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Bohr’s complementarity principle

One of the main questions of quantum physics, existing both in non-
relativistic quantum mechanics (NQM) and in quantum field theory (QFT),
is may or may not the physical characteristics of a micro-system exist in-
dependently of a measurement procedure and/or design of a macro-device,
i.e. to be the ”elements of reality” by A. Einstein?

Yet another question is whether the probabilistic nature of quantum physics
is a fundamental property of our world, or the probabilities arise due to the
”roughness” of macro-devices that we use to study the characteristics of
micro-objects?

Copenhagen interpretation of quantum mechanics and its base stone Bohr’s
complementarity principle give a negative answer to the first question and
a positive answer to the second. However this is not a single point of view.
For example, theories with hidden variables give a positive answer to the
first question and a negative answer to the second. That is why test of
the complementarity principle, especially in the relativistic area where QFT
works, is an interesting task.
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Locality and non-locality in quantum physics

Locality in NQM and QFT at the macro-level is provided by Eber-
hard’s theorem (Eberhard, P.H., “Bells theorem and the different
concepts of nonlocality”, Nuovo Cimento 46B, 392-419 (1978)): let
there be a quantum system constituted of two subsystems A and
B. Then no measurement of the observables, belonging only to the
subsystem A, has any influence on the measurement results of any
observables belonging only to the subsystem B. Strictly speaking it
means ∑

k

w
(
ai , D

(A)
∣∣∣ bk , D(B)

)
= w

(
ai , D

(A)
)
,

where w(x |y) – is a conditional probability of the event x, given that
the event y already happened; D(A) and D(B) – are states of the
macro-devices that measures the subsystems A and B accordingly.

If the locality is violated at macro-level, then changing for example
the state of the macro-device D(B), it would be possible to instantly
affect the result of a measurement in the subsystem A.
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Locality in NQM at micro-level does not exist by construction of the
theory itself. I.e. in NQM any change in the subsystem A leads to
an instant change in the subsystem B, given that these subsystems
were entangled.

Let us give an example. Let the subsystems A and B – be two spines
s(A) = 1/2 and s(B) = 1/2, in a singlet Bell state∣∣Ψ−

〉
=

1√
2

(
|+ 〉(A) | − 〉(B) − |− 〉(A) |+ 〉(B)

)
.

The probability density matrix of the whole system ρ̂ = |Ψ− 〉 〈Ψ− |.
Let us now measure in the subsystem B the value of the spin

s
(B)
z = +1/2. Then according to the von Neumann’s projection pos-

tulate the density matrix of the subsystem A is:

ρ̂(A) =TrB

 P̂
(B)
+ ρ̂ P̂

(B)
+

Tr
(
P̂

(B)
+ ρ̂

)
 = P̂

(A)
− ,

where P̂
(α)
± = | ± 〉(α) 〈± |(α) – the corresponding projection operators

and α = {A, B} – the subsystem index.
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According to von Neumann’s formula the conditional probability to

measure s
(A)
z = +1/2 for the subsystem A given that in the subsystem

B it was measured s
(B)
z = +1/2 is:

w
(

+(A)
∣∣∣+(B)

)
=Tr

(
P̂

(A)
+ ρ̂(A)

)
= Tr

(
P̂

(A)
+ P̂

(A)
−

)
= 0.

In analogy, the conditional probability for s
(A)
z = − 1

2
and s

(B)
z = + 1

2
is

w
(
−(A)

∣∣∣+(B)
)

=Tr
(
P̂

(A)
− ρ̂(A)

)
= Tr

(
P̂

(A)
− P̂

(A)
−

)
= 1.

The changes in the subsystem A happen instantly ”immediately af-
ter” changes in the subsystem B.

What happens with locality in QFT at the micro-level? Any renor-
malizable QFT, which describes physical interactions is local by con-
struction. Does that imply that if the entangled systems A and B
are separated by a spacelike interval, then any measurement per-
formed on the micro-system A should lead at the micro-level to a
change in the subsystem B only after the time interval τ > L/c? In
principle the answer is yes.
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Static Bell inequalities and CHSH-inequalities

If one suppose that the observable characteristics of a micro-system,
which in quantum mechanics correspond to non-commuting opera-
tors simultaneously are the ”elements of reality” independently of
any means of measurement (mathematically they are described as
non-negative and normalized joint distributions of probabilities), and
that these characteristics are local at the micro-level, then for the
correlators of these observables it is possible to write so-called Bell
inequalities:
J. S. Bell, Physics 1, 195 (1964); Rev. Mod. Phys. 38, 447 (1966)

|〈AB〉 − 〈AC 〉| − 〈BC 〉 ≤ 1.

and consequently (J. F. Clauser, M. A. Horne, A. Shimony, R. A.
Holt, Phys. Rev. Lett. 23, 880 (1969)),

|〈AB〉 + 〈A′ B〉 + 〈AB ′〉 − 〈A′ B ′〉| ≤ 2.

Dichotomic variables A, A′, B, B ′ and C may be implemented as
spin 1/2 projections onto non-parralel directions ~a, ~a ′, ~b, ~b ′ and ~c.

7 / 44



Tsirelson’s bound
What is the upper bound of correlations, reachable for the Bell in-
equalities in quantum theory? The answer is given by the Tsirelson
theorem (or Cirel’son, in a different transliteration) (B. S. Cirel’son,
Lett. Math. Phys. 4, 93 (1980)): let us consider hermitian opera-

tors Â, B̂, Â′ and B̂ ′, with the spectrum of two values “+1” and “−1”
(operators of dichotomic observables, i.e. Â2 = Â

′ 2 = B̂2 = B̂
′ 2 = Î).

Let also [
Â, B̂

]
=
[
Â, B̂ ′

]
=
[
Â′, B̂

]
=
[
Â′, B̂ ′

]
= 0,

but
[
Â, Â′

]
6= 0 and

[
B̂, B̂ ′

]
6= 0. Then:

|〈AB〉 + 〈A′ B〉 + 〈AB ′〉 − 〈A′ B ′〉| ≤ 2
√

2.

Note, that the commutation conditions for the operators Â, B̂, Â′

and B̂ ′, actually are another way to express the Eberhard’s theorem
and lead to the locality of NQM and QFT at the macro-level.

2
√

2 > 2, so in quantum theory the Bell and CHSH-inequalities may
be violated. The maximum violation (i.e. 2

√
2) is reached for the

Bell’s state |Ψ− 〉, if one choses the angles between the axes as
following: θa′ b = θb a = θa b′ = θ and θa′ b′ = 3θ, where θ = {π/8, 3π/8}.
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Static Bell inequalities in Wigner form
(static Wigner inequalities)

The Static Bell inequalities are not well suited for the relativistic general-
ization. First, the correlators, which depend on the chosen renormalization
scheme already at the lowest order of the perturbative theory. Second,
the operators Â, ..., B̂ ′ (usually the spin s = 1/2) need to be relativisti-
cally generalized themselves. And the correlators depend on the chosen
generalization of the spin.

We believe that the most natural for the relativistic generalization are Bell
inequalities in Wigner form or Wigner inequalities (WI), E. P. Wigner, Am.
J. Phys. 38, 1005 (1970):

w

(
s

(2)
~a = +

1

2
, s

(1)
~b

= +
1

2

)
≤ w

(
s

(2)
~c = +

1

2
, s

(1)
~b

= +
1

2

)
+

+ w

(
s

(2)
~a = +

1

2
, s

(1)
~c = +

1

2

)
.

These inequalities contain only the probabilities. Calculation of probabilities

is a well defined procedure in both NQM and QFT. Also, in the framework

of probability theory one can obtain rigor mathematical relations between

the probabilities without any links to the quantum paradigm.
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Why should we abandon static WI in QFT?

Static Bell inequalities and WI for correlated micro-systems are ob-
tained using the hypothesis of locality (for example, hidden vari-
ables) at the microscopic level, while NQM is derived as non-local
at the micro-level. Hence, violation of static Bell inequalities in
NQM leads to one of two possibilities:

a) either NQM is non-local at the micro-level, but physical
values, corresponding to the non-commuting operators, may
be simultaneously “elements of reality”;

b) or NQM is non-local at the micro-level, but Bohr’s
complementarity principle is valid.

I.e., in NQM, we believe, it is impossible to consider separately the
non-locality at the micro-level and the existence of ”elements of
reality”.
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In order to separately test the existence of ”elements of reality”, one
needs to exclude from consideration theories, which contain non-
locality at the micro-level. It is possible if we consider experiments,
that are described with QFT, which is local at the micro-level by
construction. Then violation of Bell inequalities or WI in QFT may
be an evidence for impossibility of existence of ”elements of reality”
in the relativistic area.

Note, that the real experimental tests of Bell inequalities include,
as usual, relativistic particles. That is one more argument for using
QFT.

However in QFT it is impossible to use the static Bell inequalities
or WI, because in QFT it is impossible to ignore the interaction be-
tween quantum fields. Consequently the Bell inequalities should be
modified for test in QFT, and should include apparent time depen-
dence. This dependence should be combined with the hypothesis of
microscopic locality.

Bonus: the same inequalities may be used in NQM for the micro-
systems in external classical fields.
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Derivation of time-dependent WI from Kolmogorov’s
axiomatic of probability

Let a pseudoscalar particle decays at time t0 into a fermion-antifermion
pair. Antifermion is denoted by index “1”, and fermion – by index
“2”. Let spin projections of fermion and antifermion on three non-
parallel directions ~a, ~b and ~c be simultaneously the elements of
reality. Let us denote the spin projections 1/2 on arbitrary axis ~n as

s~n = ± 1

2
≡ n±.

Let the indices {α, β, γ} = {+, −}. Then the spin projections at
the initial time t = t0 on each direction by construction obey the
anticorrelation condition:

n
(1)
± (t0) = − n

(2)
∓ (t0). (1)
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Let us denote a space Ω of elementary outcomes ωi that the element
of physics reality is the whole set of the spin projections

{a(1)
α b

(1)
β c

(1)
γ a

(2)
α′ b

(2)
β′ c

(2)
γ′ }. This space does not depend on time.

Let us call an event K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
−

a subset of all elementary

outcomes ωk of the set Ω (i.e. K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
−
⊆ Ω and ωk ∈

K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
−

) when the element of a physical reality is the

whole set of the spin projections {a(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
− }.

For the initial time t = t0 let us define a special class of correlat-
ed events K

a
(1)
α b

(1)
β c

(1)
γ a

(2)
−αb

(2)
−βc

(2)
−γ

(t0) ⊆ Ω that the elements of reality

are the (anticorrelated as (1)) sets of spin projections of fermion-
antifermion pairs on three non-parallel directions

{a(1)
α b

(1)
β c

(1)
γ a

(2)
−αb

(2)
−βc

(2)
−γ}. The whole set of such events by definition

compose a σ-algebra F(t0).
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On the (Ω, F) it is possible to introduce a probability measure w ,
which is always real and non-negative. Also it is additive (σ-additive)
for non-intersecting events. Then it is possible to prove the WI in
form

w
(
a

(2)
+ , b

(1)
+ , t0

)
≤ w

(
c

(2)
+ , b

(1)
+ , t0

)
+ w

(
a

(2)
+ , c

(1)
+ , t0

)
. (2)

If in (2) one drops the time t0, it will match with the well known
static WI

w
(
a

(2)
+ , b

(1)
+

)
≤ w

(
c

(2)
+ , b

(1)
+

)
+ w

(
a

(2)
+ , c

(1)
+

)
. (3)

To prove (2) and, hence, (3), it is necessary to consider events

A(t0) = K
a

(1)
− b

(1)
+ c

(1)
+ a

(2)
+ b

(2)
− c

(2)
−

(t0) ∪ K
a

(1)
− b

(1)
+ c

(1)
− a

(2)
+ b

(2)
− c

(2)
+

(t0),

B(t0) = K
a

(1)
− b

(1)
+ c

(1)
− a

(2)
+ b

(2)
− c

(2)
+

(t0) ∪ K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
+

(t0), (4)

C(t0) = K
a

(1)
− b

(1)
+ c

(1)
+ a

(2)
+ b

(2)
− c

(2)
−

(t0) ∪ K
a

(1)
− b

(1)
− c

(1)
+ a

(2)
+ b

(2)
+ c

(2)
−

(t0),

from the σ-algebra F(t0).
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In the whole set of indices {a(1)
α b

(1)
β c

(1)
γ a

(2)
−αb

(2)
−βc

(2)
−γ} one can hold not

six but only three indices, which fully describe the system. Then

w
(
a

(2)
+ , b

(1)
+ , t0

)
=

∑
ωi∈A(t0)

(
w
(
a

(2)
+ , b

(1)
+ , c

(2)
+ , ωi

)
+ w

(
a

(2)
+ , b

(1)
+ , c

(2)
− , ωi

))
;

w
(
c

(2)
+ , b

(1)
+ , t0

)
=

∑
ωj∈B(t0)

(
w
(
a

(2)
+ , b

(1)
+ , c

(2)
+ , ωj

)
+ w

(
a

(2)
− , b

(1)
+ , c

(2)
+ , ωj

))
;

w
(
a

(2)
+ , c

(1)
+ , t0

)
=

∑
ωk∈C(t0)

(
w
(
a

(2)
+ , b

(1)
+ , c

(2)
− , ωk

)
+ w

(
a

(2)
+ , b

(1)
− , c

(2)
− , ωk

))
.

Sum w
(
c

(2)
+ , b

(1)
+ , t0

)
+ w

(
a

(2)
+ , c

(1)
+ , t0

)
is defined on set

B(t0) ∪ C(t0) =

=

(
K

a
(1)
− b

(1)
+ c

(1)
− a

(2)
+ b

(2)
− c

(2)
+

(t0) ∪ K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
+

(t0)

)
∪

∪
(
K

a
(1)
− b

(1)
+ c

(1)
+ a

(2)
+ b

(2)
− c

(2)
−

(t0) ∪ K
a

(1)
− b

(1)
− c

(1)
+ a

(2)
+ b

(2)
+ c

(2)
−

(t0)

)
the subset of which is the event A(t0). Hence, due to non-negativity

of probabilities the (2) is proven.

15 / 44



Changing the directions of axes ~a and ~b to opposite, it is possible
to obtain three inequalities in analogy to (2):

w
(
a

(2)
+ , b

(1)
− , t0

)
≤ w

(
c

(2)
+ , b

(1)
− , t0

)
+ w

(
a

(2)
+ , c

(1)
+ , t0

)
;

w
(
a

(2)
− , b

(1)
+ , t0

)
≤ w

(
c

(2)
+ , b

(1)
+ , t0

)
+ w

(
a

(2)
− , c

(1)
+ , t0

)
; (5)

w
(
a

(2)
− , b

(1)
− , t0

)
≤ w

(
c

(2)
+ , b

(1)
− , t0

)
+ w

(
a

(2)
− , c

(1)
+ , t0

)
.

Let the fermion and antifermion after the time ∆t = t − t0 become
separated by a large enough distance. Then it is possible to write the
following time evolution of ”elements of reality”, which is consistent
with Kolmogorov’s axiomatic and the proposition of locality at the
micro-level:

w
(
a

(2)
+ , b

(1)
+ , t

)
=

= w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
w
(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
w
(
a

(2)
+ , b

(1)
+ , t0

)
+

+ w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
w
(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
w
(
a

(2)
− , b

(1)
+ , t0

)
+

+ w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
w
(
b

(1)
− (t0)→ b

(1)
+ (t)

)
w
(
a

(2)
+ , b

(1)
− , t0

)
+

+ w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
w
(
b

(1)
− (t0)→ b

(1)
+ (t)

)
w
(
a

(2)
− , b

(1)
− , t0

)
.
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Using the (2) and (5) one can obtain the following (quite bulky)
inequality:

w

(
a

(2)
+ , b

(1)
+ , t

)
≤

≤ w

(
a

(2)
+ (t0) → a

(2)
+ (t)

)
w

(
b

(1)
+ (t0) → b

(1)
+ (t)

) (
w

(
c

(2)
+ , b

(1)
+ , t0

)
+ w

(
a

(2)
+ , c

(1)
+ , t0

))
+

+ w

(
a

(2)
− (t0) → a

(2)
+ (t)

)
w

(
b

(1)
+ (t0) → b

(1)
+ (t)

) (
w

(
c

(2)
+ , b

(1)
+ , t0

)
+ w

(
a

(2)
− , c

(1)
+ , t0

))
+

+ w

(
a

(2)
+ (t0) → a

(2)
+ (t)

)
w

(
b

(1)
− (t0) → b

(1)
+ (t)

) (
w

(
c

(2)
+ , b

(1)
− , t0

)
+ w

(
a

(2)
+ , c

(1)
+ , t0

))
+

+ w

(
a

(2)
− (t0) → a

(2)
+ (t)

)
w

(
b

(1)
− (t0) → b

(1)
+ (t)

) (
w

(
c

(2)
+ , b

(1)
− , t0

)
+ w

(
a

(2)
− , c

(1)
+ , t0

))
=

= w

(
a

(2)
+ (t0) → a

(2)
+ (t)

) (
w

(
b

(1)
+ (t0) → b

(1)
+ (t)

)
+ w

(
b

(1)
− (t0) → b

(1)
+ (t)

))
w

(
a

(2)
+ , c

(1)
+ , t0

)
+

+ w

(
a

(2)
− (t0) → a

(2)
+ (t)

) (
w

(
b

(1)
+ (t0) → b

(1)
+ (t)

)
+ w

(
b

(1)
− (t0) → b

(1)
+ (t)

))
w

(
a

(2)
− , c

(1)
+ , t0

)
+

+ w

(
b

(1)
+ (t0) → b

(1)
+ (t)

) (
w

(
a

(2)
+ (t0) → a

(2)
+ (t)

)
+ w

(
a

(2)
− (t0) → a

(2)
+ (t)

))
w

(
c

(2)
+ , b

(1)
+ , t0

)
+

+ w

(
b

(1)
− (t0) → b

(1)
+ (t)

) (
w

(
a

(2)
+ (t0) → a

(2)
+ (t)

)
+ w

(
a

(2)
− (t0) → a

(2)
+ (t)

))
w

(
c

(2)
+ , b

(1)
− , t0

)
.

Note, that in this inequality the condition of the full anticorrelation
is used only at the initial time t0. At time t the anticorrelation is
(generally speaking) not supposed to exist.
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Simple regrouping of the summands gives:

w
(
a

(2)
+ , b

(1)
+ , t

)
≤ (6)

≤ w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
(
w
(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
+ w

(
b

(1)
− (t0)→ b

(1)
+ (t)

))
w
(
a

(2)
+ , c

(1)
+ , t0

)
+

+ w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
(
w
(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
+ w

(
b

(1)
− (t0)→ b

(1)
+ (t)

))
w
(
a

(2)
− , c

(1)
+ , t0

)
+

+ w
(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
(
w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
+ w

(
a

(2)
− (t0)→ a

(2)
+ (t)

))
w
(
c

(2)
+ , b

(1)
+ , t0

)
+

+ w
(
b

(1)
− (t0)→ b

(1)
+ (t)

)
(
w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
+ w

(
a

(2)
− (t0)→ a

(2)
+ (t)

))
w
(
c

(2)
+ , b

(1)
− , t0

)
.

The time-dependent (non-static) WI (6) is the main result of the
present talk.
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The inequality (6) is proven on the set of elementary outcomes Ω,
which does not depend on time. In the absence of interactions

w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
= w

(
b

(1)
− (t0)→ b

(1)
+ (t)

)
= 0,

while

w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
= w

(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
= 1.

Hence (6) is reduced to (2), as it should be from the physical point
of view. The inequality (2), is equivalent to the static inequality
(3).

Let us note once more that the static WI may be applied not on-
ly to relativistic (QFT), but to non-relativistic open quantum sys-
tems (NQM), where the correlations between particles are appar-
ently time-dependent. That is why the inequality (6) widens the
possibility of experimental tests of quantum correlations.

Below we will demonstrate a few examples of application of the
time-dependent inequality (6) and its advantages over the static
inequality (3).
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Relativistic generalization of spin s = 1/2 operator

For calculation of probabilities from (6) in the framework of QFT it
is suitable to use the relativistic spin s = 1/2 generalization:

~O = − γ5 ~γ + γ5 ~p

εp
+

~p γ5 (~γ, ~p )

εp (εp + m)
,

where ~p – momentum of particle, εp – its energy, m – mass in the
rest frame. We use the following definition:

γ5 = iγ0γ1γ2γ3.

Components of this operator satisfy the standard commutation re-
lations for doubled components of non-relativistic spin s = 1/2 op-
erator [

O i , O j
]

= 2 i εijk Ok .

S. Stech, Zs. f. Phys. 144, 214 (1956).
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QFT: decay of a pseudoscalar particle into
fermion-antifermion pair

Let us consider decay of a pseudoscalar particle at rest of mass M
into a fermion-antifermion pair. Let us denote the momentum of
the antifermion as ~k1, and of the fermion – as ~k2 = −~k1, and their
masses as m1 and m2 accordingly (actually, m1 = m2 = m).

If the P-parity and the full momentum of the system are conserved,
then: −1 = (−1)Lf f̄ +1. I.e. for Jf f̄ = 0 we have Lf f̄ = Sf f̄ = 0 . That
leads to the full anticorrelation of the fermion ”2” and antifermion
”1” spin projections on any direction.

Effective hamiltonial of the decay has the form:

H(PS)(x) = g ϕ(x)
(
f̄ (x) γ5 f (x)

)
N
, (7)

where g – effective coupling constant, ϕ(x) – field of the pseu-
doscalar particle, f (x) and f̄ (x) – fermionic fields.
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In the simplest case the pseudoscalar particle rests at the origin of
coordinates, while the spin measurement devices are set to infinity
and measure the spin projections in the planes parallel to the plane
(xz). The fermion and antifermion propagate along the axis ”y”. If
spin projection of the fermion on the direction ~a and spin projection
of the antifermion on the direction ~b are equal to +1/2, then the
decay amplitude is

A
(
a

(2)
+ , b

(1)
+

)
= g

√
ε2 + m2

ε1 + m1
(M + m1 −m2) χ†+(~a )χ−(~b ).

Taking the explicit form of two-component spinors (φa = φb = 0)

χ†+(~a ) =

(
cos θa/2

sin θa/2

)
, χ−(~b ) =

(
− sin θb/2

cos θb/2

)
,

it is possible to write the following:

w
(
a

(2)
+ , b

(1)
+

)
= g2 f (M, m1, m2) sin2 θab

2
,

where θab = θa − θb. The function f (M, m1, m2) can be easily calcu-
lated. It does not became null and does not depend on the directions
on which the spins of the fermion and antifermion are projected.
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QFT: adjustment for non-parallel momentums of fermion
and antifermion

Finite distance to analysers, emission of soft photon by one of the
fermions, thermal motion of the pseudoscalar particle, interaction
of the fermions between each other or interaction with an external
field – all may lead to violation of parallelity of the vectors ~k2 and
~k1.

The following is correct. Let ~k1 = |~k1|~n1 and ~k2 = |~k2|~n to be linked
by a conservation law

|~k1|~n1 + |~k2|~n = |~p | ~̀,

where vector ~̀ is not parallel to the vectors ~n1 and ~n. Also, E = ε1 + ε2.
And let |~p |/M � 1 – be a small parameter.
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Then

w
(
a

(2)
+ , b

(1)
+

)
= g2 f (M,m1,m2) sin2 θab

2
+ O

(
|~p |2

M2

)
.

This result follows from the expansion by the small parameter |~p |/M
of the exact amplitude.

Numerical estimate of the non-parallelity effect for the soft photon
emission with the decay π0 → e+e−.

Let the photon energy be Eγ ∼ |~pγ | ∼ 10 KeV. Note that the decay
π0 → e+e−γ adds an additional αem. Then the suppression factor is:

αem

(
Eγ
Mπ

)2

∼ 1

137

(
10

135000

)2

∼ 10−10.

What about the thermal motion? Let T = 300 K. Then(
k T

Mπ

)2

∼
(

3 × 10−2

135 × 106

)2

∼ 10−19.
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What about the finite distance to the analysers? Let us consider
two spin analysers, which measure the spin projections in the planes
parallel to the plane (xz). Let the distance between the analysers
be L. Uncertainty of the momenta of the fermions is ∆k ∼ 1/L. As
L should be macro-scopic by definition the 1/L� Mπ. Hence(

∆k

M

)2

∼ 1

(Mπ L)2
� 1.

For example for L ∼ 2 cm and Mπ ∼ 135 MeV it is 1/(Mπ L)2 ∼ 10−26.

As one can see any effects of antiparallelity are negligible in the
considered case.
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QFT: calculations in finite time

Standard methods of QFT allow to calculate the probability of de-
cay W (t) = ∂w(t)/∂t only with perturbative theory. Let us continue
with the decay of a neurtal pseudoscalar particle P → f +f −. Hamil-
tonian of the decay is (7). Let us neglect the masses of the fermions.
This approximation does not affect the final result, but simplifies the
calculations. Width of the decay of a pseudoscalar meson Γ0 in limit

t0 → −∞ and t → +∞ is equal Γ0 =
g2M

8π
. However in the inequality

(6) there are the probabilities for finite values of t and t0.

Using the technique for calculations in QFT in the finite time for the
probability of the decay P → f +f − in the first order of perturbative
theory we have:

W (1)(a
(2)
+ , b

(1)
+ , τ) =

Γ0

2

(
1 +

si(M τ)

π
+

sin(M τ)

π(M τ)2
+

cos(M τ)

π(M τ)

)
× sin2 θab

2
, (8)

where τ – current measurement time.
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Integral sine is defined as follows:

si(x) = −
+∞∫
x

sin ζ

ζ
dζ.

For τ → +∞, the expression (8) comes to W (1)(a
(2)
+ , b

(1)
+ ) = Γ0 × sin2 θab

2
, as

it should be. For M → 0 the W (1)(a
(2)
+ , b

(1)
+ , τ)→ 0 because of the decreased

phase space. For τ → 0 (8) has a pole for τ :

W (1)(a
(2)
+ , b

(1)
+ , τ → 0) ≈ Γ0

2

(
1

2
+

2

π(M τ)

)
× sin2 θab

2
.

In the work N.N.Bogoliubov and D.V.Shirkov ”Introduction to theory of

Quantized Fields” it was shown that such poles can not be removed by

a renormalization procedure. However in our case times τ are cut by the

resolution ∆t of a macro-device. It is obvious that ∆t � 1/M. Hence the

pole for τ in (8) is not significant for the considered case.
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First order of the perturbative theory is applicable when the full
width of the decay is significantly less than the mass of the decayed
particle.

Let us suppose that the decay P → f +f − is absolutely dominant
among all the other decays of P. Then the applicability condition
of the perturbative theory will be:

Γ0

2

(
1 +

si(M τ)

π
+

sin(M τ)

π(M τ)2
+

cos(M τ)

π(M τ)

)
=

= W (1)(τ) ≈ Γ(τ) � M. (9)

For small enough coupling constant g one can easily obtain

Γ0

M
=

g2

8π
� 1

with any required degree of smallness. Hence, the condition (9) is
satisfied in a wide range of values of the variable M τ � 1.
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Times t0 and t in (6) should be interpreted as time intervals for
measurement of the probabilities. The probabilities of the fermion

w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
and antifermion w

(
b

(1)
− (t0)→ b

(1)
+ (t)

)
spin flip in

the right part of (6) have a higher degree of smallness by the cou-
pling constant g . Hence in the first order of the perturbative theory

w
(
a

(2)
− (t0)→ a

(2)
+ (t)

)
≈ w

(
b

(1)
− (t0)→ b

(1)
+ (t)

)
≈ 0.

In analogy we can write for the probabilities without the fermion
spin flip

w
(
a

(2)
+ (t0)→ a

(2)
+ (t)

)
≈ w

(
b

(1)
+ (t0)→ b

(1)
+ (t)

)
≈ 1.

Integrating (8) by dτ from ti to tf given that
M

Γ0
� M τ � 1, gives

w
(
a

(2)
+ , b

(1)
+ , tf − ti

)
≈

tf∫
ti

dτW (1)(a
(2)
+ , b

(1)
+ , τ) ≈ Γ0

2
sin2 θab

2

tf∫
ti

dτ =

=
(tf − ti ) Γ0

2
sin2 θab

2
.
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Setting in the right part of (6) measurement time tf − ti = t0, and
in the left tf − ti = t, we obtain the following time-dependent WI:

t

t0
sin2

(
θba
2

)
≤ sin2

(
θca
2

)
+ sin2

(
θbc
2

)
. (10)

Note that in the left part of (10) it is always possible to divide by t0

because t0 ≥ ∆t � 0. Let us compare the obtained result with the
static inequality (3).

It is easy to show that in the relativistic case and the approximation
of antiparallelity of momenta of fermion an and antifermion the
static inequality (3) comes to well known non-relativistic inequality

sin2

(
θba
2

)
≤ sin2

(
θca
2

)
+ sin2

(
θbc
2

)
, (11)

which is maximally violated for θbc = θca = π/3 and θba = 2π/3.
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The time-dependent inequality (10) differ from the static inequality (11) by

the ratio
t

t0
≥ 1 in the left part. The ratio t/t0 may exceed unity by a few

times, widening the angular range where the WI is violated. Experimentally,
instead of the ratio of times t/t0 it is more suitable to consider the ratio of
distances between the analysers L/L0, i.e. in experiments for measurement

the spin projections on directions ~a and ~c and directions ~b and ~c it should
be equal L0, and for measurement of the spin projections on directions ~a
and ~b it should be equal L. The following condition should be satisfied:
M

Γ0
� M {L, L0} � 1. It is always true for macro-scopic distances.

Hamiltonian (7) does not affect the inequality (10) in any way, meaning

that this inequality is valid for any QFT hamiltonian, which provides the

condition of anticorellation (1) and is restricted only by the validity of the

first order of perturbative theory. In this sense (10) may be considered as

universal time-dependent WI in QFT without external fields.
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Time-dependent WI for oscillations of neutral
pseudoscalar mesons

Let us apply the WI to the problem of oscillation neutral pseu-
doscalar mesons M ={K , D, Bq}, where q = {d , s}. In this case the
static inequality (3) either not violated at all, or its violation can not
be experimentally measured. At the same time it is always possible
to find the conditions when the time-dependent inequality (6) is
violated, and can be tested in experiment.

Key idea here is that in the systems of neutral pseudoscalar mesons
there are the natural “directions”, with non-commuting projection
operators of meson states. First, this is the flavor “direction” of
pseudoscalar meson (|M 〉 and

∣∣ M̄ 〉
). Second, “direction” is the

states with certain values of the CP-parity (|M1 〉 and |M2 〉). Third
“direction” is the states with certain values of mass and lifetime
(|ML 〉 and |MH 〉). In the decays of the vector mesons (for exam-
ple in the decay Υ(4S)→ B0B̄0) at the t = t0 we have the flavor
entangled state∣∣Ψ−(t0)

〉
=

1√
2

(
|M 〉(1)

∣∣ M̄ 〉(2) −
∣∣ M̄ 〉(1) |M 〉(2)

)
.
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Let us use the following definitions:

Ĉ P̂ |M 〉 = e iα
∣∣ M̄ 〉

and Ĉ P̂
∣∣ M̄ 〉

= e−iα |M 〉,

where α – nonphysical arbitrary real phase of CP-conjugation. Then
let us define the states:

|M1 〉 =
1√
2

(
|M 〉+ e iα

∣∣ M̄ 〉)
, |M2 〉 =

1√
2

(
|M 〉 − e iα

∣∣ M̄ 〉)
,

with a positive and negative CP-parity accordingly. Finally, let us
write for the states with certain values of masses and lifetimes:

|ML 〉 = p

(
|M 〉+ e iα

q

p

∣∣ M̄ 〉)
and |MH 〉 = p

(
|M 〉 − e iα

q

p

∣∣ M̄ 〉)
.

Let us choose the definition for the mass difference and the decay
width difference of ”heavy” (H) and ”light” (L) states:

∆M = MH −ML,

∆Γ = ΓH − ΓL.

Note that our definition of ∆Γ is of the different sign comparing to
the definition of ∆Γ from PDG.
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The coefficients p and q obey the standard normalization condition:

〈ML | ML 〉 = 〈MH | MH 〉 = |p|2 + |q|2 = 1.

In order to automatically satisfy this condition let us use new variable
β, which is useful for analysis of the violation of the time-dependent
WI.

|p| = cosβ; |q| = sinβ and
q

p
= r e iζ ≡ tanβ e iζ .

From above it follows that β ∈ [0, π/2].

If the CP-violation due to oscillation of pseudoscalar mesons does
not exist, then β = β0 ≡ π/4.

For subsequent analysis of the time-dependent WI (6) it is suitable
to introduce two new dimensionless parameters: x = ∆Γt (dimen-
sionless time) and ratio λ = ∆M/∆Γ.

34 / 44



Table: Experimental values of the oscillation and CP-violation parameters for
neurtal pseudoscalar mesons (PDG data). The minus sign in numerical values
is related to the difference in the definition of ∆Γ.

Meson ∆Γ (MeV) ∆M (MeV) tanβ ≡ |q/p|expM

B0
s − 6.0 · 10−11 1.2 · 10−8 1.0039± 0.0021

K 0 − 7.3 · 10−12 3.5 · 10−12 0.99668± 0.00004

D0 − 2.1 · 10−11 − 6.3 · 10−12 0.92+0.12
−0.09

From the table one can see that for all the neutral mesons β ≈ β0 = π/4.
More detailed analysis shows that: cos ζK ≈ +1, cos ζD ≈ +1 and
cos ζBs = −1.
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During the derivation of (6) the condition of normalization of prob-
abilities to unity was not used. So the inequality (6) is still correct
for non-stable particles, when the normalization of the state vectors
explicitly depends on time.

In the time-dependent inequalities there are eight possible choices
of the ”directions”. We are interested only in the ones that lead to
the violation of the WI for ∆Γ ≤ 0.

Analysis of (6) for the approximation when β = β0 = π/4 and cos ζ = ±1
(i.e. when there are no effects of CP-violation) shows that for the
violation of (6) in systems of K - and D-mesons one needs to choose
the cases N5 and N6. For studies of the violation of (6) in Bs-mesons
one can choose the cases N7 and N8.

If one calculates the time-dependent WI (6) in the framework of
quantum theory then all the inequalities may be written as follows:

1 ≤ RN(x , r , ζ, λ), (12)

where RN – functions of the arguments x = ∆Γt, r , ζ (remind that
q/p = r e iζ) and λ = ∆M/∆Γ.
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Table: Time-dependent WI (6) for pseudoscalar mesons at β = β0 = π/4 and
cos ζ = ±1.

N Correspondence Time-dependent Violation

of variables WI condition

. . . . . . . . . . . .

4 a+ → M2, b+ → M, c+ → MH , 1 ≤ e−∆Γ t if ∆Γ ≥ 0

a− → M1, b− → M̄, c− → ML for cos ζ = +1

5 a+ → M1, b+ → M̄, c+ → ML, 1 ≤ e∆Γ t if ∆Γ ≤ 0

a− → M2, b− → M, c− → MH for cos ζ = +1

6 a+ → M1, b+ → M, c+ → ML, 1 ≤ e∆Γ t if ∆Γ ≤ 0

a− → M2, b− → M̄, c− → MH for cos ζ = +1

7 a+ → M2, b+ → M̄, c+ → ML, 1 ≤ e∆Γ t if ∆Γ ≤ 0

a− → M1, b− → M, c− → MH for cos ζ = −1

8 a+ → M2, b+ → M, c+ → ML, 1 ≤ e∆Γ t if ∆Γ ≤ 0

a− → M1, b− → M̄, c− → MH for cos ζ = −1
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Functions R5, 6(x , r , ζ, λ) for neutral K -mesons (both functions are
practically consistent because of the high precision of the CP-violation
parameter ε). Top scale corresponds to c t (in mm), bottom scale –
to time in units of the lifetime z = (ΓH + ΓL) t/2 = Γ t, where time t
is calculated in the kaons rest frame. Time-dependent WI (12) are
relaxed for large values of z.
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Functions R5, 6(x , r , ζ, λ) for neutral K -mesons in the area z ≤ 3,
which is most experimentally interesting. In the considered area the
WI (12) are violated in the whole range of z.
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Functions R7, 8(x , r , ζ, λ) for Bs-mesons. Top scale corresponds to ct
(in mm), bottom scale – to the lifetime in units of z = (ΓH + ΓL) t/2 =
= Γ t, where the time t is calculated in the Bs-meson rest frame.
With a proper choice of functions RN for r > 1 and r < 1 the time-
dependent WI (12) are violated in almost the whole range of z,
which is experimentally accessible. For large values of z one can see
the effect of relaxation.
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Functions R7, 8(x , r , ζ, λ) for Bs-mesons for the range z ≤ 3, which
is the most experimentally interesting. In the considered area both
functions are almost consistent with unity. Function R8 even ex-
ceeds the unity for z → 0. The ct is in µm.
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Functions R5, 6(x , r , ζ, λ) for neutral D-mesons. Top scale corre-
sponds to the value c t (in mm), bottom – to the time in the units
of the lifetime z = (ΓH + ΓL) t/2 = Γ t, where the time t is calculated
in the D-meson rest frame. With a proper choice of fuctions RN for
r > 1 and r < 1 the time-dependent WI (12) are violated in almost
the whole range of z, which is experimentally accessible. For the
large values of z one can observe the effect of relaxation.
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Functions R5, 6(x , r , ζ, λ) for neutral D-mesons in the range z ≤ 3,
which is the most experimentally interesting. In this area both
functions are almost consistent with unity. The ct is in µm.
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Conclusion

1) Using Kolmogorov’s axiomatic of probability theory and hypoth-
esis of locality of “elements of reality ”, a new class of time-
dependent Bell inequalities in Wigner form is obtained (6). New
time-dependent inequalities may be used both in quantum field the-
ory and in non-relativistic quantum mechanics of open quantum sys-
tems.

2) In the framework of QFT the violation of time-dependent WI
is studied for the case of the decay of a pseudoscalar particle in-
to fermion-antifermion pair. These inequalities are violated more
strongly than static WI.

3) For oscillations of neutral pseudoscalar mesons in non-relativistic
quantum mechanics eight new time-dependent WI are obtained,
which are violated depending on choice of the values of ∆Γ and q/p.
The effect of relaxation time-dependent inequalities for large values
of z, is found. It is governed by the CP-violation effects.
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