Double Higgs production at LHC in the Standard Model extended with an isosinglet 1503.01618

S. I. Godunov, M. I. Vysotsky, A. N. Rozanov, E. V. Zhemchugov

> June 24–July 1 2015, Samara, Russia

Motivation

- A scalar with mass 125 GeV has been discovered in 2012.
- In order to confirm that this is the Standard Model Higgs boson, its couplings have to be measured.
- Triple coupling: $g_{hhh} \sim \frac{m_h^2}{v}$. It can be measured in the $pp \to hh$ process.
- ▶ Standard Model prediction for the $pp \rightarrow hh$ cross section is 40 fb for $\sqrt{s} = 14$ TeV. That can only be measured at HL-LHC.
- What if there are other scalar particles?

Scalar sector:

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v_{\Phi} + \phi + i\eta) \end{pmatrix}, \ X = v_X + \chi$$

Potential:

$$V_1(\Phi, X) = -\frac{1}{2}m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2}(\Phi^{\dagger} \Phi)^2 + \frac{1}{2}m_X^2 X^2 + \mu \Phi^{\dagger} \Phi X$$

Mixing:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}.$$

Scalar sector:

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(\mathbf{v}_{\Phi} + \phi + i\eta) \end{pmatrix}, \ X = \mathbf{v}_{X} + \chi$$

Potential:

$$V_1(\Phi, X) = -\frac{1}{2}m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda}{2}(\Phi^{\dagger} \Phi)^2 + \frac{1}{2}m_X^2 X^2 + \mu \Phi^{\dagger} \Phi X$$

Mixing:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix}.$$

1.
$$\frac{\partial V_1}{\partial \phi}\Big|_{\phi=0, \chi=0} = 0,$$

2. $\frac{\partial V_1}{\partial \chi}\Big|_{\phi=0, \chi=0} = 0,$

3. $v_{\Phi} = 246$ GeV from the Fermi coupling in muon decay.

4. *h* is associated with the SM-like higgs, so $m_h = 125$ GeV. Remaining model parameters: $\sin \alpha$ and m_H .

E. V. Zhemchugov

H decay widths:

$$\begin{split} \Gamma(H \to W^+ W^-) &= \frac{m_H^3 \sin^2 \alpha}{16 \pi v_\Phi^2} \left[1 - 4 \frac{m_W^2}{m_H^2} + 12 \frac{m_W^4}{m_H^4} \right] \sqrt{1 - \left(\frac{2m_W}{m_H}\right)^2} \\ \Gamma(H \to ZZ) &= \frac{m_H^3 \sin^2 \alpha}{128 \pi v_\Phi^2} \left[1 - 4 \frac{m_Z^2}{m_H^2} + 12 \frac{m_Z^4}{m_H^4} \right] \sqrt{1 - \left(\frac{2m_Z}{m_H}\right)^2} \\ \Gamma(H \to t\bar{t}) &= \frac{3m_t^2 m_H \sin^2 \alpha}{8 \pi v_\Phi^2} \left[1 - \left(\frac{2m_t}{m_H}\right)^2 \right]^{\frac{3}{2}} \\ \Gamma(H \to hh) &= \frac{(2m_h^2 + m_H^2)^2}{32 \pi v_\Phi^2 m_H} \sin^2 \alpha \cos^4 \alpha \sqrt{1 - \left(\frac{2m_h}{m_H}\right)^2} \end{split}$$

 \boldsymbol{h} double production cross section:

$$\sigma(pp \to H \to hh) = \sigma(pp \to h)_{\mathsf{SM}} \cdot \sin^2 \alpha \cdot \operatorname{Br}(H \to hh)$$

1503.01618

Experimental data (signal strength):

$$\mu_{i} \equiv \frac{\sigma_{pp \to h} \cdot \Gamma_{h \to f_{i}} / \Gamma_{h}}{(\sigma_{pp \to h} \cdot \Gamma_{h \to f_{i}} / \Gamma_{h})_{\rm SM}}$$

In the model with an isosinglet: $\mu_i = \cos^2 \alpha$. Experiment results:

ATLAS $\mu = 1.18^{+0.15}_{-0.14} [\pm 0.10 \text{ (stat.)} \pm 0.07 \text{ (syst.)}^{+0.08}_{-0.07} \text{ (theor.)}]$ CMS $\mu = 1.00^{+0.14}_{-0.13} [\pm 0.09 \text{ (stat.)} \pm 0.07 \text{ (syst.)}^{+0.08}_{-0.07} \text{ (theor.)}]$

 $pp \rightarrow hh$ in the SM with an extra isosinglet

Observable	Experimental value	Standard Model	Pull
Γ_Z , GeV	2.4952(23)	2.4966(14)	-0.5895
σ_h , nb	41.541(37)	41.475(14)	1.7746
R_l	20.771(25)	20.744(18)	1.0831
A^l_{FB}	0.0171(10)	0.0165(2)	0.6572
A_{τ}	0.1439(43)	0.1484(7)	-1.0452
R_b	0.2163(7)	0.2158(0)	0.7699
R_c	0.1721(30)	0.1722(0)	-0.0277
A^b_{FB}	0.0992(16)	0.1040(5)	-3.0303
A_{FB}^c	0.0707(35)	0.0744(4)	-1.0565
$s_l^2 (Q_{FB})$	0.2324(12)	0.2313(1)	0.8771
A_{LR}	0.1514(22)	0.1484(7)	1.3822
A_b	0.923(20)	0.9349(1)	-0.5941
A_c	0.670(27)	0.6685(3)	0.0567
M_W , GeV	80.3846(146)	80.3725(67)	0.8322
m_t , GeV	173.24(95)	174.32(89)	-1.1370
$1/\bar{lpha}$	128.954(48)	129.023(37)	-1.4378
$\chi^2/n_{d.o.f.} = 19.6/13$ (was $18/12$ [arXiv:0904.4570]).			

A fit of the Standard Model to electroweak precision observables with $m_b = 125.14$ GeV computed with the help of LEPTOP program.

 $pp \rightarrow hh$ in the SM with an extra isosinglet

Experiment: R < 0.1 for 200 GeV $< m_H < 400$ GeV (CMS PAS HIG-13-002).

Conclusions

- ▶ $pp \rightarrow H \rightarrow hh$ cross section at $\sqrt{s} = 14$ TeV can reach 0.4 pb, ten times larger than the Standard Model value.
- *pp* → *H* → *ZZ* is the golden mode for the heavy higgs boson discovery. Experimental data start to be sensitive to the isosinglet model for maximally allowed values of sin α.
- Keep an eye open for extra scalar particles!