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Models with scalar fields are very useful to describe the observable
evolution of the Universe as the dynamics of the spatially flat
Friedmann–Lemâıtre–Robertson–Walker (FLRW) background with

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)

and cosmological perturbations.
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Friedmann–Lemâıtre–Robertson–Walker (FLRW) background with

ds2 = − dt2 + a2(t)
(
dx21 + dx22 + dx23

)

and cosmological perturbations.
Also scalar-tensor formulations of the many modified gravity models are
given by models with scalar fields.

2 / 29



Models with scalar fields are very useful to describe the observable
evolution of the Universe as the dynamics of the spatially flat
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their connection with the particle physics.
There are models of inflation, where the role of the inflaton is played by
the Higgs field nonminimally coupled to gravity. (F.L. Bezrukov and
M. Shaposhnikov, Phys. Lett. B 659 (2008) 703–706, arXiv:0710.3755).

In my talk I consider the possible inflationary scenarios connected

with the quantum field theory.
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MODEL WITH NON-MINIMAL COUPLING

Models with nonminimally coupled scalar fields are described by the
following action:

S =

∫
d4x

√−g

[
U(φ)R − 1

2
gµνφ,µφ,ν − V (φ)

]
, (1)

where U(φ) and V (φ) are differentiable functions of the scalar field φ.
We assume that U(φ) > 0.

In the spatially flat FLRW metric with the interval:
ds2 = − dt2 + a2(t)

(
dx21 + dx22 + dx23

)
,

we get the following system of equations:
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6UH2 + 6U̇H =
1

2
φ̇2 + V , (2)

2U
(
2Ḣ + 3H2

)
= − φ̇2

2
− 2Ü − 4HU̇ + V , (3)

φ̈+ 3Hφ̇− 6U ′

(
Ḣ + 2H2

)
+ V ′ = 0 . (4)
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(
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)
= − φ̇2

2
− 2Ü − 4HU̇ + V , (3)

φ̈+ 3Hφ̇− 6U ′

(
Ḣ + 2H2

)
+ V ′ = 0 . (4)

From Eqs. (2)–(4) we get the following system:

φ̇ = ψ,

ψ̇ = − 3Hψ − (6U ′′ + 1)U ′

2 (3U ′2 + U)
ψ2 +

UV ′ − 2VU ′

3U ′2 + U
,

Ḣ = − 2U ′′ + 1

4(3U ′2 + U)
ψ2 +

2U ′Hψ

3U ′2 + U
− 6U ′2H2

3U ′2 + U
+

U ′V ′

2(3U ′2 + U)
.

(5)
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Note that equation (2) is not a consequence of system (5).
The system (5) is equivalent to the initial system of equations (2)–(4) if
and only if we choose such initial data that equation (2) is satisfied.
In other words, if equation (2) is satisfied in the initial moment of time,
then from system (5) it follows that equation (2) is satisfied at any
moment of time.
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DE SITTER SOLUTIONS

De Sitter solutions corresponds to ψ = 0, hence,

V ′(φdS )U(φdS ) = 2V (φdS )U
′(φdS ).

The corresponding Hubble parameter is

H2
dS =

V (φdS )

6U(φdS )
=

V ′(φdS )

12U ′(φdS )
. (6)

I only mention that points with ψ = 0 correspond to critical points of the
effective potential

VEff =
V

U2
,

because

V ′

Eff
=

V ′U − 2VU ′

U3
, V ′

Eff
(φdS ) = 0.

Also, if U(φdS ) > 0, then the stable de Sitter solutions correspond to
minima of VEff .
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Stable and unstable de Sitter solutions

We study the stability of solutions that tend to fixed points for the
nonminimally coupled gravity models in FLRW metric.
To consider the stability of the fixed point we use the Lyapunov theorem
and consider the corresponding linearize system. Supposing that

φ(t) = φf + εφ1(t), ψ(t) = εψ1(t), H(t) = HdS + εH1(t),

U = Uf + εU ′

f φ1(t), U ′ = U ′

f + εU ′′

f φ1,

V = Vf + εV ′

f φ1(t), V ′ = V ′

f + εV ′′

f φ1,

and substituting it to (5) we obtain the following linear system:

φ̇1 = ψ1,

ψ̇1 = − 3HdSψ1 +
V ′

f U
′

f + 2Vf U
′′

f − Uf V
′′

f

3(U ′
f )

2 + Uf

φ1,

Ḣ1 =
(U ′

f V
′′
f − V ′

f U
′′
f )φ1 + 4HdSU

′
f ψ1 − 24HdS(U

′
f )

2H1

2(3(U ′

f )
2 + Uf )

.

(7)
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For the case of a generic U(φ) we the characteristic equation

det(A−λ̃I ) =
[
− 12HdS(U′

f )
2

3(U′

f
)2+Uf

− λ̃

] [
λ̃(3HdS + λ̃)− V ′

f U
′

f +2Vf U
′′

f −Uf V
′′

f

3(U′

f
)2+Uf

]
= 0,

that has the following roots:

λ̃± = −3HdS

2
±
√

9H2
dS

4
+

V ′
f U

′
f + 2Vf U

′′
f − Uf V

′′
f

3(U ′

f )
2 + Uf

,

λ̃3 = − 12HdS (U
′

f )
2

3(U ′

f )
2 + Uf

.

The de Sitter solution is stable if the real parts of λ̃± < 0. The real part
of λ̃− is always negative, hence, just λ̃+ defines the stability.

λ̃+ = −3HdS

2
+

√
9H2

dS

4
+

V ′

f U
′

f + 2Vf U
′′

f − Uf V
′′

f

3(U ′
f )

2 + Uf

, (8)

Kf ≡
V ′

f U
′

f + 2Vf U
′′

f − Uf V
′′

f

3(U ′
f )

2 + Uf

=
2
(

U′

f

Uf

)′
−
(

V ′

f

Vf

)′

3
4

(
V ′

f

Vf

)2
Uf

Vf
+ 1

Vf

. (9)

The de Sitter solution (HdS > 0) is stable at Kf < 0 and unstable at
Kf > 0.
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OBSERVATION DATA

There are a few main parameters that can be obtained by the observation
data:

The tensor-to-scalar ratio r .
There was a disagreement in the Planck2013 (+ WMAP) data
analysis r < 0.13 and the BISEP2 data analysis r ≃ 0.2.
The resulting joint BICEP2+Planck2013 analysis yields that the
upper limit of the tensor-to-scalar ratio is r < 0.11, a slight
improvement relative to the Planck analysis alone, which gives
r < 0.13 (95% c.l.). Models with r > 0.14 are excluded with 99.5%
confidence [M.J. Mortonson and U. Seljak, JCAP 1410 (2014) 035,
arXiv:1405.5857]
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The tensor-to-scalar ratio r .
There was a disagreement in the Planck2013 (+ WMAP) data
analysis r < 0.13 and the BISEP2 data analysis r ≃ 0.2.
The resulting joint BICEP2+Planck2013 analysis yields that the
upper limit of the tensor-to-scalar ratio is r < 0.11, a slight
improvement relative to the Planck analysis alone, which gives
r < 0.13 (95% c.l.). Models with r > 0.14 are excluded with 99.5%
confidence [M.J. Mortonson and U. Seljak, JCAP 1410 (2014) 035,
arXiv:1405.5857]
The scalar spectral index ns.
Planck2013 temperature anisotropy measurements combined with
the WMAP large-angle polarization, constrain the scalar spectral
index to

ns = 0.9603± 0.0073.

Planck2015:
ns = 0.9655± 0.0063.

The associated running of the spectral index αs should be small.
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Predictions of simplest inflationary models will minimally coupled scalar
field are in disagreement with the Planck2013 results and the resulting
joint BICEP2+Planck2013 analysis.
At the same time many of these inflationary scenarios can be improved
by adding a tiny nonminimal coupling of the inflaton field to gravity.
F. Bezrukov, D. Gorbunov, J. High Energy Phys. 1307 (2013) 140,
arXiv:1303.4395,
R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1306 (2013) 027,
arXiv:1306.3211.
The Planck2013 data analysis as well as the joint BICEP2+Planck2013
analysis confirm the prediction of the Starobinsky R2 inflationary model
and the Bezrukov-Shaposhnikov Higgs-driven inflation.
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INFLATIONARY PARAMETERS

Our goal is to construct an inflationary model using the RG-improved
potentials and to examine if the inflationary model with this potential is
compatible with the Planck13 and BICEP2 data.
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INFLATIONARY PARAMETERS

Our goal is to construct an inflationary model using the RG-improved
potentials and to examine if the inflationary model with this potential is
compatible with the Planck13 and BICEP2 data.
Much of the formalism developed for calculating the parameters of
inflation, for example, the primordial spectral index ns , assume General
Relativity models with minimally coupled scalar fields.
It has been shown by D.I. Kaiser in 1994, that in the case of quasi de
Sitter expansion there is no difference between spectral indexes calculated
either in the Jordan frame directly, or in the Einstein frame after
conformal transformation.
The standard way to use this formalism for models with nonminimal
coupling is to perform a conformal transformation and to consider the
model in the Einstein frame.
See, for example, F.L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659

(2008) 703–706, arXiv:0710.3755;
A. De Simone, M.P. Hertzberg and F. Wilczek, Phys. Lett. B 678 (2009)
1 (arXiv:0812.4946)
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THE JORDAN AND EINSTEIN FRAMES

These two frames are related by conformal transformation

gµν = Ω2g (E)
µν .

⇒ R = Ω−2
[
R (E) − 6

(
�(E) lnΩ + gµν(E)∇(E)

µ lnΩ∇(E)
ν ln Ω

)]

If Ω−2 = 2κ2U → Ω =
1

κ
√
2U

,

where κ2 ≡ 8π/M2
Pl
,

MPl is the Planck mass.
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We also introduce a new scalar field ϕ, such that

dϕ

dφ
=

√
U + 3U ′2

√
2κU

⇒ ϕ =
1√
2κ

∫ √
U + 3U ′2

U
dφ. (10)

We get a model with for a minimally coupled scalar field:

S =

∫
d4x
√
−g (E)

[
1

2κ2
R (E) − 1

2
gµν(E)ϕ,µϕ,ν + VE(ϕ)

]
, (11)

where

VE(ϕ) =
V (φ(ϕ))

4κ4U2(φ(ϕ))
. (12)

Inflationary universe models are based upon the possibility of a slow
evolution of some scalar field ϕ in the potential VE(ϕ).
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The slow-roll approximation, which neglects the most slowly changing
terms in the equations of motion, is used.
As known, the slow-roll parameters ǫ, η and ζ are connected with the
potential in the Einstein frame as follows:

ǫ ≡ 1

2κ2

(
V ′
E

,
ϕ(ϕ)

VE(ϕ)

)2

, η ≡ 1

κ2

V ′′
E

,
ϕ(ϕ)

VE(ϕ)
,

ζ2 ≡ 1

κ4

V ′
E
(ϕ)V ′′′

E
,
ϕ(ϕ)

VE(ϕ)2
.

We add the additional subscript ,ϕ to denote derivatives with respect
to ϕ.
During inflation, each of these parameters should remain to be less than
one.

13 / 29



It is suitable to calculate the slow-roll parameters as functions of the
initial scalar field φ:
where the prime denotes now derivative with respect to φ. We get

ǫ(φ) =
1

2κ2
(V ′

E
)2

V 2
E
Q
, η(φ) =

1

κ2VEQ

[
V ′′

E − V ′
E
Q ′

2Q

]
,

where Q =
U + 3U ′2

2κ2U2
.

Similar calculations yield

ζ2 =
V ′
E

κ4V 2
E
Q2

[
V ′′′

E − 3V ′′
E
Q ′

2Q
− V ′

E
Q ′′

2Q
+

V ′
E
(Q ′)2

Q2

]
.
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The number of e-foldings of a slow-roll inflation is

Ne(φ) = κ2
ϕ∫

ϕend

∣∣∣∣∣
VE(ϕ̃)

V ′
E,ϕ(ϕ̃)

∣∣∣∣∣ d ϕ̃ = κ2
φ∫

φend

∣∣∣∣
VE

V ′
E

∣∣∣∣Q d φ̃ =
κ√
2

φ∫

φend

(
dϕ

d φ̃

)
d φ̃√
ǫ(φ̃)

,

where φend is the value of the field at the end of inflation, defined by
ǫ = 1. The number of e-foldings must be matched with the appropriate
normalization of the data set and the cosmic history, a typical value
being 50 6 Ne 6 65.
The tensor-to-scalar ratio r , the scalar spectral index of the primordial
curvature fluctuations ns, and the associated running of the spectral
index αs, are given, to very good approximation, by

r = 16ǫ , ns − 1 ≃ −6ǫ+ 2η , αs ≡
dns

d ln k
≃ 16ǫη − 24ǫ2 − 2ζ2 .

We describe the inflationary dynamics for two models that have unstable
de Sitter solutions with Uf > 0. Note that the existence of an unstable
de Sitter solution is not a necessary condition for inflation.

15 / 29



INFLATIONARY POTENTIALS

The standard potential for nonminimally coupled cosmological models is

W (0)(φ) = aλφ4 − bξφ2R = V0 − U0R , (13)

where a and b are positive constants and ξ is the conformal coupling.
The potential W (0) includes both the potential V0 and the function U0

multiplied by the scalar curvature.
The term proportional to φ2R is called in the induced gravity term.

V
(0)
E

=
V0

4κ4U2
0

=
aλ

4κ4b2ξ2
= const.

This model is not suitable for inflation.
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THE HIGGS-DRIVEN INFLATION

There are models of inflation, where the role of the inflaton is played by
the Higgs field nonminimally coupled to gravity. (F.L. Bezrukov and
M. Shaposhnikov, Phys. Lett. B 659 (2008) 703–706, arXiv:0710.3755).
They add W (0)(φ) to the standard GR term and get the following action:

S =

∫
d4x

√
−g

[(
M2

PL

2
+ ξφ2

)
R − 1

2
(∂φ)2 − λ

(
φ2 − φ20

)2
]
.
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−g

[(
M2

PL
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+ ξφ2

)
R − 1

2
(∂φ)2 − λ

(
φ2 − φ20

)2
]
.

This model have been actively studied
A.O. Barvinsky, A.Y. Kamenshchik, and A.A. Starobinsky, J. Cosmol.
Astropart. Phys. 0811 (2008) 021 (arXiv:0809.2104);
F. Bezrukov, D. Gorbunov and M. Shaposhnikov, J. Cosmol. Astropart.
Phys. 0906 (2009) 029, arXiv:0812.3622;
A. De Simone, M.P. Hertzberg and F. Wilczek, Phys. Lett. B 678 (2009)
1 (arXiv:0812.4946);
A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, and
C.F. Steinwachs, J. Cosmol. Astropart. Phys. 0912 (2009) 003
(arXiv:0904.1698);
J. Garcia-Bellido, D.G. Figueroa, and J. Rubio, Phys. Rev. D 79 (2009)
063531 (arXiv:0812.4624);
F. Bezrukov, Class. Quant. Grav. 30 (2013) 214001 (arXiv:1307.0708)
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RG-improved potentials

In particular, in
A.O. Barvinsky, A.Yu. Kamenshchik, C. Kiefer, A.A. Starobinsky, and
C.F. Steinwachs, Eur. Phys. J. C 72 (2012) 2219 (arXiv:0910.1041)
the renormalization-group improved potentials for this models has been
studied.
The renormalization-group improved effective potential for an arbitrary
renormalizable massless gauge theory in curved space-time was discussed
in detail in
I.L. Buchbinder, S.D. Odintsov, Class. Quant. Grav. 2 (1985) 721–731;
I.L. Buchbinder, S.D. Odintsov and I.M. Lichtzier, Class. Quant. Grav. 6
(1989) 605;
E. Elizalde and S.D. Odintsov, Phys. Lett. B 303 (1993) 240
(arXiv:hep-th/9302074);
E. Elizalde and S.D. Odintsov, Phys. Lett. B 321 (1994) 199–204
(arXiv:hep-th/9311087);
E. Elizalde and S.D. Odintsov, Phys. Lett. B 333 (1994) 331,
(arXiv:hep-th/9403132)
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The standard flat-space renormalization-group equation is modified in
curved space-time, for instance, it has an additional term related with the
contribution from the nonminimal coupling constant ξ and the
corresponding βξ function.
It is natural to split W into two parts, namely

W ≡ V − UR ≡ af1(p, φ, µ)φ
4 − bf2(p, φ, µ)φ

2R , (14)

where f1 and f2 are some unknown functions, and p = {g̃ , α, ξ}.
The renormalization-group equation for the effective potential in curved
space-time has the form

(
µ
∂

∂µ
+ βg̃

∂

∂g̃
+ δ

∂

∂α
+ βξ

∂

∂ξ
− γφ

∂

∂φ

)
W = 0, (15)

Actually, the authors imposed the additional restriction that, not only the
function W satisfies (15), but also that the functions V and U satisfy it,
separately.
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The RG-improved potential for the scalar electrodynamic, the SU(2) and
SU(5) models have been found in E. Elizalde and S.D. Odintsov, Phys.
Lett. B 303 (1993) 240 (arXiv:hep-th/9302074).
We use these potentials to check the possibility to construct the

inflationary models without the Hilbert–Einstein curvature term
M2

PL

2 R .
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The RG-improved potential for the scalar electrodynamic, the SU(2) and
SU(5) models have been found in E. Elizalde and S.D. Odintsov, Phys.
Lett. B 303 (1993) 240 (arXiv:hep-th/9302074).
We use these potentials to check the possibility to construct the

inflationary models without the Hilbert–Einstein curvature term
M2

PL

2 R .

In arXiv:1408.1285, we show that inflation is realized both for scalar
electrodynamics and for SU(5) RG-improved potentials.

I plan to show in detail that for the SU(5) RG-improved potential the
corresponding inflationary models are in good agreement with the most
recent observational data provided some reasonable values are taken for
the parameters.
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The SU(5) model in non-flat metric

E. Elizalde and S.D. Odintsov, Phys. Lett. B 303 (1993) 240
(arXiv:hep-th/9302074)
We study the RG-improved potential for the SU(5) GUT.
The tree-level potential has the form

Vtree =
1

4
λ1(Tr φ̄

2)2 +
1

2
λ2Tr φ̄

4 − 1

2
ξRTr φ̄2,

where λ1 and λ2 are scalar couplings.
For simplicity we suppose that there are no fermions in the theory.
Even in this case, the system of RG equations for the coupling constants
can be solved only numerically.
This is why E. Elizalde and S.D. Odintsov considered the vector loop
contributions to the β-functions.
The breaking SU(5) → SU(3) x SU(2) x U(1) has taken place.
Then φ̄ = φ diag (1, 1, 1,− 3

2 ,− 3
2) and

Vtree =
15

16
(15λ1 + 7λ2)φ

4 − 15

4
ξRφ2.
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The SU(5) RG-IMPROVED POTENTIAL

Within this approach

dg(ϑ)

dϑ
= −5g 3(ϑ)

6π2
,

d

dϑ

[
15

4
(15λ1 + 7λ2)

]
=

5625

128π2
g 4(ϑ),

dξ(ϑ)

dϑ
= − 30

16π2

(
ξ(ϑ)− 1

6

)
g 2(ϑ), γ = −15g 2

16π2
,

ϑ = 1
2 ln(φ

2/µ2).
The SU(5) RG-improved potential has been calculated in E. Elizalde,

S.D. Odintsov, 1993 :

V =
3375

512

(
g 2 − g 2

f
16/9
5

)
φ4f 45 , U =

15

4

[
1

6
+

(
ξ − 1

6

)
Θ̆−9/8

]
φ2f 25 ,

where Θ̆ = 1 + 5g2ϑ
3π2 , f5 = Θ̆9/16,

g and µ2 are nonzero constants.
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We have found that there is no de Sitter solution for ξ = 1/6.
For other values of ξ, the de Sitter solutions are defined by

H2
dS =

225φ2f Θ̆
5/4
f g 2(Θ̆f − 1)

128(Θ̆
9/8
f + 6ξ − 1)

.

The number Θ̆f is a root of

ξ =
1

6
− 2Θ̆

9/8
f

3(9Θ̆f − 5)
.

We can eliminate ξ and express H2
dS as

H2
dS =

25

128
Θ̆

1/8
f (9Θ̆f − 5)φ2f g

2.

The Hubble parameter H is real if and only if Θ̆f > 5/9.
It is possible for ξ < 1/6 only.
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At the de Sitter point we get

Uf =
15

4

(
1

6
− 2

3(9Θ̆f − 5)

)
φ2f Θ̆

9/8
f > 0. (16)

for 1 < Θ̆f .

Vf =
3375

512
g 2
(
1− Θ̆−1

f

)
φ4f Θ̆

9/4
f .

We see that Uf < 0 at 5/9 < Θ̆f < 1 and Uf > 0 for 1 < Θ̆f .
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Let us consider the stability of the de Sitter solutions obtained. Note that
we used the conditions Θ̆f 6= 1:

2

(
U ′

U

)′

|φ=φf
−
(
V ′

V

)′

|φ=φf
=

(5− Θ̆f )(Θ̆
′
f )

2

8(Θ̆f − 1)2Θ̆2
f

. (17)

For 1 < Θ̆f , Uf > 0 and Vf > 0, so the denominator of Kf calculated by
(9) is positive, and thus the sign of Kf can be determined by the
numerator that was calculated in (17).
We come to the conclusion that

Kf > 0 for 1 < Θ̆f < 5
and

Kf < 0 for 5 < Θ̆f .

So, the de Sitter solution is unstable for Uf > 0 at 1 < Θ̆f < 5.
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In the case of a SU(5) RG-improved potential,

VE =
135g 2(Θ̆ − 1)Θ̆5/4

32κ4
(
Θ̆9/8 + 6ξ − 1

)2 ,

Q =
4(Θ̆9/8 + 6ξ − 1) + 15

128π2

(
15g 2Θ̆1/8 + 16π2

(
Θ̆9/8 + 6 ξ − 1

))2

5
(
Θ̆9/8 + 6 ξ − 1

)2
κ2φ2

.
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In the case of a SU(5) RG-improved potential,

VE =
135g 2(Θ̆ − 1)Θ̆5/4

32κ4
(
Θ̆9/8 + 6ξ − 1

)2 ,

Q =
4(Θ̆9/8 + 6ξ − 1) + 15

128π2

(
15g 2Θ̆1/8 + 16π2

(
Θ̆9/8 + 6 ξ − 1

))2

5
(
Θ̆9/8 + 6 ξ − 1

)2
κ2φ2

.

The slow-roll parameter

ǫ =

125
288π4 g

4
(

4 Θ̆9/8
− 5(6ξ − 1) + 9Θ̆(6ξ − 1)

)2

(

Θ̆− 1
)2

Θ̆2

[

4
(

Θ̆9/8 + 6 ξ − 1
)

+ 15
128π2

(

15 g2Θ̆9/8 + 16π2
(

Θ̆9/8 + 6ξ − 1
)2
)] ,

Ne =

Θ̆N
∫

Θ̆end

(

Θ̆− 1
)

Θ̆

(

4
(

Θ̆
9
8 + 6ξ − 1

)

+ 15
128

(

15 Θ̆
1
8 g2

π2 + 16(Θ̆
9
8 + 6ξ − 1)

)2
)

125
36π4 g

4
(

Θ̆
9
8 + 6 ξ − 1

)(

(9 Θ̆− 5) (6 ξ − 1) + 4 Θ̆
9
8

) dΘ̆ .

The slow-roll parameters and Ne depend on the dimensionless
function Θ̆.
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Θ̆

Figure: The potential VE(Θ̆) multiplied by κ4 in the SU(5) model at ξ = 0.04,
g = 0.15 (blue dashed line) and at ξ = 0.045, g = 0.2 (red solid line).
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THE SU(5) INFLATIONARY SCENARIO

Table: Parameter values for the SU(5) inflationary scenario.

ξ g N Θ̆end(ǫ = 1) Θ̆N ns r α
0.04 0.15 50 1.000868906 1.0121 0.963 0.070 0.00731
0.04 0.15 55 1.000868906 1.0126 0.965 0.063 0.00643
0.04 0.15 60 1.000868906 1.0132 0.968 0.058 0.00660
0.04 0.15 65 1.000868906 1.0137 0.969 0.0535 0.00540
0.045 0.2 50 1.001564816 1.02152 0.958 0.066 0.00699
0.045 0.2 55 1.001564816 1.02252 0.960 0.0595 0.00638
0.045 0.2 60 1.001564816 1.023475 0.963 0.054 0.00579
0.045 0.2 65 1.001564816 1.024388 0.965 0.0495 0.00548

The resulting joint BICEP2+Planck2013 analysis yields that the upper
limit of the tensor-to-scalar ratio is r < 0.11, a slight improvement
relative to the Planck analysis alone, which gives r < 0.13 (95% c.l.).
We do see that the inflationary parameters of the model considered are in
very good agreement with the observational data.
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CONCLUSIONS

Cosmological models with nonminimally coupling scalar fields has
been considered.

We study dynamics of nonminimally coupled scalar field
cosmological models with the RG-improved potentials.

In all cases, the tree-level potential is λφ4 − ξφ2R , what corresponds
to the cosmological constant in the Einstein frame, and is in no case
suitable for inflation.

In the inflationary models, both for scalar electrodynamics and the
SU(5) RG-improved potentials, we have got that these models are in
good agreement with the most recent observational data provided
some reasonable values are taken for the parameters.

Our study indicates that inflation could well be caused by quantum
effects of the scalar sector of some convenient GUT theory.
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