long shutdown
- Looking forward for Pb-Pb collisions at 5 TeV in November 2015