

Exotic Searches with ATLAS

QFTHEP 2015 Samara, Russia

Rebecca Falla on behalf of the ATLAS Collaboration

Motivation

The Standard Model has been very successful but there are still problems

- Dark Matter
- Mass hierarchy problem
- Neutrino masses
- Gravity
- ▶

Exotic theories could hold the answers to these questions

- Supersymmetry?
- Extra dimensions?
- WIMPS as dark matter candidates?
- Seesaw mechanism?
- New TeV scale interactions or particles?
- ≻?

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

Model	<i>ℓ</i> ,γ J	ets E ^m _T	^{ss} ∫£ dt[ft	⁻¹] Mass limit		Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $\rightarrow \ell q$ ADD QBH $gram arrow arro$	$ - 2e, \mu 1 e, \mu - 2 \mu (SS) ≥ 1 e, \mu - 2 γ 2 e, \mu 2 1 e, \mu 2 - 2 e, \mu 2 1 e, \mu 2 1 2 e, \mu (SS) ≥ 1 2 e, \mu (SS) = 1 - 2 e, $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mo 5.25 TeV Ms 4.7 TeV Mth 5.2 TeV Mth 5.8 TeV Mth 5.8 TeV Mth 5.8 TeV GKK mass 2.68 TeV GKK mass 740 GeV W'mass 700 GeV GKK mass 590-710 GeV KK mass 960 GeV KK mass 960 GeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ}\\ n &= 6\\ n &= 6\\ n &= 6, M_D &= 3 \text{ TeV}, \text{ non-rot BH}\\ n &= 6, M_D &= 3 \text{ TeV}, \text{ non-rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ k/\overline{M}_{Pl} &= 1.0\\ BR &= 0.925 \end{split}$	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 Preliminary 1405.4123 Preliminary 1409.6190 1503.04677 ATLAS-CONF-2014-005 ATLAS-CONF-2015-009 Preliminary
$\begin{array}{c} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu\ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{HVT } W' \to WH \to \ell\nu bb \\ \text{LRSM } W_R^* \to t\overline{b} \\ \text{LRSM } W_R^* \to t\overline{b} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 1 \ e, \mu \\ 3 \ e, \mu \\ 2 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 2 \ e, $	 - Ye - Ye :j/1J - 2b Ye b, 0-1j Ye 1b, 1J -	20.3 19.5 s 20.3 s 20.3 s 20.3 s 20.3 s 20.3 s 20.3 s 20.3 s 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.47 TeV W' mass 1.92 TeV	$g_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 Preliminary 1410.4103 1408.0886
Cl qqqq Cl qqll Cl uutt	− 2 e,μ 2 e,μ (SS) ≥ 1	2j – – – ⊥b,≥1j Ye	17.3 20.3 s 20.3	Λ 12.0 T Λ 4.35 TeV	$\begin{array}{c} \mathbf{eV} & \eta_{LL} = -1 \\ \hline \mathbf{21.6 \ TeV} & \eta_{LL} = -1 \\ C_{LL} = 1 \end{array}$	Preliminary 1407.2410 Preliminary
EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ 1	≥1j Ye J,≤1j Ye	s 20.3 s 20.3	M. 974 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 100$ GeV at 90% CL for $m(\chi) < 100$ GeV	1502.01518 1309.4017
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ,1 τ 1	≥ 2 j – ≥ 2 j – b, 1 j –	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
$\begin{array}{c} \text{VLQ } TT \rightarrow Ht + X, Wb + X \\ \text{VLQ } TT \rightarrow Zt + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{VLQ } BB \rightarrow Wt + X \\ \text{T}_{5/3} \rightarrow Wt \end{array}$	$\begin{array}{rrrr} 1 \ e, \mu & \geq 1 \\ 2/ \geq 3 \ e, \mu & \geq \\ 2/ \geq 3 \ e, \mu & \geq \\ 1 \ e, \mu & \geq 1 \\ 1 \ e, \mu & \geq 1 \end{array}$	b, ≥ 3 j Ye 2/≥1 b – 2/≥1 b – b, ≥ 5 j Ye b, ≥ 5 j Ye	s 20.3 20.3 20.3 s 20.3 s 20.3 s 20.3	T mass 785 GeV T mass 735 GeV B mass 755 GeV B mass 640 GeV T _{5/3} mass 840 GeV	isospin singlet T in (T,B) doublet B in (B,Y) doublet isospin singlet	ATLAS-CONF-2015-012 1409.5500 1409.5500 Preliminary Preliminary
Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	1 γ - 1 or 2 e, μ 1 b, 2 e, μ, 1 γ 3 e, μ, τ	1j - 2j - 2jor1jYe 	20.3 20.3 s 4.7 13.0 20.3	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV (* mass 2.2 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
$\label{eq:LSTC} \begin{array}{c} \text{LSTC} a_T \to W \gamma \\ \text{LRSM} \text{Majorana } \nu \\ \text{Higgs triplet} H^{\pm\pm} \to \ell \ell \\ \text{Higgs triplet} H^{\pm\pm} \to \ell \tau \\ \text{Monotop (non-res prod)} \\ \text{Multi-charged particles} \\ \text{Magnetic monopoles} \end{array}$	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $\sqrt{s} = 7 T$	- Ye 2j - 1b Ye 	s 20.3 2.1 20.3 s 20.3 s 20.3 20.3 2.0 = 8 TeV	ar mass 960 GeV N ⁰ mass 1.5 TeV H ^{±±} mass 551 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV motio-harged particle mass 785 GeV monopole mass 862 GeV 10 ⁻¹ 1 1	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ \text{DY production, BR}(H_L^{++} \to \ell \ell) = 1 \\ \text{DY production, RR}(H_L^{++} \to \ell \tau) = 1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } g &= 5e \\ \text{DY production, } g &= 1g_D \end{split}$	1407.8150 1203.5420 1412.0237 1411.2921 1410.5404 Preliminary 1207.6411

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

	3

From March 2015

Outline

I'll be showing recent exotic search results from ATLAS:

```
Long Lived Particle Searches

H \rightarrow \gamma \gamma + MET

VLQ in Lepton + jets

H \rightarrow Z_{(d)}Z_d \rightarrow 4I

Z + Iepton

HH \rightarrow b\bar{b}b\bar{b}

ttresonances in lepton + jets

Diboson resonances in boosted boson tagged jets
```

All results shown are from 2012 \sqrt{s} = 8 TeV data, made public in May and June 2015. There are many more results which can be found <u>here</u>

Long Lived Particle Searches

Many new physics models give rise to new, massive particles with long lifetimes LLPs can arise in models with:

- Small coupling in decay chain
- Strong virtuality (decay to heavy particles)
- Small mass differences in decay chain
- Pair production of particles with conserved quantum numbers

These lead to signatures which we can look for:

- Non-pointing or delayed photons
- Out-of-time decays
- Lepton jets
- Large dE/dx
- Disappearing tracks
- Displaced jets/vertices
- Trackless jets

Long Lived Particle Searches Summary

ATLAS Exotics Long-lived Particle Searches* - 95% CL Exclusion ATLAS Preliminary Status: March 2015 $\int \mathcal{L} dt = (19.5 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ Model Signature $\int \mathcal{L} dt [fb^{-1}]$ Lifetime limit Reference Hidden Valley $H \rightarrow \pi_{\rm V} \pi_{\rm V}$ 2 low-EMF trackless jets 20.3 $\pi_{\rm v}$ lifetime 0.41-7.57 m $m(\pi_{\rm V}) = 25 \,\,{\rm GeV}$ 1501.04020 10% Hidden Valley $H \rightarrow \pi_{\vee} \pi_{\vee}$ Preliminary 2 ID/MS vertices 19.5 π_v lifetime 0.31-25.4 m $m(\pi_{\rm V}) = 25 \text{ GeV}$ Ш В FRVZ $H \rightarrow 2\gamma_d + X$ 2 e-, µ-, π-jets 20.3 γ_d l<mark>ifetime</mark> 14-140 mm $H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 Higgs γ_d lif<mark>etime</mark> FRVZ $H \rightarrow 4\gamma_d + X$ 2 e^{-}, μ^{-}, π^{-} jets $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 20.3 15-260 mm Hidden Valley $H \rightarrow \pi_{\rm V} \pi_{\rm V}$ 2 low-EMF trackless jets 20.3 $\pi_{\rm v}$ lifetime 0.6-5.0 m $m(\pi_{\rm V}) = 25 \, {\rm GeV}$ 1501.04020 5% 11 Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$ 2 ID/MS vertices 19.5 $\pi_{\rm v}$ lifetime 0.43-18.1 m $m(\pi_{\rm V}) = 25 \,\,{\rm GeV}$ Preliminary ВВ Higgs FRVZ $H \rightarrow 4\gamma_d + X$ 2 e-, μ-, π-jets 20.3 γ_d lifetime 28-160 mm $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 Hidden Valley $\Phi \rightarrow \pi_{y}\pi_{y}$ 2 low-EMF trackless jets 20.3 π_v lifetime 0.29-7.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_V) = 50 \text{ GeV}$ 1501.04020 GeV 300 Hidden Valley $\Phi \rightarrow \pi_{V}\pi_{V}$ 2 ID/MS vertices 19.5 $\pi_{\rm v}$ lifetime 0.19-31.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_{\vee}) = 50 \text{ GeV}$ Preliminary Ð Hidden Valley $\Phi \rightarrow \pi_V \pi_V$ 2 low-EMF trackless jets 20.3 π_v lifetime 0.15-4.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_{\vee}) = 50 \text{ GeV}$ 1501.04020 GeV 006 Hidden Valley $\Phi \rightarrow \pi_{\nu} \pi_{\nu}$ 0.11-18.3 m $\sigma \times BR = 1 \text{ pb}, m(\pi_{\rm V}) = 50 \text{ GeV}$ Preliminary 2 ID/MS vertices 19.5 π_v lifetime Ð χ^0_1 lifetime 0.08-5.4 m GMSB non-pointing or delayed y 20.3 SPS8 with $\Lambda = 200 \text{ TeV}$ 1409.5542 Stealth SUSY 2 ID/MS vertices 19.5 **Š** lifetime 0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$ Preliminary Other HV $Z'(1 \text{ TeV}) \rightarrow q_V q_V$ 2 ID/MS vertices 20.3 $\pi_{\rm v}$ lifetime 0.1-4.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_{\vee}) = 50 \text{ GeV}$ Preliminary 2 ID/MS vertices HV Z'(2 TeV) $\rightarrow q_V q_V$ 20.3 π_v lifetime 0.1-10.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_{\vee}) = 50 \text{ GeV}$ Preliminary ¹⁰⁰ c τ [m] 0.01 0.1 10 1

*Only a selection of the available lifetime limits on new states is shown

Search for Dark Matter in $H(\rightarrow\gamma\gamma)$ + MET

DM invisible to detector

- > Uses $H \rightarrow \gamma \gamma$ to tag and trigger
- Look for large MET and local excess of events in m_{vv} spectrum near m_H

Main Cuts: 105 < m_{vv} < 160 GeV, MET > 90 GeV

Backgrounds:

- SM Higgs bkgd from MC
- Continuum bkgds from m_{vv} sideband

7

160

m_w [GeV]

Search for Dark Matter in $H(\rightarrow\gamma\gamma)$ + MET

- 1.4σ excess observed relative to expected limit
- Observed (expected) upper limit on the σ_{fid} is 0.70 (0.43)
 fb at 95% CL

Search for Vector Like Quark pairs and 4t in the lepton + jets final state

Search for Vector Like Quark pairs and 4t in the lepton + jets final state

VLQs cancel out quadratic divergences to the Higgs Boson mass \blacktriangleright Decays: T \rightarrow Wb,Zt,Ht B \rightarrow Wt,Zb,Hb

3 Analyses performed: $T\overline{T} \rightarrow Wb + X$, $T\overline{T} \rightarrow Ht + X$ and $t\overline{t}t\overline{t}$ production, $B\overline{B} \rightarrow Hb + X$ $T\overline{T} \rightarrow Ht + X$ and $t\overline{t}t\overline{t}$ production

$T\overline{T} \rightarrow Ht + X$ and $t\overline{t}\overline{t}$ production

- > Dominant decay is $H \rightarrow b\overline{b}$
- Focus on high jet & b-jet multiplicities
- Use H_T as discriminant: Σ(jet p_T, lepton p_T, MET)
- Also used to set limits on 4t production in several benchmark scenarios

Search for Vector Like Quark pairs and 4t in the lepton + jets final state

Data / Bkg

VLQs cancel out quadratic divergences to the Higgs Boson mass \blacktriangleright Decays: T \rightarrow Wb,Zt,Ht B \rightarrow Wt,Zb,Hb

Events / 100 GeV 3 Analyses performed: $T\overline{T} \rightarrow Wb + X$, $T\overline{T} \rightarrow Ht + X$ and tttt production, $B\overline{B} \rightarrow Hb + X$

$B\overline{B} \rightarrow Hb + X$

- Same strategy as Ht + X but optimised for **B**→Hb
- > Look at $B\overline{B} \rightarrow HbH\overline{b} \rightarrow (WW)b(b\overline{b})\overline{b}$ where one W decays leptonically

Search for Vector Like Quark pairs and 4t in the lepton + jets final state

13

Search for new light gauge bosons in

 $H \rightarrow Z_{(d)}Z_d \rightarrow 4I$

The presence of a dark sector which couples to the SM can be inferred from exotic intermediate decays of Higgs Bosons

> Looking for $H \rightarrow ZZ_d/Z_dZ_d \rightarrow 4I$ (I = e/µ)

$H \rightarrow ZZ_d \rightarrow 4I:$

- Define m₁₂ as invariant mass of opp. Sign, same flavour lepton pair with m closest to Z boson
- m₃₄ is invariant mass of remaining pair
- Look for local excess in m₃₄

$$R_B = \frac{BR(H \to ZZ_d \to 4l)}{BR(H \to 4l)}$$

Search for new light gauge bosons in $H \rightarrow Z_{(d)}Z_{d} \rightarrow 4I$

The presence of a dark sector which couples to the SM can be inferred from exotic intermediate decays of Higgs Bosons

> Looking for $H \rightarrow ZZ_d/Z_dZ_d \rightarrow 4I$ (I = e/µ)

$H \rightarrow Z_d Z_d \rightarrow 4I:$

- Events are selected by requiring the difference in invariant mass of the dilepton pairs is minimized
- Upper limits are computed from a maximum likelihood fit

$$\mu_{d} = \frac{\sigma \times BR(H \to Z_{d} Z_{d} \to 4l)}{[\sigma \times BR(H \to ZZ^{*} \to 4l)]_{SM}}$$

Search for heavy lepton resonances in Z + lepton events

Many extensions to the SM predict heavy resonances in trileptons

- Seesaw
- Vector Like Leptons

Searching for heavy leptons, L^+, L^-, N^0 which decay to W/Z/H + I/v (depending on charge)

Looking in $L \rightarrow I+Z(II)$ channel

Look for 3 leptons with 1 Z candidate, reconstruct m_L from invariant mass of the 3 leptons and use $\Delta M \equiv m_{3l} - m_Z$ as discriminating variable

Use 6 signal regions depending on 3rd lepton flavour and other side of event: 4I, 3I+jj, 3I-only

Backgrounds: WZ, ZZ and DY Z+ γ taken from MC. Other bkgds are constrained from scaling control samples in data 15

16

500

Search for heavy lepton resonances in Z + lepton events

Boosted Methods

Rule of thumb for angular separation between decay products:

$$R \approx \frac{2m}{p_T}$$
 17

h

h

Higgs Boson Pair Production in the bbbb Final State

New physics models predict enhanced Higgs Boson pair production rates over the SM

Boosted Higgs gives clear event topology Large BR(H \rightarrow bb) means that the 4b final state happens ~½ of the time

Analysis based on two complementary approaches – resolved and boosted

tt Resonances using lepton + jet events

Many extensions to the SM predict heavy resonances with large BR to top-pairs

Lepton + jets final state has large BR & also good background discrimination

Analysis based on two approaches "resolved" and "boosted". If event fails boosted try resolved.

- ➢ Resolved: 1 lepton, ≥ 4 small radius jets, ≥ 1 b-tagged jet, MET > 20 GeV, MET + m_T > 60 GeV
- Boosted: same as resolved but require a trimmed Anti-K_T 1.0 jet p_T > 300 GeV, m > 100 GeV

No excesses found so limits on masses and cross-sections were made

High Mass Diboson Resonances with Boson-Tagged Jets

Many extensions to the SM predict high mass resonances in dibosons

- > Bulk-RS graviton \rightarrow WW/ZZ
- ➤ Extended gauge model: W' →WZ

All hadronic final state has large BR compared to leptonic and semileptonic decays

Boosted boson tagging to suppress backgrounds > 2 C/A 1.2 jets with $m_{2J} > 1.05$ TeV > $\sqrt{y} \ge 0.45$, $n_{track} < 30$, $|m_i - m_V| < 13$ GeV

Search for bumps on steeply falling background

- Background taken from fit to data
- Signal shape from MC

High Mass Diboson Resonances with Boson-Tagged Jets

High Mass Diboson Resonances with Boson-Tagged Jets

Checked for mistakes, bugs and shaping effects in

- Detector/data taking
- Jet reconstruction
- Event selection

Summary

Many exotic searches have been performed on the Run-1 data with ATLAS

I've presented here 7 of them, but many more can be found at ExoticsPublicResults

Many limits have been placed on models

With the large increase in energy for Run 2, new physics may be just around the corner!!

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2015

	Model	<i>ℓ</i> , γ	Jets	E ^{miss} T	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH λlq ADD QBH high N_{trk} ADD BH high N_{trk} ADD BH high multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow ZZ \rightarrow qq\ell\ell$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow H\bar{t}$ 2UED / RPP	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2\mu(SS) \\ \geq 1 e, \mu \\ - \\ 2 e, \mu \\ 2 \gamma \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 2 e, \mu (SS) \end{array}$	$\geq 1 j$ $-$ $1 j$ $2 j$ $-$ $\geq 2 j$ $-$ $2 j/1 J$ $2 j/1 J$ $4 b$ $\geq 1 b, \geq 1 J$	Yes - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Mp 5.25 TeV n = 2 Ms 4.7 TeV n = 3 Ma 5.2 TeV n = 6 Mth 5.8 TeV n = 6 Mth 4.7 TeV n = 6 Mth 5.8 TeV n = 6 Mth 2.66 TeV k/Mr///Mr////Mr////////////////////////	HLZ $M_D = 3$ TeV, non-rot BH $M_D = 3$ TeV, non-rot BH $M_D = 3$ TeV, non-rot BH $\gamma = 0.1$ $\gamma = 0.1$ $\gamma = 1.0$ $\gamma = 1.0$ $\gamma = 1.0$ $\gamma = 1.0$ $\gamma = 1.0$	1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 Preliminary 1405.4123 Preliminary 1409.6190 1503.04677 ATLAS-CONF-2015-009 Preliminary
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{SSM } W' \to \ell\nu \\ \text{EGM } W' \to WZ \to \ell\nu \ell'\ell' \\ \text{EGM } W' \to WZ \to qq\ell\ell \\ \text{HVT } W' \to WH \to \ell\nu bb \\ \text{LRSM } W_R^{\prime} \to t\overline{b} \\ \text{LRSM } W_R^{\prime} \to t\overline{b} \end{array}$	2 e,μ 2 τ 1 e,μ 3 e,μ 2 e,μ 1 e,μ 1 e,μ 0 e,μ	- - 2 j / 1 J 2 b 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes Yes Yes	20.3 19.5 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.47 TeV W' mass 1.92 TeV W' mass 1.76 TeV	1	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 Preliminary 1410.4103 1408.0886
C	Cl qqqq Cl qqℓℓ Cl uutt	_ 2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1	– – j Yes	17.3 20.3 20.3	Λ 12.0 TeV η Λ 21. Λ 21. Λ 4.35 TeV C _{LL}	$\mu_{LL} = -1$.6 TeV $\eta_{LL} = -1$ = 1	Preliminary 1407.2410 Preliminary
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e,μ 0 e,μ	$ \geq 1 j \\ 1 J, \leq 1 j $	Yes Yes	20.3 20.3	M. 974 GeV at 90% M. 2.4 TeV at 90%	$6 \text{ CL for } m(\chi) < 100 \text{ GeV}$ $6 \text{ CL for } m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	$\ge 2 j$ $\ge 2 j$ 1 b, 1 j	- - -	1.0 1.0 4.7	$ \begin{array}{c c} {\sf LQ\ mass} & {\sf 660\ GeV} \\ {\sf LQ\ mass} & {\sf 685\ GeV} \\ {\sf LQ\ mass} & {\sf 534\ GeV} \\ \end{array} \\ \end{array} \\ \left. \begin{array}{c} \beta = 1 \\ \beta = 1 \\ \beta = 1 \end{array} \right. $		1112.4828 1203.3172 1303.0526
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X, \ Wb + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ T_{5/3} \rightarrow Wt \end{array} $	1 e,μ 2/≥3 e,μ 2/≥3 e,μ 1 e,μ 1 e,μ	$\ge 1 \text{ b}, \ge 3$ $\ge 2/\ge 1 \text{ b}$ $\ge 2/\ge 1 \text{ b}$ $\ge 1 \text{ b}, \ge 5$ $\ge 1 \text{ b}, \ge 5$	j Yes – j Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 785 GeV isospin T mass 735 GeV T in (T, B mass) T isospin B mass 755 GeV B in (B mass) B isospin T _{5/3} mass 640 GeV isospin	a singlet , ,B) doublet 3,Y) doublet n singlet	ATLAS-CONF-2015-012 1409.5500 1409.5500 Preliminary Preliminary
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $v^* \rightarrow \ell W, vZ$	1γ $-$ $1 \text{ or } 2 e, \mu$ $2 e, \mu, 1 \gamma$ $3 e, \mu, \tau$	1 j 2 j 1 b, 2 j or 1 – –	- - IjYes - -	20.3 20.3 4.7 13.0 20.3	q* mass 3.5 TeV only u* q* mass 4.09 TeV only u* b* mass 870 GeV left-hat t* mass 2.2 TeV A = 1. v* mass 1.6 TeV A = 1.	* and d*, A = m(q*) * and d*, A = m(q*) and de coupling 1.2 TeV .6 TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $\sqrt{s} = 1$	- 2 j - 1 b - - 7 TeV	Yes Yes √s =	20.3 2.1 20.3 20.3 20.3 20.3 2.0 8 TeV	ar mass 960 GeV № mass 1.5 TeV № mass 551 GeV H** mass 400 GeV Spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 862 GeV 10 ⁻¹ 1	$\begin{aligned} \mathfrak{r}) &= 2 \text{ TeV}, \text{ no mixing} \\ \mathfrak{oduction}, BR(H_L^{\pm\pm} \to \ell \ell) = 1 \\ \mathfrak{oduction}, BR(H_L^{\pm\pm} \to \ell \tau) = 1 \\ \mathfrak{s} &= 0.2 \\ \mathfrak{oduction}, q = 5e \\ \mathfrak{oduction}, g = 1g_D \end{aligned}$	1407.8150 1203.5420 1412.0237 1411.2921 1410.5404 Preliminary 1207.6411
						··· · · · · · · · · · · · · · · · · ·	viass scale IeV	

*Only a selection of the available mass limits on new states or phenomena is shown.

Thanks for Listening!

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

EXTRA SLIDES

High Mass Diboson Resonances with Boson-Tagged Jets

High Mass Diboson Resonances with Boson-Tagged Jets

High Mass Diboson Resonances with Boson-Tagged Jets

Parametric fit to background:

$$\frac{dn}{dx} = p_1 (1-x)^{p_2 - \xi p_3} x^{p_3}$$

Where:

> X = m_{JJ}/ \sqrt{s}

- \succ p₁ is a normalisation factor
- \succ p₂ and p₃ are dimensionless shape parameters
- ξ is a dimensionless constant chosen after the fitting to minimize the correlations between p₁ and p₂

High Mass Diboson Resonances with Boson-Tagged Jets Cross Checks

Checked for mistakes, bugs and shaping effects in

- Detector/data taking
- Jet reconstruction
- Event selection

e.g.

- look at the effect of single cuts on the distribution
- Look at the effect of N-1 cuts on the distribution

1.5

2

2.5

3

3.5

m_{ii} [TeV]

High Mass Diboson Resonances with Boson-Tagged Jets Cross Checks

Checked for mistakes, bugs and shaping effects in

- Detector/data taking
- Jet reconstruction
- Event selection

e.g.

- look at the effect of single cuts on the distribution
- Look at the effect of N-1 cuts on the distribution

High Mass Diboson Resonances with Boson-Tagged Jets – Similar Analyses

High Mass Diboson Resonances with Boson-Tagged Jets – Similar Analyses

Tiny blip at 2 TeV in 2 b-tag channel

High Mass Diboson Resonances with Boson-Tagged Jets – Similar Analyses

Excess at 2 TeV only seen in eejj channel

High Mass Diboson Resonances with Boson-Tagged Jets – Similar Analyses

CMS fully hadronic WW WZ ZZ search arXiv:1405.1994 JHEP 08 (2014) 173

