

Proton and kaon timelike form factors from Babar

Sergey Serednyakov (on behalf of Babar Collaboration)

Novosibirsk State University Budker Institute of Nuclear Physics, Novosibirsk

The XXII International Workshop High Energy Physics and Quantum Field Theory June 24– July 1, 2015 Samara, Russia

OUTLINE

- **1. Proton FF description**
- 2. Babar detector, ISR method
- 3. Proton FF data
- 4. Nucleon threshold
- 5. Charged kaon FF description
- 6. Kaon FF data
- 7. Conclusion

$p\bar{p}$ quantum numbers

$$J^{PC} = 1^{--}, J = L+S,$$

 $P=(-1)^{L+1}=-1, L=0,2,$
 $C=(-1)^{L+S}=-1, S=1,$

S, D – waves,

two form factors e.g. G_E , G_M

C for protons : $C=y/(1-e^{-y}), y=\pi\alpha/\beta, \alpha=1/137, \beta=v/c$

Function C (Coulomb factor) is significant at ~ 1 MeV above threshold

30.06.2015

Expectations for the nucleon form factors

-- $|G_E|=|G_M|$ at threshold, S-wave only -- σ -> const at threshold, C ~ 1/v

-- proton polarization ~
$$\phi$$
(G_E-G_M)

perturbative QCD constrains the FF asymptotic behavior

$$q^2 \rightarrow -\infty \implies G_{E,M} \rightarrow \frac{\text{constant}}{q^4 \ln \left(\frac{q^2}{\Lambda_{QCD}^2}\right)^2}$$

pQCD + analyticity

$$G^2 \rightarrow \pm \infty \quad \blacksquare \quad \Rightarrow \quad G_{E,M}(q^2) = G_{E,M}(-q^2)$$

30.06.2015

q

Reactions to study e.m. TL form factors

Two latest BABAR works: 1 - PhysRevD.87.092005(2013), m < 4 GeV - LA ISR 2 - PhysRevD.88.072009(2013), m =3 - 6 GeV - SA ISR

PEP-II e+e- collider, Babar detector

e+e→hadrons in ISR

ISR – Initial State Radiation or Radiative Return $\frac{d\sigma(s,x)}{dxd(\cos\theta)} = H(s,x,\theta) \cdot \sigma_0(s(1-x))$ ons H- radiation function $H(s,x,\theta) = \frac{\alpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2\theta} - \frac{x^2}{2} \right), \ x = \frac{2E_{\gamma}}{\sqrt{s}}$ $L_{ISR} \sim 0.3\% L_0,$ with $L_0 \sim 0.5 \text{ ab}^{-1} \longrightarrow L_{ISR} \sim 1.5 \text{ fb}^{-1}!$

Advantages of ISR

- 1. Full energy range from $2m_{\pi}$ up to \sqrt{s} is available
- 2. Detection efficiency is independent on the reaction mechanism
- 3. No large radiative corrections

Large/small angles kinematic in ISR

30.06.2015

$e^+e^- \to p\overline{p}$ analysis, SA ISR kinematics

$$\begin{array}{l} \mbox{Main selection} \\ \mbox{criteria, SA case} \end{array} & 1 - two \ tracks: p, \bar{p} \\ 2 - M^2_{miss} < 1 \ GeV/c^2 \\ 3 - P_{trans.} < 0.15 \ GeV/c \\ 4 - P_p < 5 \ GeV/c \end{array}$$

Backgrounds
1-Two photon
$$-e^+e^- \rightarrow e^+e^-p\overline{p}$$
, ~ 3%
2-ISR with $\pi^0: e^+e^- \rightarrow \gamma p\overline{p}\pi^0$, ~ 5%

30.06.2015

$e^+e^- \rightarrow p\overline{p}$ LA ISR kinematics

$e^+e^- \rightarrow p\overline{p}$

Cos θ distribution and $|G_E/G_M|$ ratio (Babar)

30.06.2015

$e^+e^- \rightarrow p\overline{p}$ SA ISR kinematics

Babar results are in agreement with previous data at E<4 GeV, And have a tendency to approach spacelike FF at E>4 GeV

Comparison of baryons form factors

Proton: PhysRevD.87.092005(2013) - Babar Neutron :PhysRevD. 90, 112007 (2014) - SND Λ, Σ : PhysRevD. 76, 092006 (2007) - Babar pQCD : Z.Ph. C42 569 (1989) – Chernyak,Zhitn.

The charged kaon form factor

Two BABAR works : 1 - Phys.Rev.D88 032013 (2013) - $E < 5 \text{ GeV/c}^2$ LA ISR 2 - Preliminary - $E < 7.5 \text{ GeV/c}^2$ - SA ISR

The charged kaon form factor

The history of kaon TL form factor above ϕ (1020)

e⁺e⁻ -> K⁺K⁻ analysis, SA ISR

Main selection criteria $1-\text{two tracks}: K^+, K^ 2-M^2_{\text{miss}} < 1 \text{GeV} / c^2$ $3-P_{\text{trans.}} < 0.15 \text{ GeV} / c$ $4-P_K < 5 \text{ GeV} / c$

Background 1-Two photon $-e^+e^- \rightarrow e^+e^- K^+K^-, \sim 3\%$ 2-ISR with $\pi^0: e^+e^- \rightarrow \gamma K^+K^- \pi^0, \sim 5\%$ 3-ISRmisID $: e^+e^- \rightarrow \gamma \mu^+\mu^-, \sim 5\%$

Systematics ~ 3%

e*e* -> K*K* cross section

Kaon form factor , LA ISR

Kaon form factor, SA ISR, Babar preliminary

The kaon form factor with SA ISR technique agrees with LA ISR data and more precise. At $E > 5 \text{ GeV/c}^2$ the tendency to approach to the QCD limit is seen.

Conclusions on the proton timelike form factor (FF)

- 1. Using the ISR method in Babar the proton FF has been measured from the threshold up to 6 GeV
- 2. Near the threshold the proton FF is close to the pointlike value 1.
- 3. The e⁺e⁻ >pp cross section is nearly constant from the threshold up to 2.2 GeV.
- 4. A resonance structure in proton FF is seen in the region
 2-3 GeV
- 5. Beginning from q=5 GeV the proton FF reveals the tendency to approach to the QCD prediction $F(q^2)=F(-q^2)$.

Conclusions on the charged kaon timelike form factor (FF)

- 1.Using the ISR method in Babar the charged kaon FF has been measured from the threshold up to 7 GeV
- 2. Below 2 GeV in the kaon FF the resonance structure is seen.
- 3. At E<4 GeV the kaon FF is ~ 4 times higher than the QCD limit
- 4. At E>5 GeV the kaon FF approaches to the QCD limit

Thank you for attention