

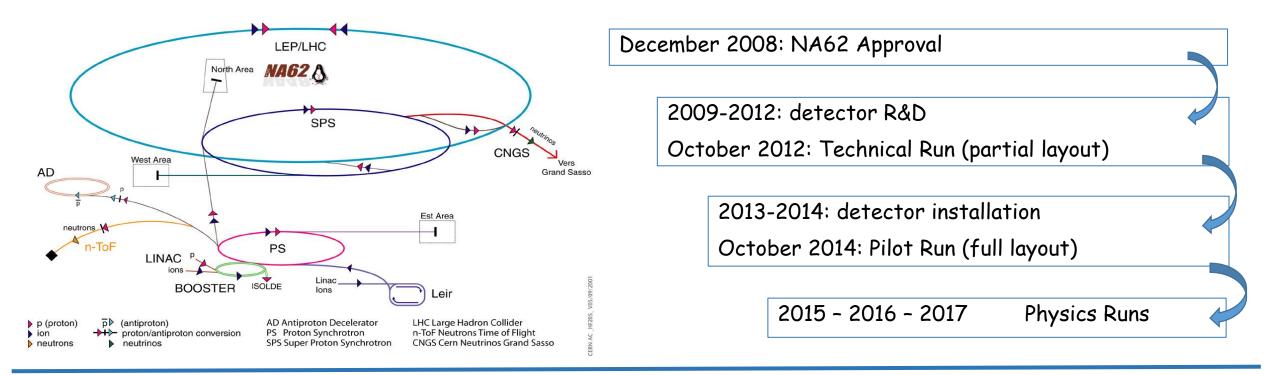
The NA62 experiment -

Results from 2014 Pilot Run

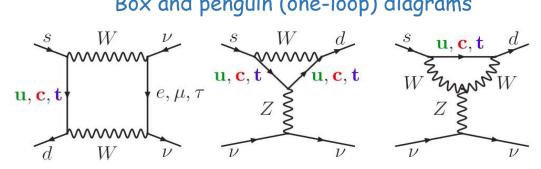
Milena Misheva, JINR, Dubna on behalf of the NA62 Collaboration

XXII International Workshop on High Energy Physics and Quantum Field Theory

24th June – 1st July 2015, Samara, Russia



The NA62 experiment


- □ Fixed target experiment at the North Area of CERN SPS.
- □ Kaons in flight decay technique
- □ Main goal: Measurement of BR($K^+ \rightarrow \pi^+ vv$) with 10% accuracy, collection O(100) SM events in 3 years data taking
- □ The NA62 Collaboration 13 countries, 32 institutions, 238 participants

(Belgium, Bulgaria, Canada, Czech Republic, Germany, Italy, Mexico, Romania, Russia, Slovakia, Switzerland, United Kingdom, USA)

Box and penguin (one-loop) diagrams

- FCNC processes forbidden at tree-level
- \succ CKM suppressed (BR ~ $|V_{ts} * V_{td}|^2$)
- Extraction of |V_{td} | with a few % non-parametric uncertainty
- Sensitivity to New Physics (NP)

Contributions to the BR ratio:

- (dominant) t-quark part (NLO QCD, 2-loop EW corrections);
- (small) c-guark part (NNLO QCD, NLO EW corrections);

Extremely precise theoretical predictions:

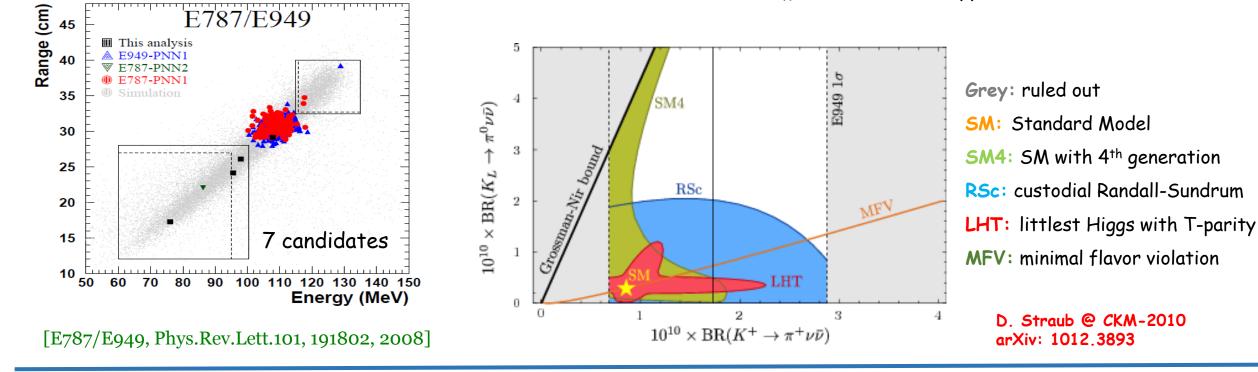
BR($K^+ \to \pi^+ \nu \bar{\nu}$) = (9.11 ± 0.72) x 10⁻¹¹ BR($K^0 \to \pi^0 \nu \bar{\nu}$) = (3.00 ± 0.30) x 10⁻¹¹

SM predictions: [A.J, Buras, D. Buttazzo, J. Girrbach-Noe and R, Knegjens, arXiv:1503.02693]

Long Distance (LD) correction;

Hadronic matrix element extracted from well-known decay BR(K⁺ $\rightarrow \pi^0 e^+ v$)

Uncertainty:


CKM parametric, dominated by V_{cb}

E787/E949 experiment @ BNL (stopped kaon technique)

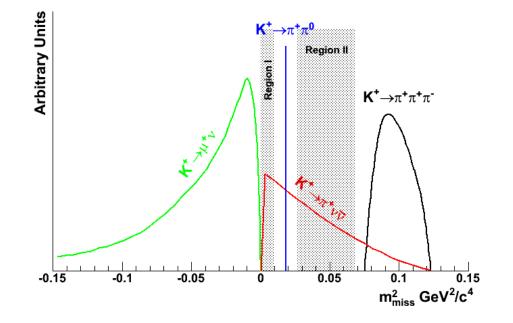
```
BR(K^+ \to \pi^+ \nu \overline{\nu}) THEORY = (0.91 ± 0.07) × 10<sup>-10</sup>
BR(K^+ \to \pi^+ \nu \overline{\nu}) exp = (1.73<sup>+1.15</sup>-1.05) × 10<sup>-10</sup>
```

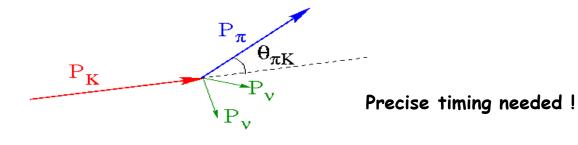
<u>Searches for NP in $K \rightarrow \pi \nu \overline{\nu}$:</u>

- Complementary to LHC
- Several scenarios possible
- Measurements of charged and neutral mode will allow to discriminate between different NP scenarios

- Goal: 10% precision branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
 - ✓ O(100) SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events (3 years of data)
- Requirements
 - ✓ Statistics: BR(SM) ~9 x 10⁻¹¹
 - × Kaon intensity (3 years): 10¹³ K⁺ decays
 - × Detector Acceptance: ~10%
 - ✓ Systematics:
 - Signal purity: >10¹² background rejection (<20% bgr) Signal / BGR ~ 10</p>
 - <10% precision background measurement</p>
- Technique
 - ✓ "High" momentum K⁺ beam (75Gev/c)

Experimental strategy


> Signal


Main kinematic variable:

$$m_{miss}^2 = (P_K - P_{\pi^+})^2$$

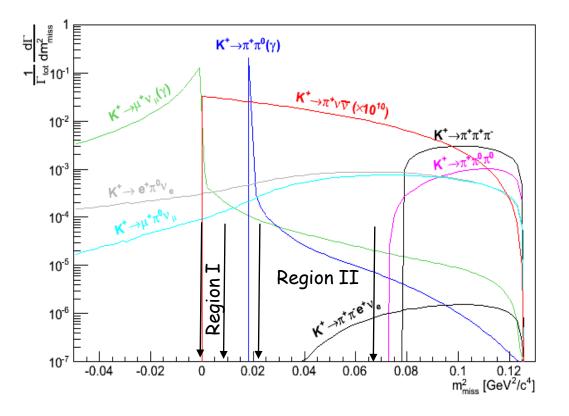
$$m_{miss}^{2} \cong m_{K}^{2} \left(1 - \frac{|P_{\pi}|}{|P_{K}|}\right) + m_{\pi}^{2} \left(1 - \frac{|P_{K}|}{|P_{\pi}|}\right) - |P_{K}||P_{\pi}|\theta_{\pi K}^{2}$$

The signals are measured in two regions (I and II)

Background

- K⁺ decay modes
- > Accidental single track matched with a K-like track
- Beam-gas and upstream interactions

Signal signature:

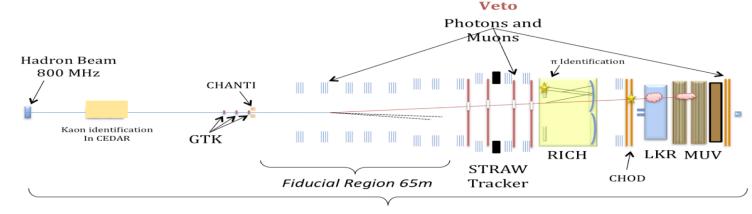

- ➢ Incoming high momentum(75 GeV/c) K⁺
- > Outcoming low momentum(<35 GeV/c) π^+ in time with the incoming K⁺

Region I : $0 < m^2_{miss} < 0.01 \ GeV^2/c^4$ Region II: $0.026 < m^2_{miss} < 0.068 \ GeV^2/c^4$

Background rejection

- ⊁ K⁺ positive identification (CEDAR)
- > π/μ separation (RICH)
- > π /e separation (E/p)

Decay	BR [%]	Rejection	
$K^+ \rightarrow \mu^+ v(K_{\mu 2})$	63.5	µ-ID+kinematics	
$K^+ \rightarrow \pi^+ \pi^0 (K_{2\pi})$	20.66	y-veto+kinematics	
K ⁺ →π ⁺ π ⁺ π ⁻	1.76	Multi-trk+kinematics	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	5.59	y-veto+kinematics	

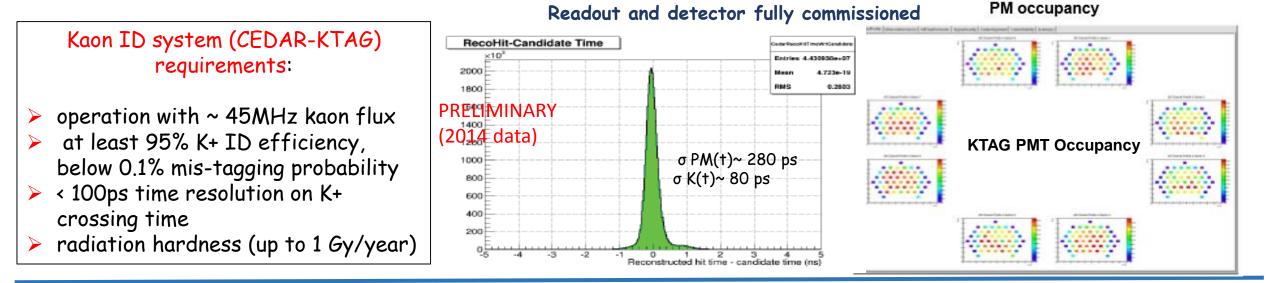

Decay	BR [%]	Rejection	
K⁺→π⁰e⁺v (K _{e3})	5.07	e-ID+kinematics	
$K^+ \rightarrow \pi^0 \mu^+ \nu (K \mu_3)$	3.35	μ-ID+γ-veto	
$K^+ → μ^+ νγ(K μ_{2g})$	6.2×10 ⁻³	y-veto+kinematics	
$K^+ \rightarrow \pi^+ \pi^- e^+ v (K_{e4})$	4.25×10 ⁻⁵	e-ID+multi-trk	
K⁺→π⁺π⁻ <i>μ</i> ⁺ν (K <i>μ</i> ₄)	1.4 ×10 ⁻⁵	Multi-trk+kinematics	

NA62 beam line & detector

<u>Beam line</u>

- SPS primary beam 400 GeV/c, ~3x10¹² p per pulse on target
- > Secondary (unseparated) hadron beam 75 GeV/c, ~780 M particles/s (p/K/ π)
- > 4.8×10¹² K decays/year
- The CEDAR differential Cerenkov counter
 - K⁺ components in the beam
- GTK Gigatracker \rightarrow 3 Si micro-pixel station
 - Time, direction and momentum of the beam particle
- The STRAW Tracker \rightarrow 4 Chambers inside high vacuum (~10⁻⁶) tank
 - Coordinates and momentum of secondary charged particles from decay volume
- The RICH detector \rightarrow 17m long radiator filled with Ne gas at 1 atm,
- The MUV Muon-Veto Detectors \rightarrow 2-part hadron calorimeter, iron and a transversally-segmented hodoscope
 - Separate pions and muons between 15 and 35 Gev/c

Total Length 270m


- System of Photon-Veto detectors hermetic coverage 0-50 mrad angles from the decay region
 - The LKR high resolution Liquid Krypton electro-magnetic calorimeter
 - IRC and SAC- Intermediate Ring and Small-Angle Calorimeters
 - 12 annular photon-veto LAV detectors
- Counters CHANTI and charge-particle hodoscope CHOD
- High-performance trigger and Data-acquisition (TDAQ) system

Kaon Identification System

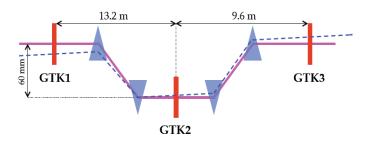

Secondary (unseparated) 75 GeV/c hadron beam: total rate ~ 750MHz Main components: ~ 72% π +, ~ 6% K+, ~ 22% p

Cherenkov kaon tagger

- ChErenkov Differential Achromat Ring focus counter /CEDAR/ with Kaon TAGging detecto
- N₂ inside CEDAR
- external optics, PMs, front-end, readout
- > 8 PM stations (8 PM readout)

8 x PMT Ring Image Corrector Light path Mirror at Diaphragm

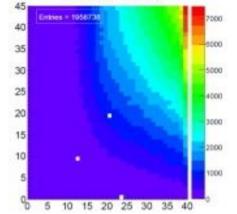
Spectrometers beam & charged decay products


Gigatracker (GTK) – beam spectrometer

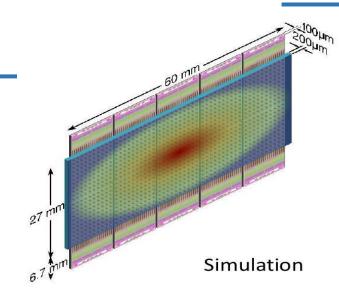
Pixel spectrometer to measure Kaons' momenta

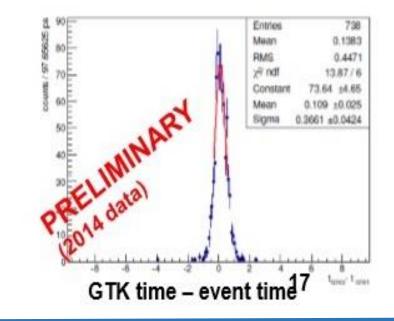
- 3 Si pixel stations (4 achromat magnets), 10 chip/station, 18K pixel/station
- Station dimensions: 60(X)x27(Y) mm² (active area), thickness<0.5 mm(0.5% X₀)

Requirements:

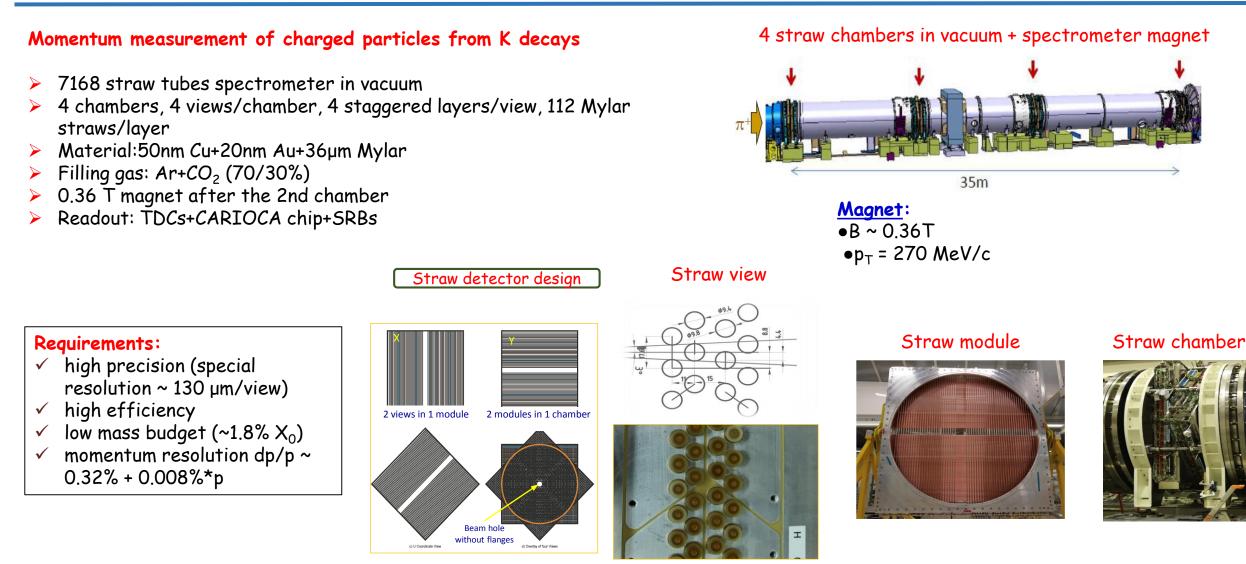

- Stand 750 MHz total rate (140 KHz/pixel in the center)
- 200 ps/station resolution
- σX, Y ~16 µrad, ΔP/P < 0.4%</p>

2014 Pilot run


- Readout partially commissioned (1 chip/station, no trigger matching)
- ✓ 450/250 µm technology (100 µm in 2015)
- Cooling system commissioned


2014 data

The TDCPix chip

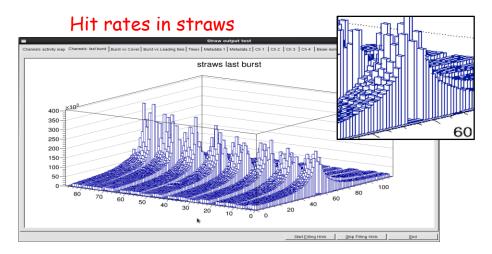

TDCPix Wire Bonded to the Test Card

STRAW – decay products spectrometer

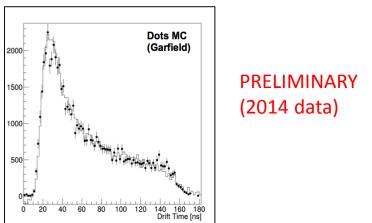
M.Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia

STRAW – decay products spectrometer

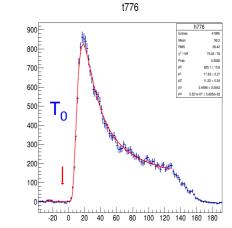
Installation of a Straw chamber



Straw cover (TDC+Carioca)



2014 Pilot run


- ✓ Triggerless readout (L0 readout in 2015)
- Detector fully commissioned

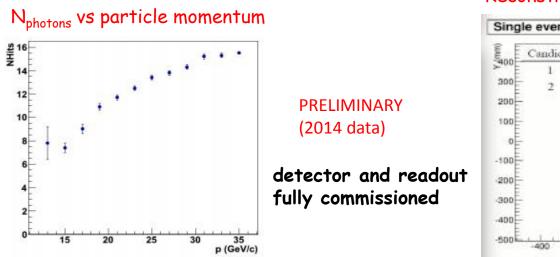
Straw trailing time (drift time)

T₀ for each channel In progress

M.Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia

Particle Identification

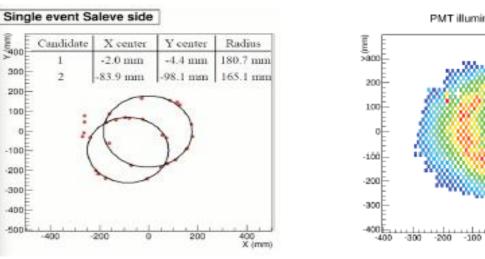
RICH



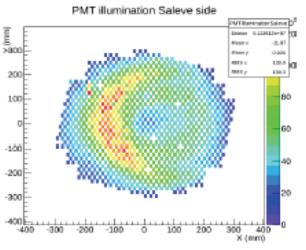
Cherenkov decay particles tagger :


- > 17m long vessel filled with Ne at atmospheric pressure
- Array of 20 hexagonal mirrors focusing the light to PMs
- > 2 PM flanges
- > 976 PMs per flange

Requirements


> π/μ separation @ 5·10⁻³ (15 < P < 35 GeV/c) > Time resolution ~70ps

RICH mirrors

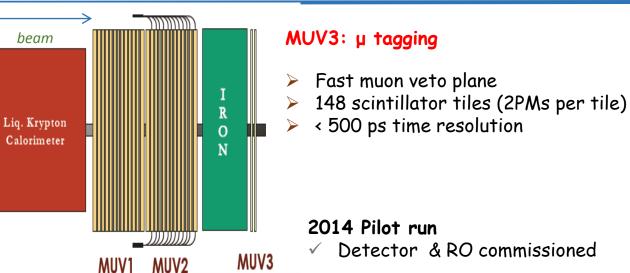


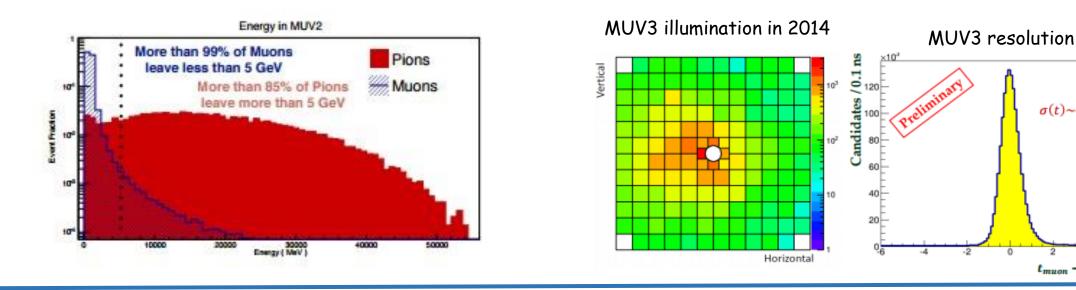
Reconstructed rings, 2014 run

RICH PM illumination in 2014

MUV

 $\sigma(t) \sim 420 \ ps$


tmuon - tKTAG [ns]


MUV 1+2 (HAC): measurement of π deposits

- Iron/scintillation sandwich
- 2 modules of iron/scintillator plates (88+176 channels)
- Readout: PMs+CREAM boards
- MUV2 reused from NA48

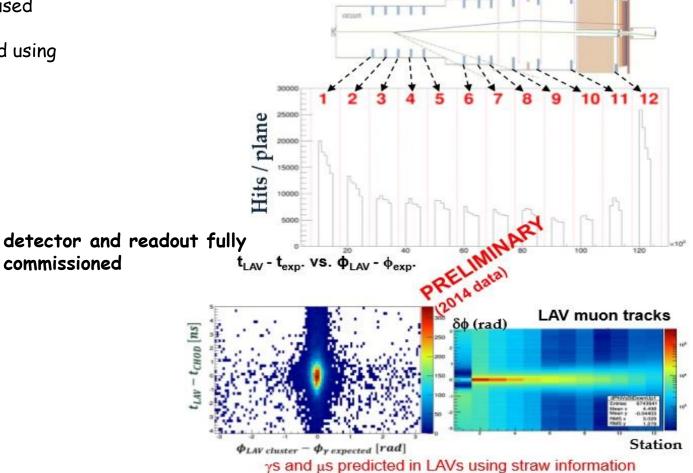
2014 Pilot run

✓ 1 module commissioned in 2014

M.Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia

Photon Vetos

LAV – Large Angular Vetos

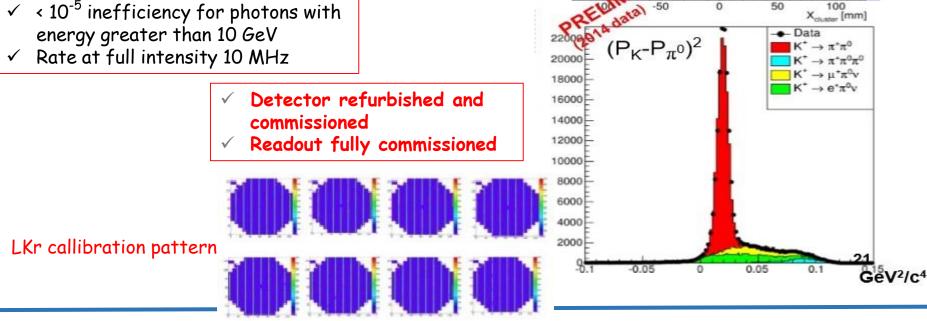

Particle veto @ large angle (8.5-50 mrad)

- > 12 veto stations along the beamline, OPAL crystals reused
- 5/4 staggered rings/station, 32 crystals/ring
- Signal (Cherenkov light) read by PMs and discriminated using

Requirements:

- \checkmark 10⁻³/10⁻⁴ inefficiency on photons up to 150 MeV
- ~1 ns time resolution
- Rate at full intensity 1 MHz

LAV station illuminations


LKr – electromagnetic calorimeter

Forward veto (1-8.5 mrad), precision measurement of EM energy deposits

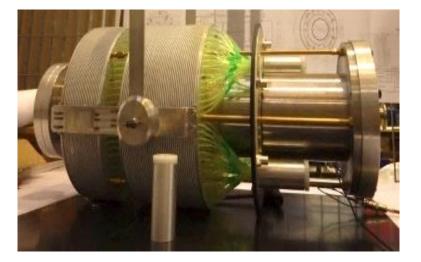
- 10 m³ Liquid Krypton calorimeter
- 1.25 m deep (27 X_0 , 6.1 cm Molière radius)
- 13284 2x2 cm² cells, projecting geometry towards the kaon fiducial region
- Preamplifiers inside the LKr
- Built-in calibration system
- Detector built for NA48, new electronics (based on the CREAM board)
 - \checkmark < 10⁻⁵ inefficiency for photons with energy greater than 10 GeV

LKr illumination -

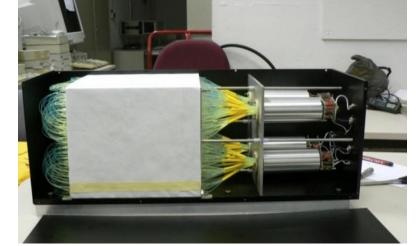
100

M. Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia

Intermediate Ring Calorimeter & Small Angular Calorimeter MAG2


SAC & IRC: small angle veto Shashlyk calorimeters

- SAC: γ detection along the beam line (after beam deflection)
- IRC: detection of photons at very low angle in front of the LKr, radial coverage 7 cm < R < 14 cm</p>
- WLFs+PMs used for both detectors


LAV + LKr + IRC + SAC: ~10⁸ rejection of $\pi^0 \rightarrow \gamma\gamma$

detectors installed, readout partially commissioned

IRC

SAC

CHOD & CHANTI

CHANTI

Dne CHANTI station

CHANTI: detection of particles from inelastic interactions in GTK mimicking a Pion in time with a Kaon

- ▶ 6 stations hermetic to charged particles between 49 and 1.31 mrad
- \triangleright 22(24) scintillation bars in X(Y) for each station
- > WLS fibers inside each bar, readout by SiPM on one side only (other is mirrored)
- IIs happen every 5/10⁴ (GEANT studies)

2014 Pilot run

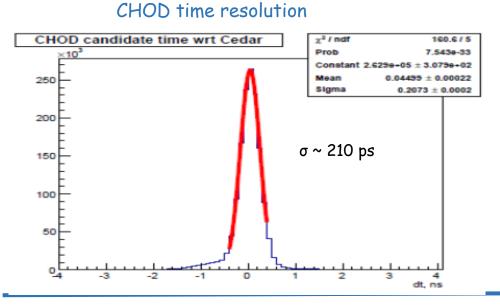
 detector installed and aligned, readout commissioned

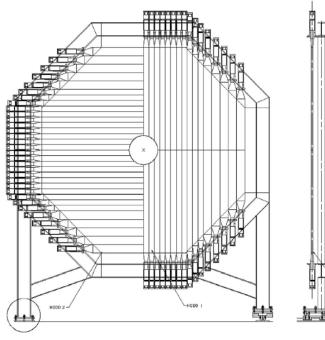
CHANTI X and time resolution

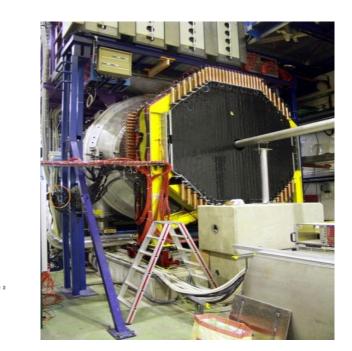
Beam particle

GTK3

CHOD – charged particle hodoscope



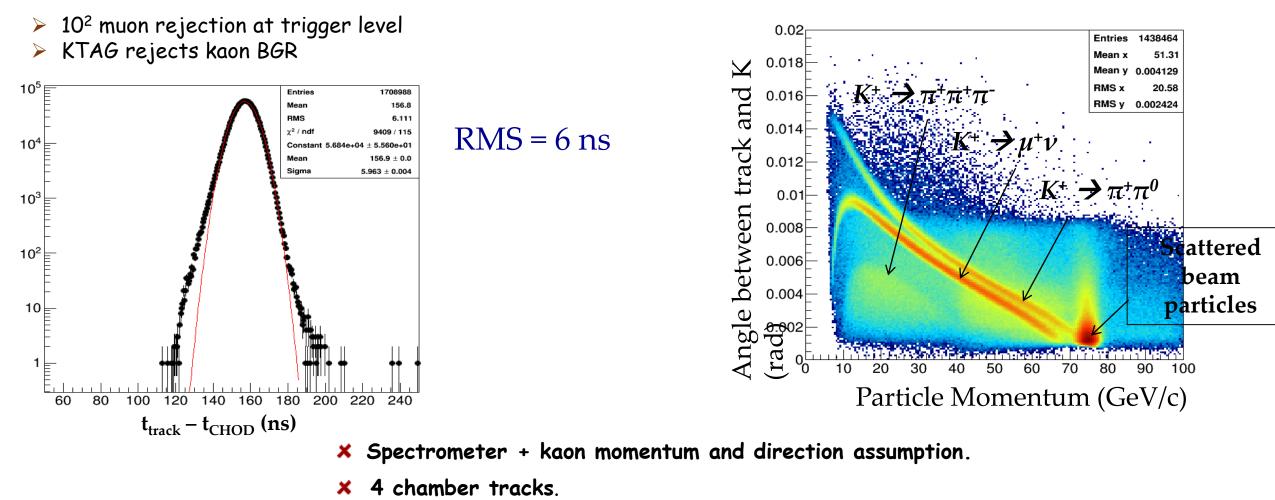

CHOD: detection tracks with precise measurements of the arrival time and impact point


- 2 planes with scintillator slabs
- > 64 slabs per plane
- > X/X₀ ~5% per plane

Requirements:

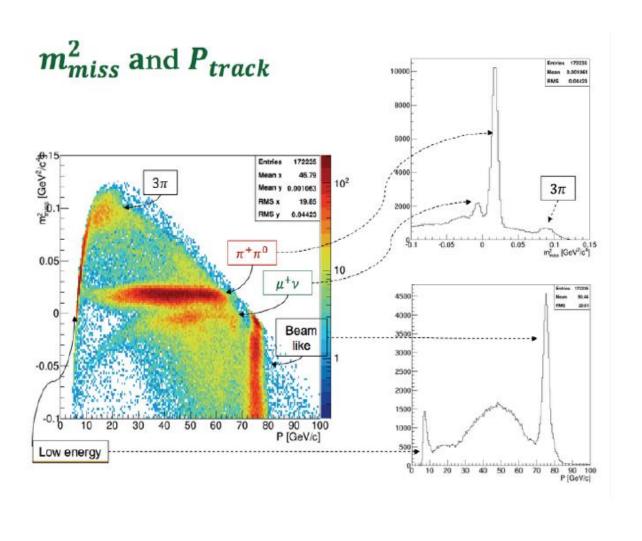
 \checkmark Time resolution with impact point correction $\sigma_t < 400 ps$

M.Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia

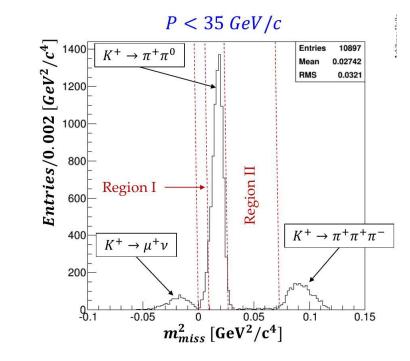

2014 Pilot Run:

- > two weeks of data taking at stable conditions
- > 5% of the nominal intensity
- > Preliminary time alignments and calibrations

Data analysis from 2014 Pilot Run



Events with only 1 reconstructed track in the spectrometer (40 ns time window)


First look at the 2014 data

- Kaon selected in time with CHOD and Spectrometer track + geometrical acceptance
- Vertex in fiducial region
- 15 < P < 35 GeV/c

Resolution of the $\pi^{+}\pi^{0}$ peak - 5*10⁻³ GeV²/c⁴ (vs. 3*10⁻³ GeV²/c⁴ in MC)

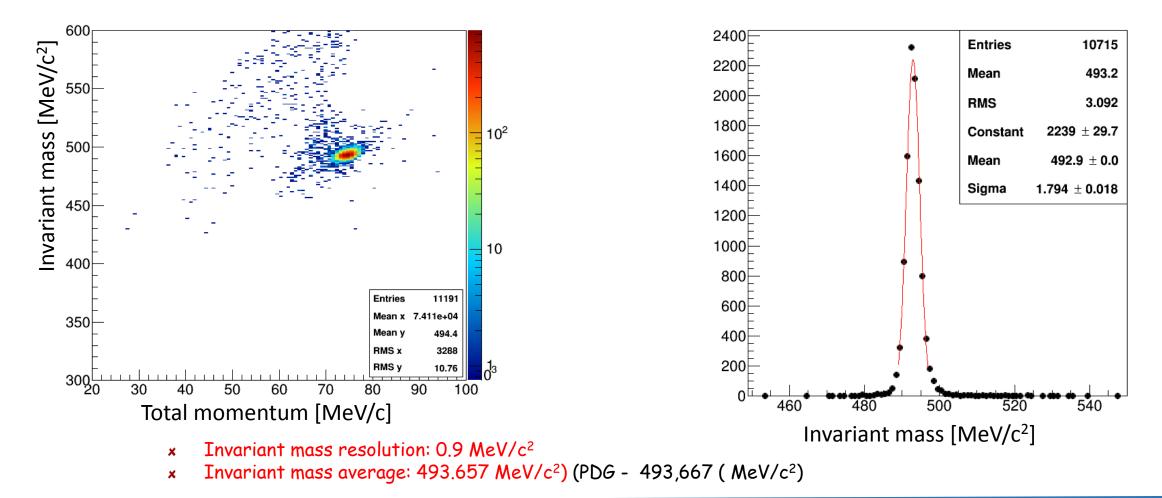
- The NA62 experiment 2014 pilot run has been successful, the majority of detectors and readout systems has been commissioned
- Nominal intensity beam in 2015-2017 for full physics runs (first run has just started)

Main Goal:

- > collect O(100) SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events
- > measure BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) with ~10%

Further goals:

- \succ Extraction $|V_{td}|$ with ~10% accuracy
- > Probe several New Physics scenarios in $K^+ \rightarrow \pi^+ \nu \nu$
- > Probe New Physics in similar processes (e.g. $K^+ \rightarrow \pi^+ X$)


THANK YOU!

Spares

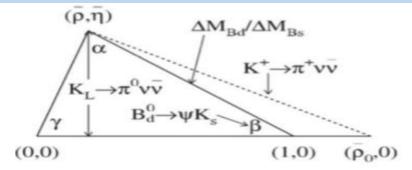
First look of 2014 data - Three track events

× Selection of $K^+ \rightarrow \pi^+\pi^+\pi^-$

× 2 positive and 1 negative charge. 3-track vertex (analytical). 4 chamber tracks.

<u>Main goal:</u>

> Collect O(100) SM signal events in 3 years data taking > Measure BR(K⁺ $\rightarrow \pi^+ vv$) with 10% precision


Further goals:

- > Extraction $|V_{td}|$ with ~10% accuracy
- > Probe several New Physics scenarios in $K^+ \rightarrow \pi^+ vv$
- > Probe New Physics in similar processes (e.g. $K^+ \rightarrow \pi^+ X$)

Beyond the baseline:

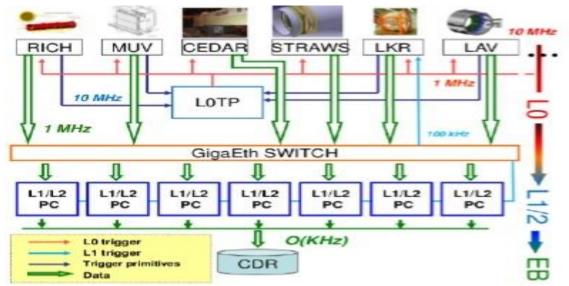
- > LFV/LNV decays with 3 tracks in the final state
- > Heavy neutrino searches
- $> \pi^0$ decays
- Dark photon searches
- > $K^+ \rightarrow \pi^+ \pi^0 \pi$ (pseudoscalar sGoldstino should exists in model with spontaneous symmetry braking, V.Rubakov)

Independent determination of unitary triangle for K meson system (with neutral mode)

BR(K+ $\rightarrow \pi$ +vv)=(9.11 ± 0.72) × 10–11 [JHEP 1411 (2014) 121 [arXiv:1408.0728 [hep-ph]] error: CKM parametric, dominated by Vcb

Beyond the baseline

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- u \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)


The TDAQ system

The NA62 trigger system is based on 3 trigger levels:

- LO: based on "trigger primitives" from a configurable number of detectors
 - Fixed latency (~1 ms)
 - FPGA based
 - LOTP receives the primitives, takes the LO decision and sends the LO signal
 - Reduction factor: 10 MHz \rightarrow 1 MHz
- L1: data from most detectors acquired by L1 PCs and used to take the L1 decision
 - Whole event analysed by L1 PCs
 - LKr data not sent @ L1 level
 - Max latency: ~1 s
 - Reduction factor: 1 MHz \rightarrow 100 KHz
- > L2: final decision taken with data from all detectors available
 - Max latency ~ spill length
 - Reduction factor: 100 KHz → 20 KHz

2014 Pilot run

- Data collected at 20% nominal intensity
- Trigger primitives partially commissioned

INPUT TRIGGER PRIMITIVES

L0 trigger processor (L0TP)

- Altera DE4 test board, StratixIV onboard
- Max input rate from detectors: 10 MHz
- > Max L0T output rate: 1 MHz
- ➢ 6 Eth. ports to receive trigger
- M.Misheva XXII International Workshop on High Energy Physics and Quantum Field Theory, Samara, Russia