Investigation of $\pi^+\pi^-$, $K^+\pi^-$ and π^+K^- atoms for pion-pion and pion-kaon scattering length measurements

V. Yazkov ¹ on behalf of the DIRAC collaboration

¹Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

The XXII International Workshop High Energy Physics and Quantum Field Theory June 24 — July 1, 2015 Samara, Russia

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

DIRAC collaboration

2 / 45

Contents

- Low-energy QCD precise predictions
- Method of $\pi^+\pi^-$ and πK atom observation and investigation
- DIRAC setup
- Status of $K^+\pi^-$, π^+K^- atom investigation
- $_{\rm O}$ The first observation of long-lived $\pi^+\pi^-$ atoms

Low-energy QCD precise predictions

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 4 / 45

3

$\pi\pi$ scattering lengths

In ChPT the effective Lagrangian, which describes the $\pi\pi$ interaction, is an expansion in (even) terms:

$$L_{eff} = \frac{L^{(2)}}{(tree)} + \frac{L^{(4)}}{(1-loop)} + \frac{L^{(6)}}{(2-loop)} + \cdots$$

Colangelo et al. in 2001, using ChPT (2-loop)& Roy equations:

$$\left. \begin{array}{l} a_0 = 0.220 \pm 2.3\% \\ a_2 = -0.0444 \pm 2.3\% \end{array} \right\} a_0 - a_2 = 0.265 \pm 1.5\%$$

These results (precision) depend on the low-energy constants (LEC) l_3 and l_4 . Lattice gauge calculations from 2006 provided values for these l_3 and l_4 .

Because l_3 and l_4 are sensitive to the quark condensate, precision measurements of a_0 , a_2 are a way to study the structure of the QCD vacuum.

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 5 / 45

(日) (同) (三) (

Lattice calculations of \bar{l}_3 , \bar{l}_4

- \bullet 2006: l_3 , l_4 first lattice calculations
- 2012: 10 collaborations: 3 USA, 5 Europe, 2 Japan
- J. Gasser, H. Leutwyler: Model calculation (1985) $\bar{l}_3=2.6\pm2.5,\ \Delta \bar{l}_3/\bar{l}_3pprox 1$
- Lattice calculations in near future will obtain $\Delta \bar{l}_3/\bar{l}_3 \approx 0.1$ or $\Delta \bar{l}_3 \approx 0.2 0.3$
- To check the predicted values of l_3 the experimental relative errors of $\pi\pi$ -scattering lengths and their combinations must be at the level (0.2 - 0.3)%

πK scattering lengths

I . ChPT predicts s-wave scattering lengths:

 $L^{(2)}$, $L^{(4)}$ and 1-loop

 $a_0^{1/2} - a_0^{3/2} = 0.24 \pm 0.03$

$$B_0^{1/2} = 0.19 \pm 0.02, \; a_0^{3/2} = -0.05 \pm 0.02$$

 $a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$ A. F

A. Roess - 1999

 $L^{(2)}, L^{(4)}, L^{(6)}$ and 2-loop

$$a_{1/2} - a_{3/2} = 0.267$$

J. Bijnens, P. Dhonte, P. Talavera - April 2004

II . Roy-Steiner equations:

$$a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$$

P. Büttiker et al. - 2004

4 D N 4 B N 4 B N 4 B N

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $\kappa\pi$ atoms

QFTHEP 2015, June 30 7 / 45

πK scattering lengths

III . S-wave πK scattering has also been studied extensively in the framework of lattice QCD

Recently predictions for πK scattering have been obtained:

$$a_0^{1/2} = 0.183 \pm 0.039, a_0^{3/2} = -0.0602 \pm 0.0040$$
C.B. Lang et al., Phys. Rev.
D86 (2012) 054508

$$a_0^- = \frac{1}{3}(a_0^{1/2} - a_0^{3/2}) = 0.0811 \pm 0.0143$$
K. Sasaki et al., Phys. Rev.
D89 (2014) 054502

πK scattering

What new will be known if πK scattering lengths will be measured?

The measurement of the s-wave πK scattering lengths would test our understanding of the chiral $SU(3)_L \times SU(3)_R$ symmetry breaking of QCD (u, d and s quarks), while the measurement of $\pi \pi$ scattering lengths checks only the $SU(2)_L \times SU(2)_R$ symmetry breaking (u,d quarks).

This is the principal difference between $\pi\pi$ and πK scattering!

Experimental data on the πK low-energy phases are absent.

Pionium lifetime

Pionium $(A_{2\pi})$ is a hydrogen-like atom consisting of π^+ and π^- mesons: $E_B = -1.86 \text{ keV}, r_B = 387 \text{ fm}, p_B \approx 0.5 \text{ MeV}$ The lifetime of $\pi^+\pi^-$ atoms is dominated by the annihilation process into $\pi^0\pi^0$: $\Gamma = \frac{1}{\tau} = \Gamma_{2\pi_0} + \Gamma_{2\gamma}$ with $\frac{\Gamma_{2\gamma}}{\Gamma_{2\pi_0}} \approx 4 \times 10^{-3}$ $\Gamma_{15,2\pi^0} = R | a_0 - a_2 |^2$ with $\frac{\Delta R}{R} \approx 1.2\%$ $\tau = (2.9 \pm 0.1) \times 10^{-15} \text{ Gasser et al. - 2001}$

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I=0 and I=2.

$$\frac{\Delta \tau}{\tau} = 9\% \quad \Rightarrow \quad \frac{\Delta |a_0 - a_2|}{|a_0 - a_2|} = 4.3\%$$

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $\kappa\pi$ atoms

QFTHEP 2015, June 30 10 / 45

Energy splitting measurement

Dependence of $A_{2\pi}$ lifetime on electric field *E* strength

$$N_{A} = N_{A}(0) \cdot e^{-\frac{t}{\tau_{2p}}} \qquad N_{A} = N_{A}(0) \cdot e^{-\frac{t}{\tau_{eff}}}$$
$$\tau_{eff} = \frac{\tau_{2p}}{1 + \frac{|\xi|^{2}}{4} \frac{\tau_{2p}}{\tau_{2s}}} = \frac{\tau_{2p}}{1 + 120 |\xi|^{2}} \qquad \text{where:} \left|\xi|^{2} \approx \frac{|\vec{E}|^{2}}{(E_{2p} - E_{2s})^{2}}\right|^{2}$$

$$\begin{array}{c} \mathbf{B}_{\text{Lab}} = 2 \text{ Tesla} \\ \begin{cases} \gamma = 20 \ , & \left| \xi \right| = 0.025 \quad \Rightarrow \quad \tau_{eff} = \frac{\tau_{2p}}{1.3} \\ \gamma = 40 \ , & \left| \xi \right| = 0.05 \quad \Rightarrow \quad \tau_{eff} = \frac{\tau_{2p}}{2.25} \end{cases}$$

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 12 / 45

 τ

Published results on $\pi\pi$ scattering lengths

DIRAC	$ au_{1s}(10^{-15}s)$	$ a_0 - a_2 $	Reference
data	value stat syst theo* tot	value stat syst theo st tot	
2001	$2.91^{+0.45+0.19}_{-0.38-0.49} \begin{bmatrix} +0.49\\ -0.62 \end{bmatrix}$	$0.264^{+0.017+0.022}_{-0.020-0.009} \begin{bmatrix} +0.033\\ -0.020 \end{bmatrix}$	PL B 619 (2005) 50
2001-03	$3.15^{+0.20+0.20}_{-0.19-0.18} \begin{bmatrix} +0.28\\ -0.26 \end{bmatrix}$	$0.2533^{+0.0078+0.0072}_{-0.0080-0.0077} \begin{bmatrix} +0.0106\\ -0.0111 \end{bmatrix}$	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	$a_0 - a_2$	Reference
		value stat syst theo tot	
2009	$K_{3\pi}$	$0.2571 \pm 0.0048 \pm 0.0029 \pm 0.0088$	EPJ C64 (2009) 589
2010	$K_{e4}\&K_{3\pi}$	$0.2639 \pm 0.0020 \pm 0.0015$	EPJ C70 (2010) 635

$\pi^+\pi^-$ and $\kappa\pi$ atoms	QFTHEP 2015, June 30	13/45

V. Yazkov (SINP)

$K^+\pi^-$ and π^+K^- atoms lifetime

 π K-atom ($A_{\pi K}$) is a hydrogen-like atom consisting of K^+ and π^- mesons: $E_B = -2.9 \text{ keV}, r_B = 248 \text{ fm}, p_B \approx 0.8 \text{ MeV}$

The πK -atom lifetime (ground state 1S), $\tau = \frac{1}{\Gamma}$ is dominated by the annihilation process into $\pi^0 K^0$:

$$\begin{array}{c}
\mathbf{K}^{+} \\
\pi^{-} \\
\pi^{-} \\
\pi^{-}
\end{array}$$

$$\begin{array}{c}
\mathbf{K}^{0} \\
\mathbf{K}^{0} \\
\mathbf{K}^{0} \\
\pi^{-} \\
\pi^{0}
\end{array}$$

$$\begin{array}{c}
\mathbf{K}^{0} \\
\mathbf{K}^{0} \\$$

J. Schweizer - 2004

2%

From Roy-Steiner equations:

$$a_{0}^{1/2} - a_{0}^{3/2} = 0.269 \pm 0.015 \rightarrow \tau = (3.7 \pm 0.4)10^{-15}s$$

If $\frac{\Delta\Gamma}{\Gamma} = 20\% \implies \frac{\Delta|a_{1/2} - a_{3/2}|}{|a_{1/2} - a_{3/2}|} = 10\%$

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 14 / 45

Method of $\pi^+\pi^-$ and πK atom observation and investigation

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 15 / 45

Method of and πK atom observation and investigation

Coulomb pairs and atoms

For the charged pairs from the short-lived sources and small relative momentum Q there is strong Coulomb interaction in the final state. This interaction increases the production yield of the free pairs with Q decreasing and creates atoms.

There is precise ratio between the number of produced Coulomb pairs (N_C) with small Q and the number of atoms (N_A) produced simultaneously with these Coulomb pairs:

$$N_{A} = K(Q_{0}) \cdot N_{C} \ (Q \leq Q_{0}), \ \frac{\delta K(Q_{0})}{K(Q_{0})} \leq 10^{-2}$$

$$n_{A} \text{ - atomic pairs number, } P_{br} = \frac{n_{A}}{N_{A}}$$

$$(D \leq \langle \mathcal{O} \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi$$

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on pionium lifetime τ

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on πK atom lifetime for Nickel target with thicknesses $108\mu m$ and $98\mu m$

Method to observe long-lived atoms

Decay length (cm) of $A_{2\pi}$ with different principal quantum number *n* and orbital momentum *l* for $\gamma = 16$.

- 1	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
0	$1.39 \cdot 10^{-3}$	$1.11 \cdot 10^{-2}$	$3.76 \cdot 10^{-2}$	$8.91 \cdot 10^{-2}$	$1.74 \cdot 10^{-1}$
1		5.6	19	43	84

Fraction of atoms with non-zero orbital momentum $(\epsilon_n(Be))$ on the exit of Be target (100 μ m) and $\epsilon_n(Pt)$ in the entry of Pt foil (10 cm downstream) for $\gamma = 16$.

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5
$\epsilon_n(Be) imes 10^2$	$2.48 \pm O(10^{-3})$	1.54 ± 0.01	0.86 ± 0.03	0.56 ± 0.06
$\epsilon_n(Pt) imes 10^2$	$0.52 \pm O(10^{-4})$	$1.01\pm O(10^{-3})$	0.78 ± 0.03	0.54 ± 0.06

 $\epsilon_{n\geq 2}(Be) = (7.11 \pm 0.77) \cdot 10^{-2}, \ \epsilon_{n\geq 2}(Pt) = (4.59 \pm 0.76) \cdot 10^{-2}.$

Method to observe long-lived atoms

DIRAC setup

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 22 / 45

э

・ロト ・回ト ・ヨト・

Experimental setup

1 Target station with Ni foil; 2 First shielding; 3 Micro Drift Chambers; 4 Scintillating Fiber Detector; 5 Ionization Hodoscope; 6 Second Shielding; 7 Vacuum Tube; 8 Spectrometer Magnet; 9 Vacuum Chamber; 10 Drift Chambers; 11 Vertical Hodoscope; 12 Horizontal Hodoscope; 13 Aerogel Čerenkov; 14 Heavy Gas Čerenkov; 15 Nitrogen Čerenkov; 16 Preshower; 17 Muon Detector

Experimental conditions

SFD					
Coordinate pred	cision	$\sigma_X = 60$	μ m	$\sigma_{\mathbf{Y}} = 60 \mu m$	$\sigma_W = 120 \mu m$
Time precision	on	$\sigma_X^t = 380 ps$		$\sigma_Y^t = 512 ps$	$\sigma_W^t = 522 ps$
DC			VH		
Coordinate	$\sigma =$	= 85 <i>µm</i> T		ime precision	$\sigma = 100 ps$

Spectrometer				
Relative resolution on the particle momentum in L.S. $3 \cdot 10^{-3}$				
Precision on Q-projections	$\sigma_{\textit{Q_L}}=0.5~\textit{MeV}/c~(\pi\pi)$			
		$\sigma_{\textit{Q}_{L}}=0.9\textit{MeV}/c(\pi\textit{K})$		

Trigger efficiency 98%	for pairs with	$Q_L < 28 \; MeV/c$
		$Q_X < 6 MeV/c$
		$Q_Y < 4 MeV/c$

V.Yazkov (S	INP)
-------------	------

 $\pi^+\pi^-$ and $\kappa\pi$ atoms

Status of πK atom investigation

э

イロト イポト イヨト イ

π^+K^- atoms - run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production for all particles.

$K^+\pi^-$ atoms - run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production for all particles.

Break-up probability of πK atoms

Year	N _A	n _A	P _{br}
	$K^+\pi^-$	over Q_T , (\mathcal{Q}_L
2008	132 ± 16	14 ± 19	0.11 ± 0.15
2009	169 ± 24	33 ± 26	0.20 ± 0.17
2010	164 ± 23	49 ± 26	0.30 ± 0.19
All	465 ± 37	96 ± 41	0.21 ± 0.10
	$\pi^+ K^-$	over Q_T , (\overline{Q}_L
2008	51 ± 11	21 ± 13	0.41 ± 0.33
2009	78 ± 13	26 ± 16	0.34 ± 0.24
2010	60 ± 12	35 ± 16	0.58 ± 0.36
All	188 ± 21	82 ± 26	0.44 ± 0.18

$$n_A^{K^+\pi^-} + n_A^{\pi^+K^-} = 178 \pm 49$$

 $\pi^+\pi^-$ and $\kappa\pi$ atoms

QFTHEP 2015, June 30 28 / 45

3

イロト イポト イヨト イヨト

Systematic errors

Systematic errors in P_{br} common to all data collected from 2008 to 2010

Sources of systematic errors	$\sigma^{syst}_{Q_L,Q_T}$	$\sigma_{Q_L}^{syst}$
Uncertainty in correction on Λ -width	0.0039	0.0071
Uncertainty of multiple scattering in the Nickel target	0.0032	0.00054
Accuracy of SFD detector response simulation	0.00075	0.00029
Correction of Coulomb correlation function on finite size of production region	0.000058	0.000058
Uncertainty in a dependence ${\cal P}_{br}(au)$	0.0050	0.0050
Accuracy of a target thickness measurement	0.00030	< 0.00030

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 29 / 45

э

イロト イポト イヨト イヨト

Systematic errors

Systematic errors in P_{br} specific to the data samples collected in 2008, 2009 and 2010

Year	$\sigma_{\pi K}^{syst}$	σ^{syst}_{backgr}			
K+7	$K^+\pi^-$ over Q_T, Q_L				
2008	0.0028	0.0015			
2009	0.0044	0.0025			
2010	0.0036	0.0022			
K	$^+\pi^-$ over	QL			
2008	0.0030	0.0028			
2009	0.0053	0.0044			
2010	0.0046	0.0036			
$\pi^+ k$	([–] over G	Q_T, Q_L			
2008	0.0072	0.0067			
2009	0.0048	0.0028			
2010	0.0017	0.0043			
$\pi^+ K^-$ over Q_L					
2008	0.0093	0.0072			
2009	0.0047	0.0048			
2010	0.0021	0.0017			

3

(日) (四) (王) (王) (王)

πK atom lifetime estimation

Analysis with Q_L :

$$\tau = (2.4^{+5.4}_{-2.2}|_{stat} \stackrel{+0.5}{_{-0.1}}|_{syst}) fs = (2.4^{+5.5}_{-2.2}|_{tot}) fs$$

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 31 / 45

The first observation of long-lived $\pi^+\pi^-$ atoms

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 32 / 45

A D > A D >

Influence of permanent magnet on Q_Y distribution

Long-lived $\pi^+\pi^-$ atoms - run 2012

Run 2012, statistics with low and medium background. Two-dimensional distribution over $|Q_L|, Q'_T$ have been fitted with $\chi^2/ndf = 138/140$. Projections to $|Q_L|$ and Q'_T are presented.

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 34 / 45

Statistics of "atomic pairs" from long-lived atoms

Q_T cut	n _A ^L	$n_A^{L, tot}$	Back-	χ^2/n		
(MeV/ <i>c</i>)			ground			
Fit over Q_L, Q_T						
2.0	436 ± 57	488 ± 64	16790	138/140		
Fit over <i>Q</i> _L						
0.5	152 ± 29	467 ± 88	971	29/27		
1.0	349 ± 53	489 ± 75	3692	19/27		
1.5	386 ± 78	454 ± 91	9302	22/27		
2.0	442 ± 105	495 ± 117	16774	22/27		
Analysis with "Coulomb pairs" generated at Platinum target						
2.0	$(-0.8 \pm 13.) \times 10^3$			238/140		

 $\pi^+\pi^-$ and $K\pi$ atoms

э

Observation of long-lived atom

Systematic errors of number of long-lived "atomic pairs"

Sources of systematic errors	σ^{syst}
Uncertainty in correction on Λ -width	4.4
Uncertainty of Platinum foil thickness	22.
Total	23.

 $n_A^L = 436 \pm 57(stat.) \pm 23(syst.) = 436 \pm 61$

Expected number \rightarrow 653 \pm 110 (453 \div 845)

< ロト < 同ト < ヨト < ヨト

Increasing of statistic with 450 GeV/c proton beam

The yield of $\pi^+\pi^-, \pi^+K^-$ and $K^+\pi^-$ atoms W_A into DIRAC setup acceptance.

θ_{lab}	5.7°	4°	2°	0°		
E _p	24 GeV/ <i>c</i>	450 GeV/ <i>c</i>	450 GeV/ <i>c</i>	450 GeV/ <i>c</i>		
	The yield of $\pi^+\pi^-$ atoms					
W _A	$1.25 \cdot 10^{-9}$	$1.9 \cdot 10^{-8}$	$3.5 \cdot 10^{-8}$	$4.5 \cdot 10^{-8}$		
W_A^N	1	15	28	36		
W_A/W_{π}	$5.7 \cdot 10^{-8}$	$1.4 \cdot 10^{-7}$	$7.0 \cdot 10^{-8}$	$1.6 \cdot 10^{-8}$		
$(W_A/W_\pi)^N$	1	2.4	1.2	0.27		
	The yi	eld of $\pi^+ K^-$:	atoms			
W _A	$1.3 \cdot 10^{-11}$	$8.8 \cdot 10^{-10}$	$1.7 \cdot 10^{-9}$	$2.0 \cdot 10^{-9}$		
W_A^N	1	67	131	154		
W_A/W_{π}	$5.9 \cdot 10^{-10}$	$6.3 \cdot 10^{-9}$	$3.4 \cdot 10^{-9}$	$6.9 \cdot 10^{-10}$		
$(W_A/W_\pi)^N$	1	11	5.8	1.2		
The yield of $K^+\pi^-$ atoms						
WA	$3.1 \cdot 10^{-11}$	$9.7 \cdot 10^{-10}$	$2.1 \cdot 10^{-9}$	$2.7 \cdot 10^{-9}$		
W^N_A	1	31	68	87		
W_A/W_{π}	$1.4 \cdot 10^{-9}$	$6.9 \cdot 10^{-9}$	$4.2 \cdot 10^{-9}$	$9.3 \cdot 10^{-10}$		
$(W_A/W_\pi)^N$	1	4.9	3.0	0.66		

ロト (四) (三) (三) (三) (三) (三) (二)

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 37 / 45

Conclusion

- The analysis of πK pairs statistic with low and medium background, collected from 2008 to 2010, allows to evaluate the number of atomic πK pairs (178 ± 49) as well as the number of produced πK atoms (653 ± 42) and thus the breakup (ionisation) probability.
- Value of πK atom lifetime has been expracted to be $\tau = (2.5^{+3.0}_{-1.8}) fs$. It provides a measurement of the S-wave isospin-odd πK scattering length $|a_0^-| = (0.11^{+0.09}_{-0.04}) \cdot M_{\pi}^{-1}$.
- Analysis of data collected in 2012 with Be-Pt target allows to make observation of "atomic pairs" from $\pi^+\pi^-$ atoms in long-lived states: $n_A^L = 436 \pm 61$. It provides possibility to plan experiments for measurement of "Lamb shift like" effect in $\pi^+\pi^-$ system.

イロト イポト イヨト イヨト

Thank you for your attention!

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 39 / 45

イロト イポト イヨト イヨト

Supplementary slides

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 40 / 45

э

<ロト <回ト < 三ト < 三ト

Experimental conditions

Primary proton beam	24 <i>GeV</i> / <i>c</i>
Beam intensity	$(10.5 \div 12) \cdot 10^{10}$ proton/spill
Single count of one IH plane	$(5\div 6)\cdot 10^6$ particle/spill
Spill duration	450 <i>ms</i>

Ni target				
Purity	99.98%			
Target thickness (year)	98 \pm 1 μ m (2008)	$108 \pm 1 \; \mu m \; (2009 - 2010)$		
Radiation thickness	$6.7 \cdot 10^{-3} X_0$	$7.4 \cdot 10^{-3} X_0$		
Probability of inelastic proton interaction	$6.4 \cdot 10^{-4}$	$7.1 \cdot 10^{-4}$		

3

(日) (四) (王) (王) (王)

Experimental conditions

Secondary particles channel	5.4 ^{<i>o</i>}		
(relative to the proton beam)			
Angular divergence in vertical	+10		
and horizontal planes	±1		
Solid angle	$1.2\cdot10^{-3}$ sr		
Dipole magnet	$B_{max} = 1.65 T, BL = 2.2 Tm$		

Time resolution [ps]								
	VH	IH			SFD			
plane	1	1	2	3	4	Х	Y	W
2008	112	713	728	718	798	379	508	518
2010	113	907	987	997	1037	382	517	527

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへの

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

Admixtures in distributions of $\pi^+ K^-$ and $\pi^- K^+$ pairs

 $\pi^+ K^ \pi^- K^+$ z Z 100 40 35 80 30 60 25 20 40 15 10 20 5 0 0 -0.25 -0.2 -0.15 -0.1 0.05 -0.1 -0.05 0.1 0.15 0.2 -0.05 0 0.05 0.1 0.15 -0.25 -0.2 -0.15 0 0.25 0.2 0.25 x 10 ΔT [s] ΔT [s]

QFTHEP 2015, June 30 43 / 45

 $\pi^+\pi^-$ and $K\pi$ atoms

V. Yazkov (SINP)

Background suppression for $K^+\pi^-$

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 44 / 45

Background suppression for $\pi^+ K^-$

V. Yazkov (SINP)

 $\pi^+\pi^-$ and $K\pi$ atoms

QFTHEP 2015, June 30 45 / 45