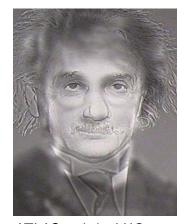
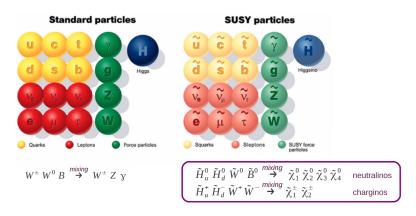
SUSY searches with ATLAS


Ewan Hill on behalf of the ATLAS Collaboration

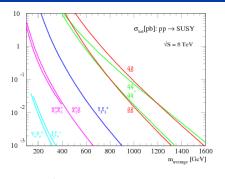
University of Victoria / TRIUMF, Canada

June 29 2015

QFTHEP - Samara


Outline: From Mysterious to Science

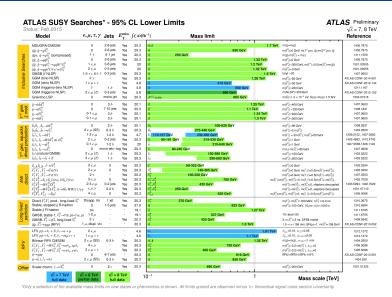
ATLAS and the LHC are **zooming in** on the world to understand the unknown.


- Supersymmetry (SUSY) = theory that can explain some of the holes in the Standard Model
- Summarise status of ATLAS searches for SUSY:
 - Bulk and small corners of phase space
 - Variety of different combinations of objects in final states
 - Statistical exclusion limits on some models
 - Searches with hints of new physics

Supersymmetry

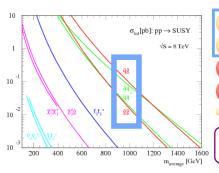
- ▶ SM particles $\rightarrow 1/2 \text{ spin} \rightarrow \text{SUSY}$ particles
- R-Parity conservation: SUSY particles come in pairs
 - ▶ Lightest supersymmetric particle (LSP) is a dark matter candidate → missing energy
- ightharpoonup Scalar top ightarrow hierarchy problem / fine tuning

Supersymmetry with ATLAS

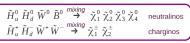


Classify searches based on:

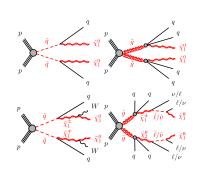
- ▶ Production cross-section
- Final states after decays
- Decay chain
- Lifetime
- R-parity conservation/breaking

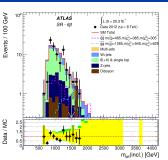

- Simplified models
- $\blacktriangleright \ \mathsf{LSP} = \tilde{\chi}_1^0 \ \mathsf{or} \ \tilde{G} \ \mathsf{or} \ \ldots$
- Assume prompt decays unless specified otherwise
- Frequently main backgrounds: $t\bar{t}$ & single top, $W+{\rm jets},~Z+{\rm jets},$ and multijets
- ▶ Discriminating variables: $p_{\rm T}$ of objects, number of leptons, number of jets, scalar sums of $p_{\rm T}$ (e.g. $m_{\rm eff}$), $E_{\rm T}^{\rm miss}$, $E_{\rm T}^{\rm miss}/m_{\rm eff}$, $m_{\rm T}$, $m_{\rm T2}$

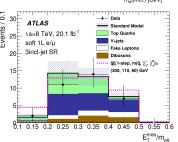
8 TeV Exclusion Summary



Many searches performed but SUSY not (yet?) discovered

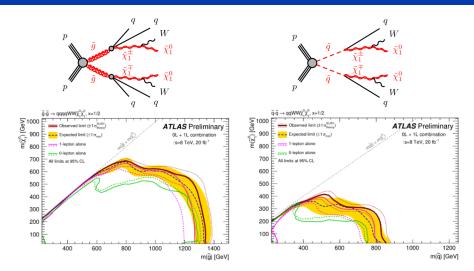

Strong Direct Production





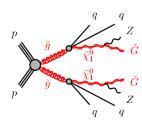
Strong Production: Search for gluinos (\tilde{g}) and 1st, 2nd generation sclar quarks (\tilde{q}) - 0ℓ and $\geq 1\ell$ analyses

- Searches cover a wide range of signal models
- Important discriminating variables: $m_{\rm eff}$, $E_{\rm T}^{\rm miss}$, number of leptons, number of jets, lepton $p_{\rm T}$

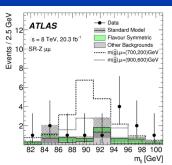


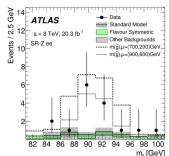
1ℓ

 0ℓ

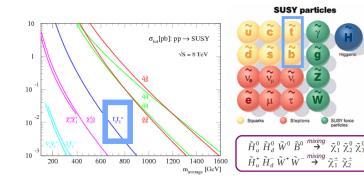

Ewan Hill 7 / 23

Strong Production: Search for \tilde{g} and 1st, 2nd generation \tilde{q} - recently combined 0ℓ and $\geq 1\ell$ analyses

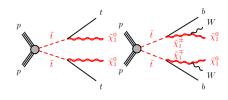


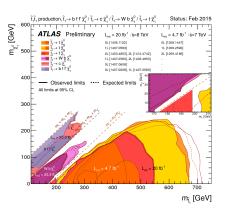

Combination extends exclusion reach

Z+MET+jets has 3σ excess

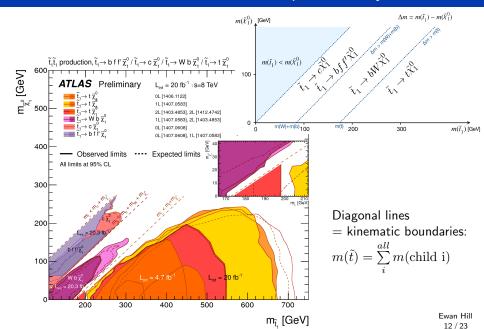

- Of the many strong production searches, this one saw an excess of 3σ
- Gauge Mediated model above = example signal model that can produce this excess
- $Z \to \ell^+ \ell^- : 81 < m_{\ell\ell} < 101 \text{ GeV}$
- Main backgrounds estimated using data. E.g. $Z+{
 m jets}$: produce $E_{
 m T}^{
 m miss}$ by smearing jets in $p_{
 m T},\phi$

0 V] Ewan Hill 9 / 23


Third Generation Direct Production


neutralinos

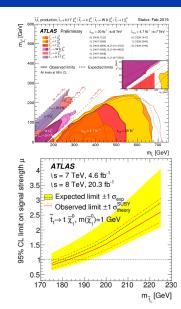
charginos


3rd Generation: Search for scalar tops summary

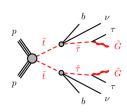
- ▶ $0-2\ell$ searches
- ► Some important discriminating variables: $m_{\rm T}, m_{\rm T2}, E_{\rm T}^{\rm miss}$, b-quark jet tagging
- ▶ 2-4 body decays

3rd Generation: Search for scalar tops summary structure

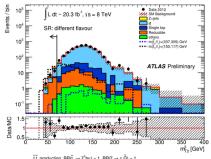
3rd Generation: Scalar tops - Specialised Tools for Specific Features

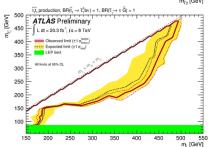

Boosted parent particles

Large sized jets (top figure : heavy \tilde{t} , light $\tilde{\chi}_1^0$)

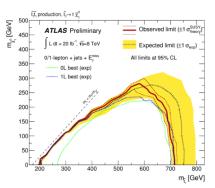

Scalar top masses just above top quark mass

- ➤ Spin correlation (top figure inset) (doi: PhysRevLett.114.142001)
- ► Re-interpret $t\bar{t}$ cross-section measurement (bottom figure)

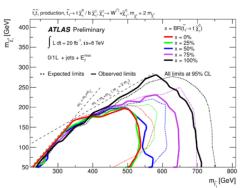

 (doi: EPJC/s10052-014-3109-7)



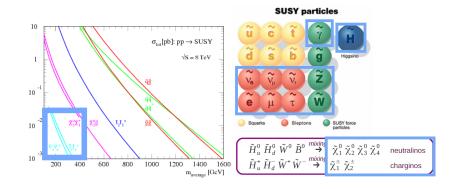
3rd Generation: Scalar top - scalar tau 2ℓ



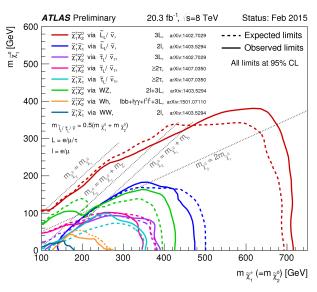
- ► Many additional signatures possible → check all the different corners of phase space
- Re-interpretation of a 2ℓ search + additional signal region
- ightharpoonup LSP $= ilde{G} \sim \mathsf{massless}$
- ► Targets diagonal boundary
- ▶ Signal regions: Vary jet p_T , m_{T2}



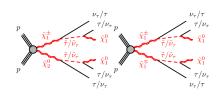
3rd Generation: Search for scalar tops - recently combined 0ℓ and 1ℓ analyses



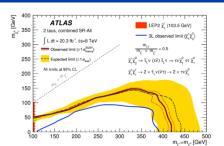
Statistically combining results extends exclusion

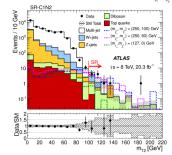

Test different branching ratios for $\tilde{t} \to t \tilde{\chi}^0_1$. $\tilde{t} \to b \tilde{\chi}^\pm_1$

Electroweak Direct Production

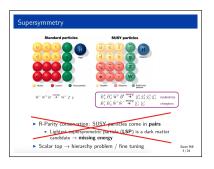


Electroweak Summary

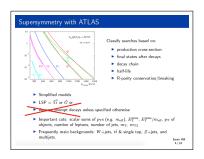

- Small cross-sections
- Clean multi-lepton final states
- Low hadronic activity
- ▶ Searches using e, μ , τ



Electroweak: Search for Charginos $(\tilde{\chi}_1^{\pm})$ and next-to-lightest Neutralinos $(\tilde{\chi}_2^0)$

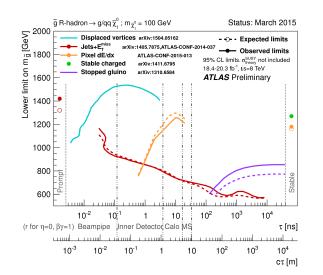


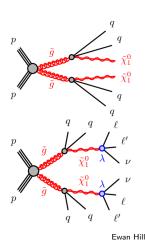
- ► Hadronically decaying taus (0 e/µ)
- Not the best search channel; included for variety
- Minimize number of jets
- Some discriminating variables: $E_{\mathrm{T}}^{\mathrm{miss}}$, m_{T2} , and $m_{\mathrm{T}}\left(\tau_{1}\right)+m_{\mathrm{T}}\left(\tau_{2}\right)$



Long Lived and R-Parity Violating

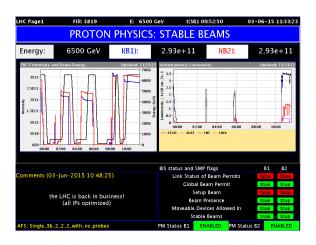
What about if SUSY particles can decay into SM particles (R-parity violating)?


 \rightarrow final state without SUSY particles \sim no stable LSP.

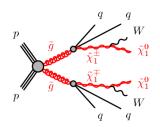


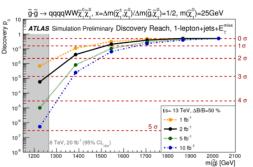
What about if the SUSY particles have **long lifetimes**?

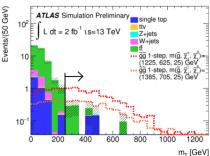
Long Lived / RPV


- ▶ SUSY particles with long lifetimes (e.g. \tilde{g} or $\tilde{\chi}_1^0$)
- ▶ Analyses depend on where in the detector the decay occurs

20 / 23

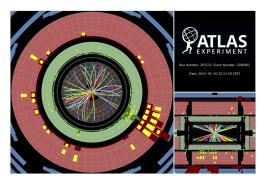

What's next?




What is coming up in the near future?

- ► LHC 2015 = 13 TeV
- ▶ How much data is needed before we publish?

13 TeV Strong Direct Production



- Production cross-section $8~{\rm TeV} \rightarrow 13~{\rm TeV}$:
 Main backgrounds: $\times~2-3$ Gluino pairs: $\times~\sim10$
 - Discovery sensitivity: $\sim 3\sigma$ with $2-10~{\rm fb^{-1}}$ for masses heavier than those excluded at $8~{\rm TeV}$

Ewan Hill 22 / 23

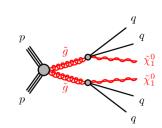
Conclusions

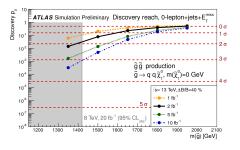
- ATLAS has probed a significant amount of phase space
- ▶ No SUSY particles discovered ... yet?
- Study the $Z+E_{\mathrm{T}}^{\mathrm{miss}}+\mathrm{jets}$ excess further with 13 TeV data
- \blacktriangleright First signs of SUSY at 13 TeV could be seen with just $2-10 {\rm fb^{-1}}$

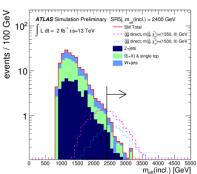
13 TeV data taking has started!

Z+MET details

On-Z Region	$E_{ m T}^{ m miss}$ [GeV]	H _T [GeV]	$n_{ m jets}$	m _{tt} [GeV]	SF/DF	$E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{sig.}$ [$\sqrt{\mathrm{GeV}}$]	$f_{ m ST}$	$\Delta \phi(\mathrm{jet}_{12}, E_{\mathrm{T}}^{\mathrm{miss}})$
SR-Z	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	> 0.4
Control regi	ons							
Seed region	-	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	< 0.9	< 0.6	-
CReµ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	DF	-	-	> 0.4
CRT	> 225	> 600	≥ 2	$m_{\ell\ell}\notin[81,101]$	SF	-	-	> 0.4
Validation re	egions							
VRZ	< 150	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	-
VRT	150-225	> 500	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	-	-	> 0.4
VRTZ	150-225	> 500	≥ 2	$81 < m_{\ell\ell} < 101$	SF	_	_	> 0.4


$$H_{\mathrm{T}} = \sum_{i} p_{\mathrm{T}}^{\mathrm{jet~i}} + p_{\mathrm{T}}^{\mathrm{lepton~1}} + p_{\mathrm{T}}^{\mathrm{lepton~2}}$$


$$p_{\mathrm{T}}^{\mathrm{lepton~1}} > 25~\mathrm{GeV}\text{, } p_{\mathrm{T}}^{\mathrm{lepton~2}} > 10-14~\mathrm{GeV}\text{, } \quad p_{\mathrm{T}}^{\mathrm{jet}} > 35~\mathrm{GeV}$$


Other cuts for $10~{\rm GeV} < p_{\rm T}^{\rm lepton} < 25~{\rm GeV}$ leptons are tighter than for $p_{\rm T}^{\rm lepton} > 25~{\rm GeV}$ leptons

Other cuts for $35~{\rm GeV} < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$ jets are tighter than for $p_{\rm T}^{\rm jet} > 50~{\rm GeV}$ jets

13 TeV Strong Direct Production 2

• Sensitivity at $\sim 2\sigma$ with $5-10 \text{fb}^{-1}$ for masses heavier than those excluded at 8 TeV

ATL-PHYS-PUB-2015-005 Ewan Hill

Variable definitions

$$m_T(a) = \sqrt{2p_T^a p_T^{miss} (1 - \cos(\Delta\phi))}$$

where a = $e/\mu/\tau$ (assumed massless).

$$m_{\mathrm{T2}}\left(b,c\right) = \sqrt{\min_{\mathbf{q}_{\mathrm{T}}^{b} + \mathbf{q}_{\mathrm{T}}^{c} = \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}} \left(\max \left[m_{\mathrm{T}}^{2} \left(\mathbf{p}_{\mathrm{T}}^{b}, \mathbf{q}_{\mathrm{T}}^{b}\right), m_{\mathrm{T}}^{2} \left(\mathbf{p}_{\mathrm{T}}^{c}, \mathbf{q}_{\mathrm{T}}^{c}\right) \right] \right)}$$

where b,c = hadronic tau, jet, lepton+jet, etc.

$$H_T = \sum_i p_{\mathrm{T}}^{\mathrm{jet \ i}}$$

$$m_{eff} = E_{\mathrm{T}}^{\mathrm{miss}} + \sum\limits_{i} p_{\mathrm{T}}^{\mathrm{jet~i}} + \sum\limits_{j} p_{\mathrm{T}}^{\mathrm{lepton~j}} + \sum\limits_{k} p_{\mathrm{T}}^{\mathrm{hadronic~tau~k}}$$

Exact definitions are highly analysis dependent (number of jets, pt cut off, etc.).