Standard Model measurements with ATLAS

Mateusz Dyndal (AGH UST / CEA IRFU SPP)

QFTHEP'15 Samara, Russia

Introduction

- Standard Model measurements performed to:
 - validate SM in new energy regime
 - understand processes which are backgrounds for other studies / searches
 - improve precision of known SM parameters
 - constrain new physics contributions (like anomalous couplings)
- ≈100 SM ATLAS papers since LHC started; only few analyses presented here, more available at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults</u>
- Selection of recent results, based on the categories:
 - Soft QCD, Diffraction and Forward Physics
 - Electroweak Physics: W and Z bosons, Dibosons,
 - Jet Physics
 - Direct Photons

Run-1 data collection with ATLAS detector

The ATLAS sub-detectors

• Total pp cross-section at 7 TeV with ALFA Nuc. Phys B (2014), 486-548

- ALFA dedicated tracking detectors in the beam line at z = ±238 & ±241 m
- Data taking in special runs (high-β*)
- Elastic scattering angle at ATLAS IP maps to a y displacement in ALFA
- Allows the reconstruction of the **4-momentum transfer**: $-t = (p \times \theta)^2$

• Total pp cross-section at 7 TeV with ALFA Nuc. Phys B (2014), 486-548

26 June 2015

M. Dyndal (on behalf of the ATLAS Collaboration) SM measurements with ATLAS (QFTHEP'15)

• Exclusive $pp(\gamma\gamma) \rightarrow pp\ell^+\ell^-$ production at 7 TeV <u>CERN-PH-EP-2015-134</u>

 Photon-induced (PI) processes: cross-section dominated by so-called single- and double-proton dissociative reactions. Non-negligible background for many analyses (low, high-mass DY, φ*/p_T(Z) measurement, ...)

ATLAS

= 7 TeV. 4.6 fb

aseline selection

- Preselection:
 - p_T^{μ} >10 GeV, $|\eta_{\mu}|$ <2.4, $M_{\mu+\mu}$ >20 GeV
 - **p**_T^e>12 GeV, |η_e|<2.4, M_{e+e-}>24 GeV
- Exclusive selection:
 - 3 mm dilepton-vertex
 longitudinal isolation
 - **p**_T of the dilepton system < 1.5 GeV

3

5

10

20

Tracks associated with di-muon vertex

30 40 50

2

1.2 1.1 0.9 0.0

Double-diss. $\gamma\gamma \rightarrow \mu^+$

Single-diss. $\gamma\gamma \rightarrow \mu^+\mu$

Exclusive $\gamma\gamma \rightarrow \mu^+\mu$

• Exclusive $pp(\gamma\gamma) \rightarrow pp\ell^+\ell^-$ production at 7 TeV <u>CERN-PH-EP-2015-134</u>

- Signal extraction: binned maximum-likelihood fit to the measured dilepton acoplanarity distribution
- Corresponding fiducial cross-sections:
 - $\sigma_{\gamma\gamma \to e+e-}^{excl.}$ = 0.428 ± 0.035(stat.) ± 0.018(syst.) pb
 - $\sigma_{\gamma\gamma \to \mu+\mu-}^{excl.}$ = 0.628 ± 0.032(stat.) ± 0.021(syst.) pb
- Theory predictions (QED-EPA), with absorptive corrections from <u>Phys. Lett. B741 (2015) 66-70</u> (20% effect)
 - $\sigma_{\gamma\gamma \to e+e-}^{EPA, \ corr.} = 0.398 \pm 0.007$ (theo.) pb
 - $\sigma_{\gamma\gamma \rightarrow \mu+\mu-}^{EPA, \ corr.}$ = 0.638 ± 0.011(theo.) pb
- Agreement also with similar CMS measurement

Underlying event in Z boson events Eur. Phys. J. C 74, 3195 (2014)

- UE probe everything but the hard scatter: multi-parton interactions, colour reconnection etc.
- Measured charged-particle track observables: ∑p_T and N_{ch} per δη·δφ unit, average mean p_T
- Three regions considered, depending on Δφ to the direction of the Z boson: toward, away, transverse

Underlying event in Z boson events Eur. Phys. J. C 74, 3195 (2014)

- At high- p_T the < N_{ch} > UE looks to be a **universal quantity**
- Disagreement at low- p_T due to the hard scale (m_z) in Z events
- MC model predictions qualitatively describe the data well

S

- W+jets cross-sections at 7 TeV Eur. Phys. J. C (2015) 75:82
- Tests of perturbative QCD over 5 orders of magnitude

- W+jets cross-sections at 7 TeV Eur. Phys. J. C (2015) 75:82
- Overall good agreement with predictions is found (but in some regions of phase-space significant disagreement observed)

• Low-mass DY differential cross-section at 7 TeV JHEP 06 (2014) 112

- Access to dilepton invariant mass down to 12 GeV (low-x region)
- Fixed-order NNLO QCD + NLO EW + PI (photon-induced dilepton pair production) calculations describe the data well

• FB asymmetry in lepton pair production (7 TeV) CERN-PH-EP-2014-259

,

• FB asymmetry in lepton pair production (7 TeV) CERN-PH-EP-2014-259

- Effective weak mixing angle $(\sin^2 \theta_{eff}^{lept})$ is also extracted from the detector-level A_{FB} values
- $\sin^2 \theta_{eff}^{lept} = 0.2308 \pm 0.0005 \text{(stat.)}$ $\pm 0.0006 \text{(syst.)} \pm 0.0009 \text{(PDF)}$
- Agreement with the current world average

• WW/WZ → ℓvjj cross-section at 7 TeV JHEP 01 (2015) 049

- Measurement of combined WW/WZ cross-section in semi-leptonic final state
- Background composition:
 - W/Z+jets (≈89%), multi-jet (≈5%) data driven
 - Top (≈4%) MC estimate
- Signal yield extracted from a fit to m_{jj} distribution (3.4σ significance)
- $\sigma_{tot.}$ = 68 ± 7(stat.) ± 18(syst.) pb, compared with $\sigma_{tot}^{theo.}$ = 61.1 ± 2.2 pb

• WW/WZ → ℓvjj cross-section at 7 TeV JHEP 01 (2015) 049

Evidence of Wyy production at 8 TeV <u>CERN-PH-EP-2015-009</u>

- First evidence of W_{γγ} production with > 3σ significance (20.3 fb⁻¹, inclusive selection: N_{iets} ≥ 0)
- Largest background: jets faking photon or lepton (data-driven estimate)
- Fiducial cross-section obtained using a maximum-likelihood fit:

	$\sigma^{ m fid}$ [fb]	$\sigma^{\rm MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
$\mu u\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e u\gamma\gamma$	4.3 $^{+1.6}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.) 6.1 $^{+1.1}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
Exclusive $(N_{\rm jet} = 0)$		
$\mu u\gamma\gamma$	3.5 ± 0.9 (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)	
$e u\gamma\gamma$	$1.9 \stackrel{+1.4}{_{-1.1}}$ (stat.) $\stackrel{+1.1}{_{-1.2}}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell \nu \gamma \gamma$	$2.9_{-0.7}$ (stat.) $_{-0.9}$ (syst.) ± 0.1 (luml.)	

Evidence of Wyy production at 8 TeV CERN-PH-EP-2015-009

- aQGC limits set for N_{iets} = 0 (exclusive selection) and $m_{\nu\nu} > 300 \text{ GeV}$
- Limits better or similar to LEP and DO
- CMS is more sensitive in a_C^W and a_0^W $(\gamma\gamma \rightarrow WW \text{ measurement})$

 Λ - scale at which new physics appears, a, f - coupling of the respective operator.

strong production

- EW WWjj production at 8 TeV Phys. Rev. Lett. 113, 141803
- Same-sign W[±]W[±] scattering: a key process to study the SM nature of EWSB at the LHC

• Measurement of EW WWjj: selection at high m_{ii} and cutting on $|\Delta y_{ii}|$

electroweak production in t-channel

EW WWjj production at 8 TeV Phys. Rev. Lett. 113, 141803

- A total of 34 candidate events in VBS region [
- Measured cross-sections in agreement with theory prediction
- First aQGC limits on α₄, α₅ parameters are also set (for notation see <u>Phys.Rev. D22 (1980) 200</u>)

Jet Physics

- Inclusive jet cross-section at 7 TeV JHEP 02 (2015) 153
- Double-differential cross-section measurement as a function of jet \textbf{p}_{T} and rapidity
- Two jet radii are used: R = 0.4 and R = 0.6. Jets with $p_T > 100 \text{ GeV}$ and |y| < 3 considered.
- Comparison with NLO predictions corrected for EW and NP effects.
 Several PDF investigated.

Jet Physics

• Three-jet production cross-section at 7 TeV Eur. Phys. J. C (2015) 75

- Double-differential cross-section measurement as a function of m_{jjj} and $Y^* = |y_{j1} - y_{j2}| + |y_{j2} - y_{j3}| + |y_{j1} - y_{j3}|$
- Asymmetric kinematic cuts: $p_{Tj1} > 150$ GeV, $p_{Tj2} > 100$ GeV and $p_{Tj3} > 50$ GeV
- Comparison with NLO predictions corrected for NP effects. Several PDF investigated.

Direct Photons

- S.
- Inclusive photon cross-section at 7 TeV Phys. Rev. D 89, 052004 (2014)
- Cross-section for isolated, high- p_T photons (with $E_{T,v}$ >100 GeV, $E_{T,iso}$ <7 GeV)
- Isolation requirement reduces jet background
- EM shower shape variables provide tight / loose photon identification

Direct Photons

- Inclusive photon cross-section at 7 TeV Phys. Rev. D 89, 052004 (2014)
- Production is sensitive to the **gluon content** of the proton $(qg \rightarrow q\gamma)$
- Comparison with LO and NLO predictions corrected for NP effects

Summary

 SM measurements are important to explore new kinematic regimes, to test theoretical predictions and to improve precision of the SM parameters

Standar	d Model Total Prod	uction Cross S	ection Measur	ements March 201	5 ∫£dt [fb ⁻¹]	Reference
pp total	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb (data)}$ COMPETE RRpl2u 2002 (theory)		Ŷ	¢	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014)
Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \ {\rm nb} \ {\rm (data)} \\ {\rm NLOJet}_{\rm ++, \ CT10} \ {\rm (theory)}$		0.1 < p _T < 2 TeV	•	4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4	$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \ {\rm nb} \ {\rm (data)} \\ {\rm NLOJet}{\rm ++, \ CT10} \ {\rm (theory)}$	0.3 <	m _{jj} < 5 TeV	•	4.5	JHEP 05, 059 (2014)
W total	$\sigma=94.51\pm0.194\pm3.726$ nb (data) FEWZ+HERAPDF1.5 NNLO (theory)		Ŷ	•	0.035	PRD 85, 072004 (2012)
Z total	$\sigma = 27.94 \pm 0.178 \pm 1.096 \text{ nb (data)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$		Ŷ	4	0.035	PRD 85, 072004 (2012)
++	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	¢		Þ	4.6	Eur. Phys. J. C 74: 3109 (2014
total	$\sigma = 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)}$ top++ NNLO+NNLL (theory)	4		Δ.	20.3	Eur. Phys. J. C 74: 3109 (2014
t	$\sigma = 68.0 \pm 2.0 \pm 8.0 \text{ pb (data)}$ NLO+NLL (theory)	Ò		0	4.6	PRD 90, 112006 (2014)
total	$\sigma = 82.6 \pm 1.2 \pm 12.0 \text{ pb (data)}$	4			20.3	ATLAS-CONF-2014-007
WW+WZ	$\sigma = 68.0 \pm 7.0 \pm 19.0 \text{ pb (data)} \\ \text{MC@NLO (theory)}$	\$	LHC pp $\sqrt{s} = 7$ TeV		4.6	JHEP 01, 049 (2015)
	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)}$	b	Theory		4.6	PRD 87, 112001 (2013)
total	$\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb} (\text{data})$ MCFM (theory)	4	 Observed stat 		20.3	ATLAS-CONF-2014-033
۱۸/+	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{data})$	Ó	stat+syst		2.0	PLB 716, 142-159 (2012)
total	$\sigma = 27.2 \pm 2.8 \pm 5.4 \text{ pb} (\text{data})$	<u>A</u>			20.3	ATLAS-CONF-2013-100
H ggF	$\sigma = 23.9 + 3.9 - 3.5 \text{ pb (data)}$ LHC-HXSWG (theory)	4	LHC pp $\sqrt{s} = 8$ TeV		20.3	ATLAS-CONF-2015-007
	$\sigma = 19.0 + 1.4 - 1.3 \pm 1.0 \text{ pb (data)}$	6	Theory		4.6	EPJC 72, 2173 (2012)
total	$\sigma = 20.3 + 0.8 - 0.7 + 1.4 - 1.3 \text{ pb (data)}$	Ā	Observed	i i i	13.0	ATLAS-CONF-2013-021
77	$\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4 \text{ pb} (data)$	6	stat —		4.6	JHEP 03, 128 (2013)
total	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4$ pb (data)	Δ		2	20.3	ATLAS-CONF-2013-020
HVBF	$\sigma = 2.43 + 0.6 - 0.55 \text{ pb (data)}$ LHC-HXSWG (theory)		Preliminary	Δ	20.3	ATLAS-CONF-2015-007
ttW total	$\sigma = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 \text{ fb (data)} \\ \text{MCFM (theory)} $	Run 1	$\sqrt{s} = 7.8 \text{ TeV}$		20.3	ATLAS-CONF-2014-038
ttZ total	$\sigma = 150.0 + 55.0 - 50.0 \pm 21.0$ fb (data) HELAC-NLO (theory)		······································		20.3	ATLAS-CONF-2014-038
	$10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}$	1 10 ¹ 10 ² 10 ³	$10^4 \ 10^5 \ 10^6 \ 10^{11}$	0.5 1 1.5 2 observed/the	orv	

Summary

 New measurements for soft QCD / Diffraction / Forward Physics, Electroweak studies, Jet Physics and Direct Photons are presented
 Vector Boson + X Cross Section Measurements

Summary

New data at Vs = 13 TeV being collected!

13 TeV collisions

Run: 265573 Event: 970468 2015-05-21 11:10:20 CEST