Fragmentation fractions of heavy quarks

Leonid Gladilin (Moscow State University)

XXII International Workshop on HEP and QFT QFTHEP 2015, 24.06–01.07 2015, Samara

Outline : Introduction

 $f(c \rightarrow H_c)$ and $f(b \rightarrow H_c)$ at LEP

Eur. Phys. J. C75 (2015) 19 arXiv:1404.388

Hints for non-universality of fragm. Fractions

Summary

Fragmentation Functions and Fragmentation Fractions

HQ fragmentation is hard harder for larger m_Q e.g., for Peterson param.: $f(z) \propto \frac{1}{z(1-1/z-\epsilon/(1-z))^2}$ $\epsilon(b) \sim \frac{m_c^2}{m_b^2}\epsilon(c) \sim 0.1\epsilon(c)$

Fragmentation Functions are strongly model dependent

pQCD is applicable to "initial" Q-fragmentation: LO, NLO, LL, NLL, ... anyhow, some parameterisation is needed for the non-perturbative (NP) rest the NP parameterisation is strongly dependent from the perturbative core

(it is wrong to use MC fragmentation for NLO w/o full retuning the fragm. parameters)

Fragmentation Fractions are less model dependent, often assumed to be universal

 $f(c \rightarrow D), f(b \rightarrow B), f(b \rightarrow D) = f(b \rightarrow B)^*BR(B \rightarrow D)$

needed for normalisation of pQCD predictions

Fragmentation fractions of c and b quarks into charmed hadrons at LEP

Charmed hadron decay	Branching fraction [%]
$D^0 \rightarrow K^- \pi^+$	3.88 ± 0.05 [6]
$D^+ \rightarrow K^- \pi^+ \pi^+$	9.15 ± 0.19 [6]
$D_s^+ \rightarrow \phi \pi^+ \rightarrow (K^- K^+) \pi^+$	2.24 ± 0.10 [6]
$\Lambda_c^+ \rightarrow p K^- \pi^+$	$6.71 \pm 0.35 \ [7,8]$
$D^{*+} \rightarrow D^0 \pi^+$	67.7 ± 0.5 [6]

Eur. Phys. J. C75 (2015) 19 arXiv:1404.388

[6] PDG 2014.

[7] Belle (2014) : $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 6.84 \pm 0.24^{+0.21}_{-0.27} \%$ [8] CLEO (2000) : $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 5.0 \pm 0.5 \pm 1.2 \%$

In PDG 2014, $B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 5.0 \pm 1.3$ % (indirect, with large uncertainty due to model dependence

LEP measurements of charm fragmentation fractions

ALEPH, DELPHI and OPAL rate measurements:

H_c	ALEPH [9]	DELPHI [10]	OPAL [11,12]
	$R_c \cdot f(c \to H_c) \cdot \mathcal{B}$ [%]	$R_c \cdot f(c \to H_c) \cdot \mathcal{B}$ [%]	$R_c \cdot f(c \to H_c) \cdot \mathcal{B}$ [%]
D^0	$0.370 \pm 0.011 \pm 0.023$	$0.3570 \pm 0.0100 \pm 0.0146$	$0.389 \pm 0.027 \stackrel{+0.026}{_{-0.024}}$
D^+	$0.368 \pm 0.012 \pm 0.020$	$0.3494 \pm 0.0116 \pm 0.0140$	$0.358 \pm 0.046 \substack{+0.025 \\ -0.031}$
D_s^+	$0.0352 \pm 0.0057 \pm 0.0021$	$0.0765 \pm 0.0069 \pm 0.0037$	$0.056 \pm 0.015 \pm 0.007$
Λ_c^+	$0.0673 \pm 0.0070 \pm 0.0037$	$0.0743 \pm 0.0155 \pm 0.0078$	$0.041 \pm 0.019 \pm 0.007$
D^{*+}	-	$0.1089 \pm 0.0027 \pm 0.0039$	$0.1041 \pm 0.0020 \pm 0.0040$

 $f(c \rightarrow D^{*+}) = 0.2333 \pm 0.0102 (\text{stat}) \pm 0.0084 (\text{syst})$ (\leftarrow ALEPH rate measurement)

 $R_c = \Gamma(Z \to c\bar{c}) / \Gamma(Z \to hadrons)$ $R_c = 0.1723$ (SM calculation)

DELPHI and OPAL double-tag measurements:

 $f(c \rightarrow D^{*+}) = 0.255 \pm 0.015(\text{stat}) \pm 0.006(\text{syst}) \quad (\leftarrow \text{DELPHI double-tag measurement})$ $f(c \rightarrow D^{*+}) = 0.222 \pm 0.014(\text{stat}) \pm 0.014(\text{syst}) \quad (\leftarrow \text{OPAL double-tag measurement})$

Correct all results with latest branching fractions

Charm fragmentation fractions

All LEP results:

H_c	ALEPH [9]	DELPHI [10,14]	OPAL [11, 12]
	$f(c \rightarrow H_c)$ [%]	$f(c \rightarrow H_c)$ [%]	$f(c \rightarrow H_c)$ [%]
D^0	$55.3 \pm 1.6 \pm 3.4$	$53.4 \pm 1.5 \pm 2.2$	$58.2 \pm 4.0 \substack{+3.9 \\ -3.6}$
D^+	$23.4 \pm 0.8 \pm 1.3$	$22.2 \pm 0.7 \pm 0.9$	$22.8 \pm 2.9 \ ^{+1.6}_{-2.0}$
D_s^+	$9.1 \pm 1.5 \pm 0.5$	$9.7 \pm 0.9 \pm 0.5$	$7.1 \pm 1.9 \pm 0.9$
Λ_c^+	$5.8 \pm 0.6 \pm 0.3$	$6.4 \pm 1.3 \pm 0.7$	$3.5 \pm 1.6 \pm 0.6$
D^{*+} , rate	$23.3 \pm 1.0 \pm 0.9$	$24.1 \pm 0.6 \pm 0.9$	$23.0 \pm 0.4 \pm 0.9$
D^{*+} , double-tag		$25.7 \pm 1.5 \pm 0.6$	$22.4 \pm 1.4 \pm 1.4$

Experiments are in fair agreement

LEP measurements of bottom fragmentation fractions

ALEPH, DELPHI and OPAL rate measurements:

H_c	ALEPH [15]	DELPHI [10]	OPAL [11,12]
	$f(b \rightarrow H_c)$ [%]	$R_b \cdot f(b \to H_c) \cdot \mathcal{B}$ [%]	$R_b \cdot f(b \to H_c) \cdot \mathcal{B}$ [%]
D^0	$60.5 \pm 2.4 \pm 1.6$	$0.4992 \pm 0.0162 \pm 0.0304$	$0.454 \pm 0.023 \substack{+0.025 \\ -0.026}$
D^+	$23.4 \pm 1.3 \pm 1.0$	$0.4525 \pm 0.0204 \pm 0.0226$	$0.379 \pm 0.031 \stackrel{+0.028}{_{-0.025}}$
D_s^+	$18.3 \pm 1.9 \pm 0.9$	$0.1259 \pm 0.0100 \pm 0.0063$	$0.166 \pm 0.018 \pm 0.016$
Λ_c^+	$11.0 \pm 1.4 \pm 0.6$	$0.0962 \pm 0.0187 \pm 0.0083$	$0.122 \pm 0.023 \pm 0.010$
D^{*+}	_	$0.1315 \pm 0.0035 \pm 0.0053$	$0.1334 \pm 0.0049 \pm 0.0078$

 $R_b = \Gamma(Z \rightarrow b\bar{b})/\Gamma(Z \rightarrow hadrons)$

 $R_b = 0.21579$ (SM calculation)

OPAL double-tag measurement:

 $f(b \rightarrow D^{*+}) = 0.173 \pm 0.016 (\text{stat}) \pm 0.012 (\text{syst})$ ($\leftarrow \text{OPAL double-tag measurement}$)

Correct all results with latest branching fractions

Bottom fragmentation fractions

All LEP results:

H_c	ALEPH [15]	DELPHI [10, 14]	OPAL [11,12]
	$f(b \rightarrow H_c)$ [%]	$f(b \rightarrow H_c)$ [%]	$f(b \rightarrow H_c)$ [%]
D^0	$59.7 \pm 2.4 \pm 1.3$	$59.6 \pm 1.9 \pm 3.6$	$54.2 \pm 2.7 \ ^{+3.0}_{-3.1}$
D^+	$23.3 \pm 1.3 \pm 1.0$	$23.0 \pm 1.0 \pm 1.1$	$19.2 \pm 1.6 \ ^{+1.4}_{-1.3}$
D_s^+	$14.4 \pm 1.5 \pm 0.8$	$12.8 \pm 1.0 \pm 0.6$	$16.6 \pm 1.8 \pm 1.6$
Λ_c^+	$7.2 \pm 0.9 \pm 0.6$	$6.6 \pm 1.3 \pm 0.6$	$11.3 \pm 2.1 \pm 0.9$
D^{*+} , rate	_	$23.2 \pm 0.6 \pm 0.9$	$23.5 \pm 0.9 \pm 1.4$
D^{*+} , double-tag	_	_	$17.5 \pm 1.6 \pm 1.2$

Experiments are in fair agreement

LEP fragmentation fractions

Eur. Phys. J. C75 (2015) 19 arXiv:1404.388

Weighted mean taking correlations into account:

H_c	$f(c \rightarrow H_c)$ [%]	$f(b \rightarrow H_c)$ [%]
D^0	$54.2 \pm 2.4 \pm 0.7$	$58.7 \pm 2.1 \pm 0.8$
D^+	$22.5 \pm 1.0 \pm 0.5$	$22.3 \pm 1.1 \pm 0.5$
D_s^+	$9.2 \pm 0.8 \pm 0.5$	$13.8 \pm 0.9 \pm 0.6$
Λ_c^+	$5.7 \pm 0.6 \pm 0.3$	$7.3 \pm 0.8 \pm 0.4$
D^{*+} , rate	$23.4 \pm 0.7 \pm 0.3$	$23.3 \pm 1.0 \pm 0.3$
D^{*+} , double-tag	$24.4 \pm 1.3 \pm 0.2$	$17.5 \pm 2.0 \pm 0.1$
D^{*+} , combined	$23.6 \pm 0.6 \pm 0.3$	$22.1 \pm 0.9 \pm 0.3$

1st uncert. - stat.&syst., 2nd uncert. - branching fractions

 $f(c \rightarrow D^{0}) + f(c \rightarrow D^{+}) + f(c \rightarrow D_{s}^{+}) + f(c \rightarrow \Lambda_{c}^{+}) = 91.6 \pm 3.3 (\text{stat} \oplus \text{syst}) \pm 1.0 (\text{branching fractions})\%$ $f(b \rightarrow D^{0}) + f(b \rightarrow D^{+}) + f(b \rightarrow D_{s}^{+}) + f(b \rightarrow \Lambda_{c}^{+}) = 102.1 \pm 3.1 (\text{stat} \oplus \text{syst}) \pm 1.1 (\text{branching fractions})\%$

Too low?

Important to measure fragmentation fractions to Ξ_c^+ , Ξ_c^0 and Ω_c^0 .

Hints for non-universality of fragmentation fractions

In previous averaging of $f(c \rightarrow H_c)$ (arXiv:hep-ex/9912064), LEP and B-fabric measurements were combined

It is not done in the new averaging, because $f(b \rightarrow H_c)$ are certainly different at LEP and at $\sqrt{s} \sim 10$ GeV $f(c \rightarrow H_c)$ show hints of non-universality as well:

At LEP, $f(c \rightarrow D^{*+}) > f(c \rightarrow D^{+})$ At 10 GeV, $f(c \rightarrow D^{*+}) < f(c \rightarrow D^{+})$

Х	Belle σ_{PROD} [pb]	$\sigma_{PROD(CLEO'04/BaBar)}$ [pb]
$D^0 \to K^- \pi^+$	$1449\pm2\pm64\pm38$	$1521 \pm 16 \pm 62 \pm 36$
$D^+ \to K^- \pi^+ \pi^+$	$654\pm1\pm36\pm46$	$640 \pm 14 \pm 35 \pm 43$
$D_s^+ \to \phi \pi^+$	$231\pm2\pm92\pm77$	$210 \pm 6 \pm 9 \pm 52^{(1)}$
$\Lambda_c^+ \to p^+ K^- \pi^+$	$189\pm1\pm66\pm66$	$270 \pm 90 \pm 70^{(2)}$
$D^{*0} \to D^0 \pi^0$	$510\pm3\pm84\pm39$	$559 \pm 24 \pm 35 \pm 39$
$D^{*+} \to D^0 \pi^+$	$598\pm2\pm77\pm20$	$583\pm8\pm33\pm14$
$D^{*+} \to D^+ \pi^0$	$590\pm5\pm78\pm53$	-
average D^{*+}	$597\pm2\pm78\pm25$	-

Due to, in particular, exclusive production channels, e.g.: $e^+e^- \rightarrow D^{(*)+}D^{(*)-}$ 9

Hints for non-universality of fragmentation fractions

 $f(b \rightarrow \Lambda_b)$ demonstrates p_T dependance at low p_T :

LHCb, arXiv:1111.2357 (for p_T < 14 GeV):

 $\left[\frac{f_{A_b}}{f_u + f_d}\right](p_{\rm T}) = (0.404 \pm 0.017 \pm 0.027 \pm 0.105) \times [1 - (0.031 \pm 0.004 \pm 0.003) \times p_{\rm T}({\rm GeV})]$

LEP obtains 0.110 ± 0.019 CDF measures $f_{A_b}/(f_u + f_d) = 0.281\pm0.012^{+0.011+0.128}_{-0.056-0.086}$

Important to measure $f(b \rightarrow \Lambda_b)$ in central LHC range (ATLAS, CMS)

Summary

Averaging of LEP $f(c \rightarrow H_c)$ and $f(b \rightarrow H_c)$ measurements performed They are intended for normalisation of MC and analytical predictions

 $\sum_{w.d.} f(c \to H_c) \text{ and } \Sigma_{w.d.} f(b \to H_c) \text{ look somewhat too low}$ Important to measure fragmentation fractions to Ξ_c^+ , Ξ_c^0 and Ω_c^0

There are hints for non-universality of fragmentation fractions Important to measure $f(b \rightarrow \Lambda_b)$ at ATLAS and CMS