Two puzzles in the beauty sector of QCD

Dmitri Melikhov

D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University

I will discuss two related problems in the beauty sector of QCD: the *b*-quark mass and its determinations and the extraction of decay constants of beauty mesons. In particular, two recent puzzles will be addressed:

1. A tension between $\bar{m}_b(\bar{m}_b)$ as extracted from heavy-heavy and heavy-light QCD correlation functions

2. Unexpected results on f_B^*/f_B which suggests that our understanding of the heavy-quark expansion might be indufficient

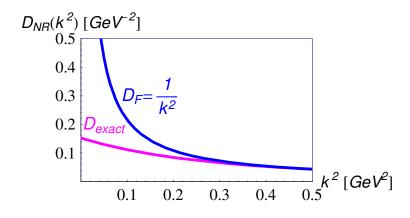
QCD - theory of strong interactions: SU(3) gauge theory with Lagrangian based on quarks and gluons as fundamental degrees of freedom.

• Confinement: only hadrons - colorless bound states of quarks and gluons - are observed in nature.

• $\alpha_s(\mu)$ falls at large μ (asymptotic freedom) but rises as μ decreases.

• For the description of theory at low scales, quarks and gluons are "irrelevant" degrees of freedom; one should desribe nature in terms of hadron degrees of freedom: ChPT.

Full propagator of a confined particle:

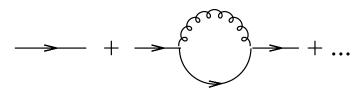


NR particle $k^2 \equiv \vec{k}^2$ and E = 0 in a harmonic-oscillator potential (Coulomb term is switched-off).

- pole in the propagator disappears
- full propagator in the IR differs from Feynman propagator; at large k^2 they are equal

Mass of a confined quark

Pole quark mass



In each order of the perturbation theory, quark propagator has a pole. The location of this pole is the *pole mass* of a particle.

- IR finite
- Gauge-independent
- Renormalization scheme and scale independent

However: in a confined theory no pole in the propagator; therefore this quantity is not fully consistent; price to pay in the ambiguity of the pole mass of a heavy quark of order $\Lambda_{QCD} \simeq 200$ MeV ("IR sensitive").

Short-distance masses (e.g. $\bar{m}(\bar{m}) \equiv m_b(m_b)$)

- IR insensitive (free from renormalon ambiguities)
- Scheme-scale dependent

Other definitions of heavy-quark mass:

(Potential-subtracted mass; Kinetic mass; etc)

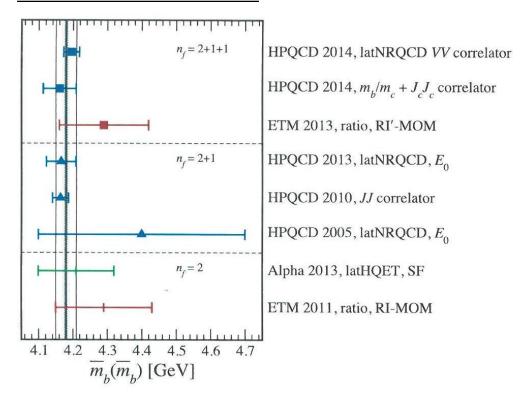
recent $\overline{m}_b(\overline{m}_b)$ determinations				
m _b [MeV]	approach	observables	group	arXiv
4196 ± 23	lattice $(n_f = 4)$	$\Gamma(\Upsilon,\Upsilon' \rightarrow e^+e^-)$	HPQCD	1408.5768
4174 ± 24	lattice $(n_f = 4)$	PS current	HPQCD	1408.4169
4201 ± 43	N ³ LO PQCD	MY	Ayala et al	1407.2128
4169 ± 9	15th moment SR	Υ(IS-6S)	Penin, Zerf	1401.7035
4247 ± 34	Borel SR	f _B , f _{Bs}	Lucha et al	1305.7099
4166 ± 43	lattice + PQCD	M _Y , M _{Bs}	HPQCD	1302.3739
4235 ± 55	10th moment SR	Υ(IS-4S), R	Hoang et al	1209.0450
4171 ± 9	optimized SR	Υ(IS-4S), R	Bodenstein et al	1111.5742
4177 ± 11	exponential SR	Y(IS-6S)	Narison	1105.5070
4180 ⁺⁵⁰ -40	lattice + PQCD	static potential	Laschka et al	1102.0945
4163 ± 16	2nd moment SR	Υ(IS-4S), R	Chetyrkin et al	1010.6157

From J. Erler, Status of Precision Extractions of α_s and Heavy Quark Masses, arXiv:1412.4435

It is common to recalculate all values to $m_b(m_b)$. This induced uncertainties.

• The *b*-quark mass obtained from $\bar{b}b$ correlator is lower than from $\bar{b}q$ correlator.

$m_b(m_b)$ from lattice QCD



A. Kronfeld, 'Quark masses from lattice QCD, April 2015

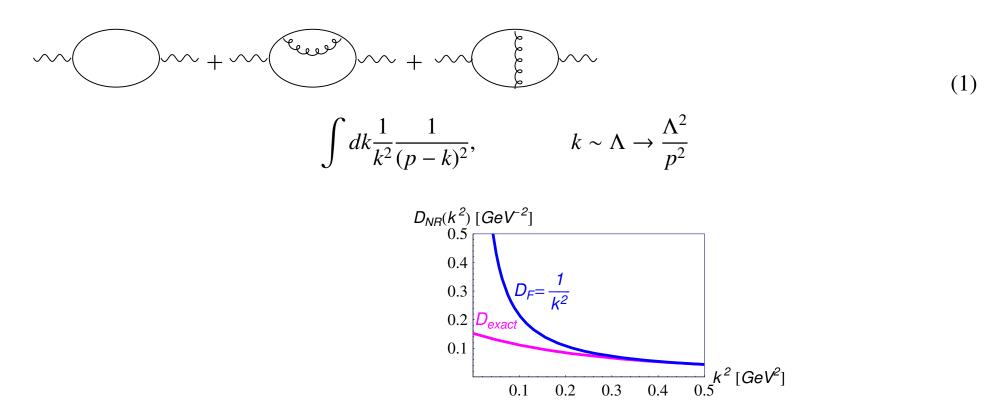
• $m_b(m_b)$ does not intrinsically belong to lattice QCD; recalculation from bare or renormalized m_b on the lattice to $m_b(m_b)$ requires a renormalization constant calculated nonperturbatively. Large errors of purely lattice calculations.

• Accurate "lattice QCD" results are in practice combination of moments calculated in lattice QCD with moments calculated in pQCD (again relies on OPE)

OPE for correlation functions in QCD

• The basic object *T*-product of 2 quark currents: $j_{\alpha}(x) = \bar{b}(x)\gamma_{\alpha}b(x)$,

$$i\int d^4x \, e^{ipx} \left\langle \Omega \left| T\left(\bar{b}(x)\gamma_{\alpha}b(x), \bar{b}(0)\gamma_{\beta}b(0)\right) \right| \Omega \right\rangle = \left(p_{\alpha}p_{\beta} - g_{\alpha\beta}p^2 \right) \Pi(p^2), \qquad \Pi(p^2) = \frac{p^2}{\pi} \int_{4m^2}^{\infty} \frac{\operatorname{Im}\Pi(s)ds}{s(s-p^2)} \left(\frac{1}{2} \int_{4m^2}^{\infty} \frac{\operatorname{Im}\Pi(s)ds}{s(s-p^2)} \right) \left(\frac{1}{2} \int_{4m^2}^{\infty} \frac{1}{2} \int_{4m^2}^{\infty} \frac{\operatorname{Im}\Pi(s)ds}{s(s-p^2)} \right) \left(\frac{1}{2} \int_{4m^2}^{\infty} \frac{1}{2} \int_{4m^2}^{\infty} \frac{\operatorname{Im}\Pi(s)ds}{s(s-p^2)} \right) \left(\frac{1}{2} \int_{4m^2}^{\infty} \frac{1}$$



Regions of soft momenta in Feynman integrals (where the exact non-perturbative propagators differ strongly from Feynman propagators) lead to power-suppressed terms in correlators.

• Wilsonian OPE - separation of distances:

$$T(j(x)j^{\dagger}(0)) = C_0(x^2,\mu)\hat{1} + \sum_n C_n(x^2,\mu) : \hat{O}(x=0,\mu) :$$
$$\Pi(p^2) = \Pi_{\text{pert}}(p^2,\mu) + \sum_n \frac{C_n}{(p^2)^n} \langle \Omega | : \hat{O}(x=0,\mu) : |\Omega \rangle$$

• Physical QCD vacuum $|\Omega\rangle$ is complicated and differs from perturbative QCD vacuum $|0\rangle$. <u>Condensates</u> – nonzero expectation values of gauge-invariant operators over physical vacuum:

 $\langle \Omega | : \hat{O}(0,\mu) : | \Omega \rangle \neq 0$

Gell-Mann Oakes Renner relation:

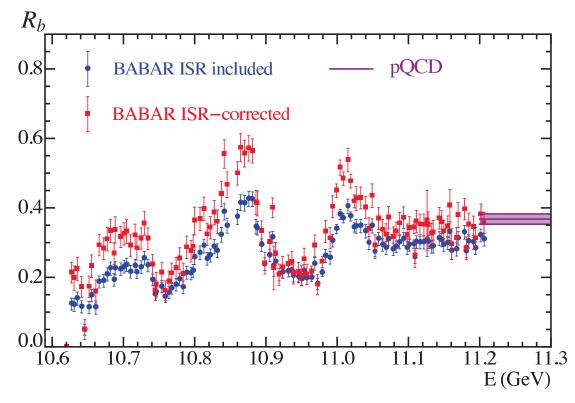
$$m_{\pi}^2 f_{\pi}^2 = \langle \Omega | \bar{q} q | \Omega \rangle (m_u + m_d) + O(m_{u,d}^2).$$

 $\langle \Omega | \bar{q}q (2 \text{ GeV} | \Omega \rangle \simeq 290 \text{ MeV.}$

$$\langle \bar{q}q(2 \text{ GeV}) \rangle = (271 \pm 3 \text{ MeV})^3, \qquad \left\langle \frac{\alpha_s}{\pi} GG \right\rangle = 0.012 \pm 0.006 \text{ GeV}.$$

Heavy quark condensates

$$m_Q \langle \bar{Q}Q \rangle = -\frac{1}{12} \langle \frac{\alpha_s}{\pi} GG \rangle.$$



Sum rules for moments and m_b

For $\bar{Q}Q$ systems, mainly moment sum rules are used

$$M_n = \int \frac{ds}{s^{n+1}} \mathrm{Im} \ \Pi_{\bar{b}b}(s).$$

Moments are known to $O(\alpha_s^3)$ accuracy for several *n*. Moment SRs + experimental data or lattice QCD calculation of moments $\rightarrow Quark$ masses

 $m_b(m_b) = 4.163 \pm 0.016$ GeV (Chetyrkin et al, relativistic, i.e. low-n, moment sum rules $m_b(m_b) = 4.235 \pm 0.055_{pert} \pm 0.003_{exp}$ GeV (Hoang et al, "nonrelativistic", or large *n* at NNLL).

Properties of individual resonances

T-product of 2 quark currents currents $j_5(x) = (m_b + m) \bar{q}(x) i \gamma_5 b(x)$,

$$\Pi(p^2) = i \int d^4x \, e^{ipx} \left\langle \Omega \left| T \left(j_5(x) j_5^{\dagger}(0) \right) \right| \Omega \right\rangle$$

$$\Pi(\tau) = \int ds \exp(-s\tau)\rho(s) = f_B^2 M_B^4 e^{-M_B^2 \tau} + \int_{s_{\text{phys}}}^{\infty} ds \, e^{-s\tau} \rho_{\text{hadr}}(s) = \int_{(m_b+m)^2}^{\infty} ds \, e^{-s\tau} \rho_{\text{pert}}(s,\mu) + \Pi_{\text{power}}(\tau,\mu).$$

Here $s_{\text{phys}} = (M_{B^*} + M_P)^2$, and f_B is the decay constant defined by

$$(m_b + m)\langle 0|\bar{q}i\gamma_5 b|B\rangle = f_B M_B^2$$

$$\Pi_{\text{power}}(\tau,\mu=m_Q) = (m_Q+m)^2 e^{-m_Q^2 \tau} \\ \times \left\{ -m_Q \langle \bar{q}q \rangle \left[1 + \frac{2C_F \alpha_s}{\pi} \left(1 - \frac{m_Q^2 \tau}{2} \right) - \frac{m}{2m_Q} (1 + m_Q^2 \tau) + \frac{m^2}{2} m_Q^2 \tau^2 + \frac{m_0^2 \tau}{2} \left(1 - \frac{m_Q^2 \tau}{2} \right) \right] + \frac{1}{12} \left\langle \frac{\alpha_s}{\pi} GG \right\rangle \right\}$$

To exclude the excited-state contributions, one adopts the *duality Ansatz*: all contributions of excited states are counterbalanced by the perturbative contribution above an *effective continuum* threshold, $s_{\text{eff}}(\tau)$ which differs from the physical continuum threshold.

Applying the duality assumption yields:

$$f_B^2 M_B^4 e^{-M_B^2 \tau} = \int_{(m_b + m)^2}^{s_{\text{eff}}(\tau)} ds \, e^{-s\tau} \rho_{\text{pert}}(s, \mu) + \Pi_{\text{power}}(\tau, \mu) \equiv \Pi_{\text{dual}}(\tau, s_{\text{eff}}(\tau)).$$

Even if the QCD inputs $\rho_{\text{pert}}(s,\mu)$ and $\Pi_{\text{power}}(\tau,\mu)$ are known the extraction of the decay constant requires $s_{\text{eff}}(\tau)$.

Extraction of the decay constant

According to the standard procedures of QCD sum rules, one executes the following steps:

1. The Borel window

The working τ -window is chosen such that the OPE gives an accurate description of the exact correlator (i.e., all higher-order radiative and power corrections are under control) and at the same time the ground state gives a "sizable" contribution to the correlator.

2. The effective continuum threshold

The major part of hadron continuum is removed by applying the cut at s_{eff}.

In those cases where the bound-state mass M_B is known, one can use it and improve the accuracy of f_B .

Introduce the dual invariant mass M_{dual}

$$M_{\rm dual}^2(\tau) \equiv -\frac{d}{d\tau} \log \Pi_{\rm dual}(\tau, s_{\rm eff}(\tau)).$$

The deviation of M_{dual} from M_B measures the contamination of the dual correlator by excited states.

Starting from a trial function for $s_{\text{eff}}(\tau)$ and requiring a minimum deviation of M_{dual} from M_B in the τ -window generates a variational solution for $s_{\text{eff}}(\tau)$. We consider polynomials in τ and obtain their parameters by minimizing the squared difference between M_{dual}^2 and M_B^2 in the τ -window:

$$\chi^2 \equiv \frac{1}{N} \sum_{i=1}^{N} \left[M_{\text{dual}}^2(\tau_i) - M_B^2 \right]^2$$

Uncertainties in the extracted decay constant

The resulting f_B is sensitive to the input values of the OPE parameters — the *OPE-related error* — and to the adopted prescription for fixing the effective continuum threshold $s_{\text{eff}}(\tau)$ — the systematic *error*.

OPE – related error

Gaussian distributions for all OPE parameters but the renormalization scales; for the latter, *uniform* **distribution**.

Systematic error

The systematic error, related to the limited intrinsic accuracy of the method of sum rules.

The band of results obtained from linear, quadratic, and cubic trial functions for $s_{\text{eff}}(\tau)$, optimized by minimizing the deviation of the dual mass from the true mass may be regarded as a realistic estimate for the systematic uncertainty of the decay constant.

$$f_B^2 M_B^4 e^{-M_B^2 \tau} = \int_{(m_b + m)^2}^{s_{\text{eff}}(\tau)} ds \, e^{-s\tau} \rho_{\text{pert}}(s, \mu) + \Pi_{\text{power}}(\tau, \mu) \equiv \Pi_{\text{dual}}(\tau, s_{\text{eff}}(\tau)).$$

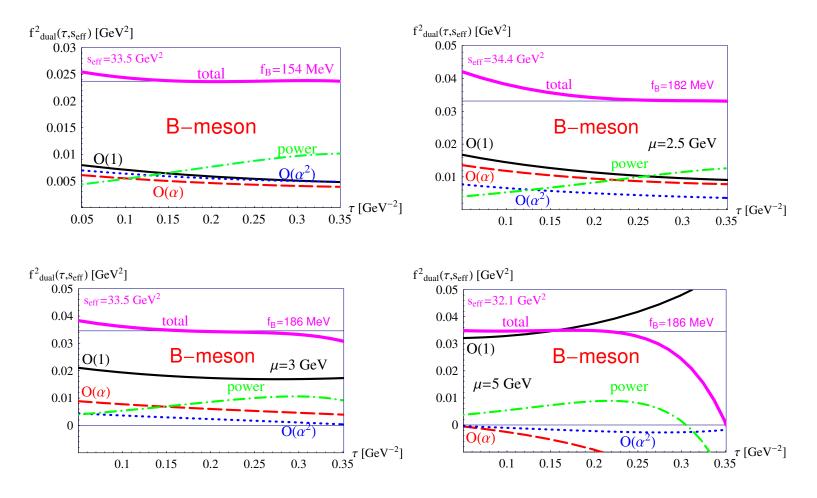
OPE

The best-known 3-loop calculations of the perturbative spectral density have been performed in form of an expansion in terms of the $\overline{\text{MS}}$ strong coupling $\alpha_{s}(\mu)$ and the pole mass M_{b} :

$$\rho_{\text{pert}}(s,\mu) = \rho^{(0)}(s,M_b^2) + \frac{\alpha_s(\mu)}{\pi}\rho^{(1)}(s,M_b^2) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2\rho^{(2)}(s,M_b^2,\mu) + \cdots$$

An alternative option is to reorganize the perturbative expansion in terms of the running $\overline{\text{MS}}$ mass, $\overline{m}_b(v)$, by substituting M_b in the spectral densities $\rho^{(i)}(s, M_b^2)$ via its perturbative expansion in terms of the running mass $\overline{m}_b(v)$

$$M_b = \overline{m}_b(\nu) \left(1 + \frac{\alpha_s(\nu)}{\pi} r_1 + \left(\frac{\alpha_s(\nu)}{\pi} \right)^2 r_2 + \ldots \right).$$



(a) Pole-mass OPE for B (b) running-mass OPE at $\mu = 2.5$ GeV (c) at $\mu = 3$ GeV (d) at $\mu = 5$ GeV

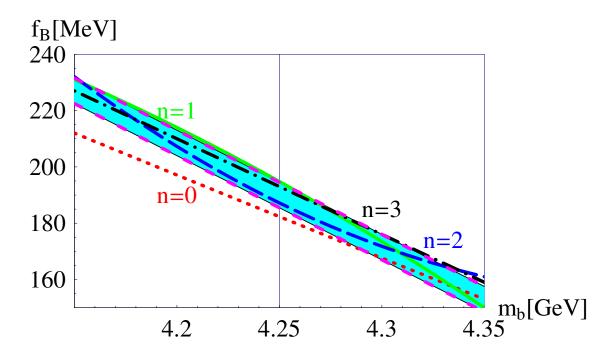
• Result obtained on the basis of *pole-mass OPE* are not trustable: the pole-mass OPE shows no perturbative hierarchy. Reorganizing the OPE series in terms of the running mass improves the hierarchy; however induces an explicit scale-dependence.

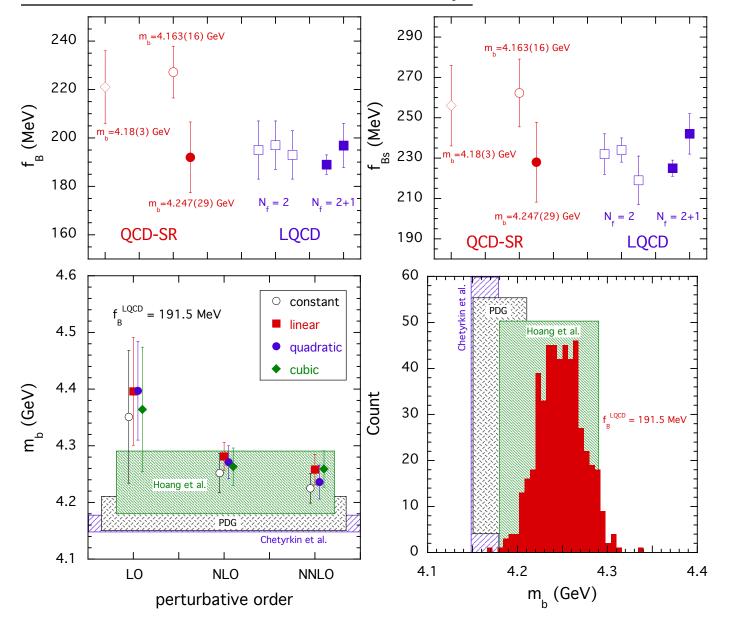
Correlation between $m_b(m_b)$ and f_B

A strong correlation between m_b and the sum-rule result for f_B was observed

$$\frac{\delta f_B}{f_B} \approx -8 \, \frac{\delta m_b}{m_b}.$$

Making use of the PDG $m_b = 4.18$ GeV leads to $f_B > 210$ MeV, in clear tention with the recent lattice QCD results for $f_B \sim 190$ MeV. Combining our sum-rule analysis with the latest results for f_B and f_{B_s} from lattice QCD yields





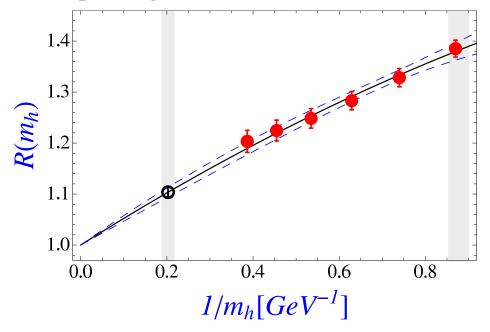
Extraction of $m_b(m_b)$ from lattice results for f_B

Decay constant ratio f_{B^*} / f_B

Expectations for f_{B^*}/f_B extrapolating the charm results

$$\frac{f_{V_Q}}{f_{P_Q}} = \left(1 - \frac{2\alpha_s(m_Q)}{3\pi}\right) \left[1 + \delta/m_Q\right].$$

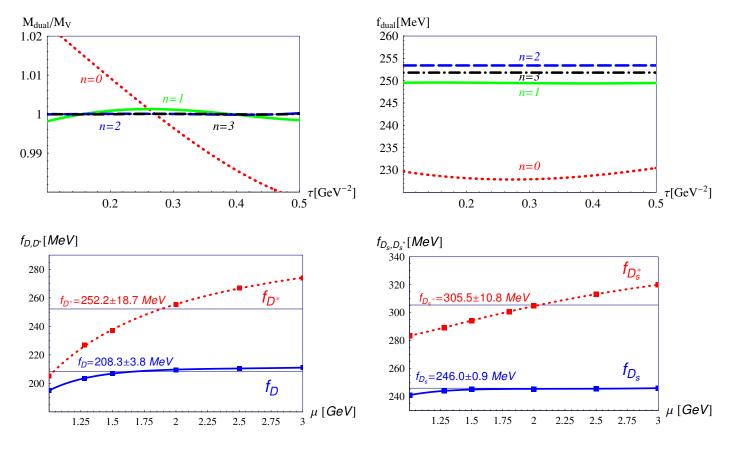
Extrapolating lattice results



 $f_{B^*}/f_B = 1.042 \pm 0.014$ (Becirevic et al)

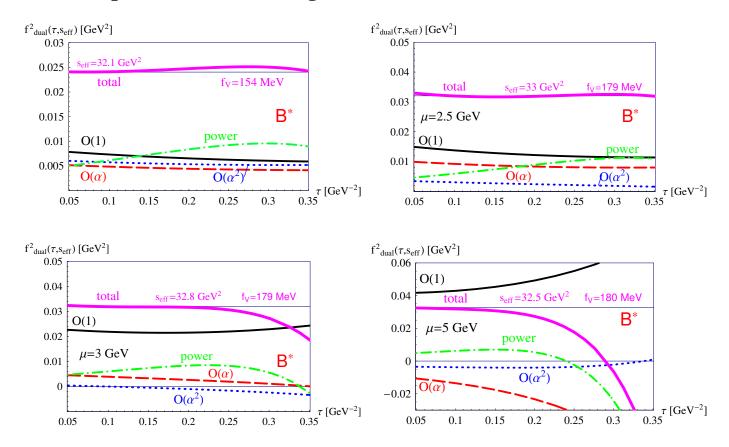
Charm sector: extraction for D^* **and the ratio** f_{D^*}/f_D

$m_c(m_c) = 1.279 \pm 0.013$ GeV.



 $f_{D} = (208.3 \pm 7.3_{\text{OPE}} \pm 5_{\text{syst}}) \text{ MeV}$ $f_{D_{s}} = (246.0 \pm 15.7_{\text{OPE}} \pm 5_{\text{syst}}) \text{ MeV} (\text{OPE error mainly due to } \langle \bar{s}s \rangle)$ $f_{D^{*}} = (252.2 \pm 22.3_{\text{OPE}} \pm 4_{\text{syst}}) \text{ MeV} (\text{OPE error mainly due to } \langle \bar{s}s \rangle + \text{scale-dependence})$ $f_{D_{s}^{*}} = (305.5 \pm 26.8_{\text{OPE}} \pm 5_{\text{syst}}) \text{ MeV}.$ $f_{D^{*}}/f_{D} = 1.221 \pm 0.080_{\text{OPE}} \pm 0.008_{\text{syst}} (\text{lattice } f_{D^{*}}/f_{D} = 1.20 \pm 0.02)$

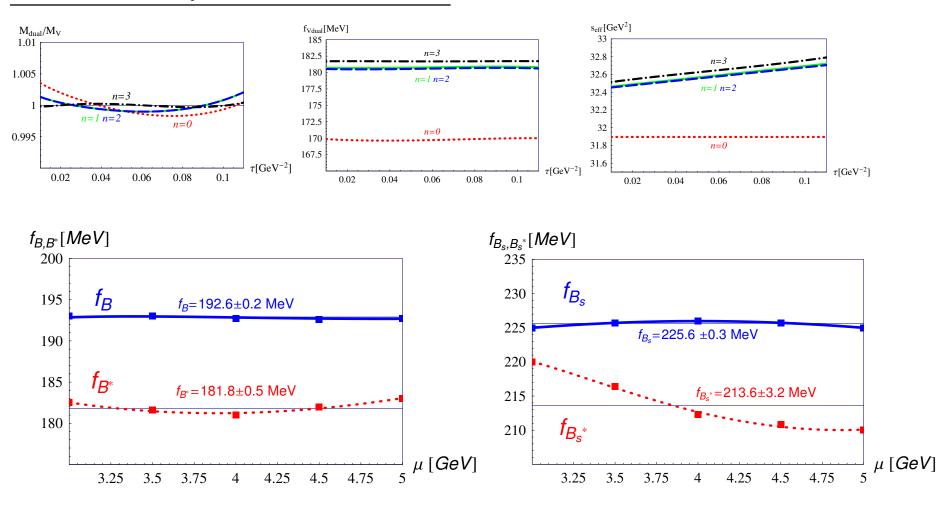
Beauty sector: vector correlator and decay constant of *B*^{*}-meson



OPE via pole and $\overline{\text{MS}}$ running mass at different scales:

- 1. No perturbative hierarchy in terms of the pole mass.
- **2.** Results for \overline{MS} mass depend on μ ; playing with μ -choice one can acquire hierarchy.
- **3.** Specific for B^* : τ -window choice should be correlated with μ to provide a reasonable stability.

Extraction of decay constant of the *B** meson



Summary

• Combining OPE results for <u>heavy-heavy</u> correlators with experimental data/lattice QCD, moment QCD sum rules report the most accurate value $m_b = 4.163 \pm 0.016 \text{ GeV}$

• OPE results for <u>heavy-light</u> correlators complemented by duality concept/assumption lead to a strong correlation between $m_b(m_b)$ and f_B . Using the latest results for f_B and f_{B_s} from lattice QCD yields

 $m_b = \ 4.247 \pm 0.027_{(OPE)} \pm 0.018_{(exp)} \pm 0.011_{syst} \ GeV$

• Tension between the *b*-quark mass extracted from heavy-heavy and heavy-light correlation functions (OPE in danger?). Puzzle lies in the fact that for charm all results agree nicely.

Truly lattice calculation of $m_b(m_b)$ *is needed.*

• Borel QCD sum rules give rather unexpected but solid prediction (PRD91,2015)

$$f_{B^*}/f_B = 0.944 \pm 0.011_{\text{OPE}} \pm 0.018_{\text{syst}}, \qquad f_{B^*_s}/f_{B_s} = 0.947 \pm 0.023_{\text{OPE}} \pm 0.020_{\text{syst}},$$

Fully agree with very recent lattice QCD (PRD91,2015)

 $f_{B^*}/f_B = 0.941 \pm 0.026,$ $f_{B_s^*}/f_{B_s} = 0.953 \pm 0.023.$

These results might suggest an unexpected structure of $1/m_O$ -expansion