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Introduction

Muonic deuterium

(µd) - bound state of negatively charged muon and deuteron. Lifetime
of this simple atom is equal to muon’s lifetime τµ = 2.19703(4) ∗ 10−6;
(mµ/me = 206.7682838(54)) leads to a lower Bohr radius of the
muon. Thus an influence of vacuum polarization and nuclear structure
effects in energy structure increases;
Muonic atoms play an important role in check of QED, theory of
bound states and in precise measurement of fundamental constants;
Measurement of the hyperfine structure in light muonic atoms allows
us to obtain more precise values of charge radii and Zeemach radii of
corresponding atoms.
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Introduction

A. Antognini et al., Science 339, 417 (2013).

Lamb shift in (µp) for transition (2PF=2
3/2 − 2SF=1

1/2 ) was meassured in PSI
(Paul Scherrer Institute) with result 49881.88 (76) GHz (206.2949 (32)
meV).

New value of proton charge radius rp = 0.84087(39) fm;
7.0 σ discrepancy between new value and CODATA value
rp = 0.8768(69)fm.

Julian J. Krauth et al., arXiv:1506.01298v2 [physics.atom-ph]

Experimental data on hyperfine structure in muonic deuterium has been
already obtained and is being prepared for publication.
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Introduction

Purpose

The aim of this work is to calculate analytically and numerically corrections
of order α5 and α6 in hyperfine structure of 2P state in muonic deuterium.

We use quasipotential approach in QED;
We include α5 and α6 vacuum polarization and nuclear structure corrections
to achieve high accuracy;
We improve previous calculations of hyperfine structure in muonic deuterium
for 2P state.
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Main contribution and relativistic corrections

Main contribution
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Main contribution and relativistic corrections

Main contribution to hyperfine splitting of 2P state is given by hyperfine
part of Breit hamiltonian:

∆V hfs
B (r) =

Zα(1 + κd )

2m1m2r3

[
1 +

m1κd
m2(1 + κd )

]
(L · s2)−

− Zα(1 + κd )(1 + aµ)

2m1m2r3

[
(s1 · s2)− 3(s1 · n)(s2 · n)

]
.

This operator does not commute with muon’s total angular momentum
operator. Thus levels are mixed and off-diagonal matrix elements should be
taken into account:

diagonal elements
〈
2P1/2

∣∣∆V hfs
B

∣∣ 2P1/2
〉
,
〈
2P3/2

∣∣∆V hfs
B

∣∣ 2P3/2
〉
;

off-diagonal elements
〈
2P1/2

∣∣∆V hfs
B

∣∣ 2P3/2
〉F=1/2,〈

2P1/2
∣∣∆V hfs

B

∣∣ 2P3/2
〉F=3/2.
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Main contribution and relativistic corrections

Coulomb wave function of (µd) 2P state:

Ψ2P(r) =
1

2
√
6
W

5
2 re−

Wr
2 Y1m(θ, φ),

W = µZα.

To make averaging over angles in ∆V hfs
B (r) we use the following relations:

s1 → J
(s1 · J)

J2 ,

L→ J
(L · J)

J2 ,

(s1 · J) =
1
2

[
j(j + 1)− l(l + 1) +

3
4

]
,

(L · J) =
1
2

[
j(j + 1) + l(l + 1)− 3

4

]
,

〈δi j − 3ninj〉 = −1
5

(4δij − 3LiLj − 3LjLi ).
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Main contribution and relativistic corrections

After averaging over Coulomb wave functions we get the following general
expression for diagonal matrix elements of hyperfine structure:

Ehfs
B =

α4µ3(1 + κd)

48m1m2

[
T1 +

m1κd
m2(1 + κd)

T1 − (1 + aµ)T2

]
,

where

T1 = (L · s2), T2 = [(s1 · s2)− 3(s1 · n)(s2 · n)],

T3 = [(s1 · s2)− (s1 · n)(s2 · n)].

After averaging over angles in off-diagonal elements we get:

T 1 = 2T 2 = −2T 3 =

{
−
√

2
3 , F = 1/2,

−
√

5
3 , F = 3/2.

Off-diagonal matrix elements of hyperfine structure:

Ehfs,off−diag
F=1/2 =

α4µ3(1 + κd)

48m1m2

(
−
√
2
6

)[
1 +

2m1κd
m2(1 + κd)

− aµ

]
,

Ehfs,off−diag
F=3/2 =

α4µ3(1 + κd)

48m1m2

(
−
√
5
6

)[
1 +

2m1κd
m2(1 + κd)

− aµ

]
.

V. Sorokin (SSU) HFS in muonic deuterium June 26, 2015 8 / 26



Main contribution and relativistic corrections

Relativistic correction of order α6 is known in analytical form and can be
evaluated withe the help of Dirac theory. Dirac hamiltonian of a particle in
central field is:

H = cα(P − e
c
A) + βm0c2 + eΦ.

Hyperfine part is:
∆Hhfs = e0αA.

To calculate the correction we perform averaging of e0αA over relativistic
wave functions of muon-deuteron system. Finally we get the following
expressions for corrections to diagonal matrix elements:

Ehfs
rel (2P1/2) =

α6(1 + κd )µ3

48m1m2

m3
1

µ3
47
9
× 1

2
[F (F + 1)− J(J + 1)− I (I + 1)],

Ehfs
rel (2P3/2) =

α6(1 + κd )µ3

48m1m2

m3
1

µ3
7
45
× 1

2
[F (F + 1)− J(J + 1)− I (I + 1)].
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Main contribution and relativistic corrections

For off-diagonal matrix elements we get relativistic corrections as follows:

Ehfs,off−diag
rel ,F=1/2 = −α

6(1 + κd )µ3

48m1m2

m3
1

µ3
3
√
2

32
= −0.0043 meV ,

Ehfs,off−diag
rel ,F=3/2 = −α

6(1 + κd )µ3

48m1m2

m3
1

µ3
3
√
5

32
= −0.0067 meV .
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VP effects in 1γ interaction

One- and two-loop vacuum polarization corrections in one
photon interaction

а б в г
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VP effects in 1γ interaction

One-loop vacuum polarization contribution to hyperfine splitting of 2P
state in muonic deuterium in coordinate representation looks as follows:

∆V hfs
1γ,VP(r) =

Zα(1 + κd )

2m1m2r3
α

3π

∫ ∞
1

ρ(ξ)dξe−2meξr
{(

1 +
m1κd

m2(1 + κd )

)
×

×(L · s2)(1 + 2meξr)− (1 + aµ)

(
4m2

eξ
2r2[(s1 · s2)− (s1 · n)(s2 · n)]+

+(1 + 2meξr)[(s1 · s2)− 3(s1 · n)(s2 · n)]

)}
.

where ρ(ξ) =
√
ξ2 − 1(2ξ2 + 1)/ξ4. To obtain this potential we use the

following substitution in photon propagator:

1
k2 →

α

3π

∫ ∞
1

ρ(ξ)dξ
1

k2 + 4m2
eξ

2 ,
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VP effects in 1γ interaction

Averaging over wave functions we get the following expression:

Ehfs
1γ,VP(r) =

α4µ3(1 + κd)

24m1m2r3
α

6π

∫ ∞
1

ρ(ξ)dξ
∫ ∞

0
xdxe−x[1+

2meξ
W ]×

×
[(

1 +
m1κd

m2(1 + κd)

)
×T1(1 +

2meξ

W
x)− (1 + aµ)

(
4m2

eξ
2x2

W 2 T3+

+(1 +
2meξ

W
x)T2

)]
.

This expression allows us to get corrections to both diagonal and
off-diagonal matrix elements. For 2 loops in series:

∆V hfs
1γ,VPVP(r) =

Zα(1 + κd)

2m1m2r3

(
α

3π

)2∫ ∞
1

ρ(ξ)dξ
∫ ∞

1
ρ(η)dη

1
ξ2 − η2×

×
[(

1 +
m1κd

m2(1 + κd)

)
(L · s2)[ξ2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr ]−

−(1 + aµ)

(
4m2

e r
2[ξ4e−2meξr − η4e−2meηr ][(s1 · s2)− (s1 · n)(s2 · n)]+

+[ξ2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr ][(s1 · s2)− 3(s1 · n)(s2 · n)]

)]
.
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VP effects in 1γ interaction

For diagrams with one loop inside another:

∆V hfs
2−loop(r) =

Zα(1 + κd )

2m1m2r3
2
3

(
α

π

)2∫ 1

0

f (v)dv
1− v2 e

− 2mer√
1−v2×

×
[(

1 +
m1κd

m2(1 + κd )

)[
1 +

2mer√
1− v2

]
(L · s2)−

−(1 + aµ)

(
4m2

e r
2

1− v2 [(s1 · s2)− (s1 · n)(s2 · n)]+

+

(
1 +

2mer√
1− v2

)
[(s1 · s2)− 3(s1 · n)(s2 · n)]

)]
.

Muonic vacuum polarization correction of order α6 is also included by
simple replacement me → m1.
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VP effects in second and third order PT

Vacuum polarization effects in second and third order
perturbation theory

G̃

а

G̃

б

G̃G̃ G̃

в г д
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VP effects in second and third order PT

Green’s function

Green’s function is a solution of the following equation:

(Ĥ − E )GE (r, r′) = δ(r − r′).

Spectral decomposition looks as follows:

GE (r , r ′) =
∑
i

ψ∗i (r)ψi (r ′)
Ei − E

.

Second and third order PT corrections are defined by reduced Green’s
function with the following partial decomposition:

G̃n(r, r′) =
∑
l ,m

g̃nl (r , r ′)Ylm(n)Y ∗lm(n′).
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VP effects in second and third order PT

Second order perturbation theory

Main contribution of vacuum polarization to HFS in second order PT has
the following general structure:

∆Ehfs
SOPT VP 1 = 2 < ψ|∆V C

VP · G̃ ·∆V hfs
B |ψ >,

where modified Coulomb potential

∆V C
VP(r) =

α

3π

∫ ∞
1

ρ(ξ)dξ
(
−Zα

r

)
e−2meξr .
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VP effects in second and third order PT

Reduced Green’s function in 2P state takes form:

G2P(r , r ′) = −
µ2(Zα)
36z2z ′2

(
3
4π

nn′
)
e−(z+z′)/2g(z, z ′),

g(z, z ′) = 24z3< + 36z3<z> + 36z3<z
2
> + 24z3> + 36z<z3> + 36z2<z

3
> + 49z3<z

3
> − 3z4<z

3
>−

−12ez< (2 + z< + z2<)z3> − 3z3<z
4
> + 12z3<z

3
>[−2C + Ei(z<)− lnz< − lnz>],

where C = 0.5772... - Euler constant,
z = Wr , z< = min(z , z ′), z> = max(z , z ′).

Corresponding contribution to HFS (µd):

Ehfs
VP,SOPT =

α4µ3(1 + κd)

24m1m2

α

54π

∫ ∞
1

ρ(ξ)dξ
∫ ∞

0
dx
∫ ∞

0

e−x
′

x ′2
dx ′e

−x

(
1+ 2meξ

W

)
×

×
[
T1 +

m1κd
m2(1 + κd)

T1 − (1 + aµ)T2

]
.

H.F. Hameka, Jour. Chem. Phys. 47, 2728 (1967).
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VP effects in second and third order PT

Third order perturbation theory

Formula for vacuum polarization correction of order α6 int third order PT can be written as

follows:

S. G. Karshenboim, E. Yu. Korzinin, and V. G. Ivanov, JETP Lett. 88,
641(2008).
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Nuclear structure effects

Nuclear structure correction of order α6 for 2P state can be found by means
of magnetic form-factor decomposition. In this case potential has the form:

V hfs
str (k) = − 4π

2m1m2

Zα(1 + aµ)r2M
6

[
(s1 · s2)k2 − (s1 · k)(s2 · k)

]
,

where rM = 2.1424(21) fm2 - deuteron magnetic radius. After averaging
over wae functions we get the final expression for nuclear structure
correction:

Ehfs
str =

α6µ5(1 + aµ)r2M
72m1m2

(s1 · s2),
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Quadrupole correction

General structure of a potential of quadrupole correction is:

Hquad
µd =

∑
q

(−1)qT 2
q (d) · T 2

−q(µ),

where T 2(d), T 2(µ) - irreducible tensor operators of rank 2, that describe
quadrupole moments of nucleus and muon respectively.
Matrix elements have the following form:〈

j ′IF
∣∣∣Hquad

µd

∣∣∣ jIF〉 = (−1)J
′+1/2−F−J

{
J I F
I J ′ 2

}
Q
2
×

×
[(

I 2 I
−I 0 I

)]−1√
2J + 1

√
2J ′ + 1

(
J ′ 2 J
1
2 0 −1

2

)
<
α

r3
> .
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Quadrupole correction

For diagonal elements for all levels of 2P hyperfine structure we have:

Equad
µd (j = 1/2) = 0,

Equad
µd (j = 3/2) =

αQ
2

<
1
r3
> (δF ,1/2 − 4/5δF ,3/2 + 1/5δF ,5/2).

For off-diagonal elements:

Equad
µd (j = 3/2, j ′ = 1/2) =

αQ
2

<
1
r3
> (
√
2δF ,1/2 − 1/

√
5δF ,3/2).

Averaging over coordinates has the form:

<
1
r3
>=

∫ ∞
0

1
r

(ff ′ + gg ′)dr .

In non-relativistic approximation we obtain:

<
1
r3
>=

α3µ3

24
.
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Results and discussion

Results and discussion

E. Borie, Phys. Rev. A 72, 052511(2005).

E. Borie, Ann. Phys. 327, 733(2012).

In the Borie’s paper hyperfine structure of 2P state in muonic deuterium
was obtained. Besides main contribution and quadrupole interaction, only
one loop vacuum polarization correction in first order PT was taken into
account. Main contribution and quadrupole interaction terms agree with
our results. Vacuum polarization correction differs because we include
additional corrections of order α5 and α6.
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Results and discussion

Table: Diagonal matrix elements

Contribution 2P2
1/2, 2P4

1/2, 2P2
3/2, 2P4

3/2, 2P6
3/2,

µeV µeV µeV µeV µeV
α4 -1380.3359 690.1679 8162.2889 8583.2316 9284.8027

rel α6 -0.1676 0.0838 -0.0125 -0.0050 0.0075
VP α5 -1.0706 0.5353 -0.2802 -0.1121 0.1681
VP α6 -0.0011 0.0005 -0.0014 -0.0006 0.0008
str α6 0.0042 -0.0021 -0.0104 -0.0042 0.0063

quad α4 0 0 434.2329 -347.3863 86.8466∑
-1381.5710 690.7855 8596.2173 8235.7235 9371.8319

Table: Off-diagonal matrix elements

Contribution 2P2
1/2, µeV 2P4

1/2, µeV
α4 -126.0372 -199.2824

rel α6 -0.0043 -0.0067
VP α5 -0.1437 -0.2271
VP α6 0.00005 0.0001

quad α4 614.0980 -194.1948∑
487.9129 -393.7110
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Results and discussion

E. Borie, Phys. Rev. A 72, 052511(2005).

Energy matrix before diagonalization, meV
−1.38157 0 0.487913 0 0

0 0.690785 0 −0.393711 0
0.487913 0 8.59622 0 0

0 −0.393711 0 8.23572 0
0 0 0 0 9.37183



Table: Hyperfine structure of 2P state in muonic deuterium, final results

State Energy, meV Borie, meV
22P1/2 -1.4054 -1.4056
42P1/2 0.6703 0.6703
22P3/2 8.6200 8.6194
42P3/2 8.2562 8.2560
62P3/2 9.3718 9.3729
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Results and discussion

Thanks for your attention
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