BABAR latest results, focusing on CP violation and on rare processes probing the SM and BSM

Yu.I.Skovpen

BINP, Novosibirsk

On behalf of the BaBar Collaboration

The XXI International Workshop High Energy Physics and Quantum Field Theory June 23-30, 2013 Saint Petersburg Area, Russia

PEP II

 $e^+(3.1 \text{ GeV})$ $e^-(9.0 \text{ GeV})$ $\beta\gamma = 0.56$

Yu.I. Skovpen, QFTHEP-2013, June 30, 2013

Outline

- CP violation in $B^0 \overline{B}^0$ mixing
- CP violation in $B^0 \to (\rho \pi)^0$, Dalitz plot analysis
- Direct *CP* violation with $B^{\pm} \to D^{(*)} K^{(*)\pm}$
- Observation of T-violation
- $B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$ decays
- $B \to K^{(*)} \nu \bar{\nu}$ and invisible $J/\psi \to \nu \bar{\nu}, \, \psi(2S) \to \nu \bar{\nu}$ decays
- Direct asymmetry in $B \to X_s \gamma$ decays
- $B \to D^{(*)} \tau \nu$ decay

- $(H) = (M) i/2(\Gamma)$
 - $< \bar{B}^{0}|H|B^{0} >= M_{12}^{*} i\Gamma_{12}^{*}/2$ $< B^{0}|H|\bar{B}^{0} >= M_{12} - i\Gamma_{12}/2$
- $| < B^0 |H| \bar{B}^0 > |^2 | < \bar{B}^0 |H| B^0 > |^2$

 $= 2Im(M_{12}\Gamma_{12})$

• $|B_L\rangle = p|B^0\rangle + q|\bar{B}^0\rangle$ $|B_H\rangle = p|B^0\rangle - q|\bar{B}^0\rangle$

- CPV in mixing $P(B^0 \to \bar{B}^0) \neq P(\bar{B}^0 \to B^0)$
- CP asymmetry $A_{CP} =$

$$\frac{N(B^0 B^0) - N(\bar{B}^0 \bar{B}^0)}{N(B^0 B^0) + N(\bar{B}^0 \bar{B}^0)} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

•
$$\left(\frac{q}{p}\right)^2 = \frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}$$

Usually measured asymmetry using semileptonic B decays

$$A_{SL} = \frac{N(l^+l^+) - N(l^-l^-)}{N(l^+l^+) + N(l^-l^-)} \sim O(m_c^2/m_t^2)$$

- A_{SL}^d is measured with $\Upsilon(4S) \rightarrow B^0 \bar{B}^0$ HFAG average of CLEO, BaBar, Belle $A_{SL}^d = (-0.05 \pm 0.56)\%$ SM $A_{SL}^d = (-4.1 \pm 0.6) \cdot 10^{-4}$
- hadronic colliders measure A_{SL}^b which is combination of A_{SL}^d and A_{SL}^s D0 result (Phys. Rev. D84, 052007 (2011)) on charge dimuon asymmetry differs by 3.9σ $A_{SL}^b = (-0.787 \pm 0.172 \pm 0.093)\%$ SM $A_{SL}^b = (-2.8^{+0.5}_{-0.6}) \cdot 10^{-4}$
- $A_{SL}^s = (-0.24 \pm 0.54 \pm 0.33\% \text{ (LHCb)})$ $A_{SL}^s = (-1.12 \pm 0.74 \pm 0.17\% \text{ (D0)})$ SM $A_{SL}^s = (1.9 \pm 0.3) \cdot 10^{-5}$

New approach is used in BaBar analysis

$$A_{CP} = \frac{N(l^+K^+) - N(l^-K^-)}{N(l^+K^+) + N(l^-K^-)}$$

• partial reconstruction using only the lepton from $\bar{B}^0 \to D^{*+} l^- \bar{\nu}$ and the soft π from $D^{*+} \to \bar{D}^0 \pi^+$ D^* 4-momentum estimated from π_{soft} kinematics

• K-tagging determines the flavor of the other B

- $0.06 < p_{\pi_{soft}} < 0.19 \ GeV/c, \ 1.40 < p_l < 2.30 \ GeV/c$
- K selection by means of energy loss and Cherenkov detector information $p_K > 0.2 \ GeV/c$
- continuum and combinatorial background suppressed by Fox-Wolfram moments and vertex probability

- sample composition is derived from a fit to M_{ν}^{2} by floating D^{*} , D^{**} $M_{\nu}^{2} = (E_{beam} - E_{D^{*}} - E_{l})^{2} - (\vec{p}_{D^{*}} + \vec{p}_{l})^{2}$
- combinatorial background using MC shapes and continuum shapes from off-peak events
- residual peaking fixed from simulation

Yu.I. Skovpen, QFTHEP-2013, June 30, 2013

$$A_{T} = \frac{N(l^{+}K_{T}^{+}) - N(l^{-}K_{T}^{-})}{N(l^{+}K_{T}^{+}) - N(l^{+}K_{T}^{-})} \simeq A_{rl} + A_{K} + A_{CP}$$
$$A_{R} = \frac{N(l^{+}K_{R}^{+}) - N(l^{-}K_{R}^{-})}{N(l^{+}K_{T}^{+}) - N(l^{-}K_{R}^{-})} \simeq A_{rl} + A_{K} + A_{CP}\chi_{d}$$

- K_R can come from the Cabibbo-Favored decays of D^0 produced with the lepton from the partially reconstructed side K_R is usually emitted in hemisphere opposite to l K_T is produced randomly
- A_{rl} and A_K are detector induced asymmetries

 A_{CP} from binned four dimensional fit to $\cos\theta_{lK}$, Δz , $\sigma(\Delta t)$, p_K on 4 samples: unmixed $l^{\pm}K^{\mp}$ and mixed $l^{\pm}K^{\pm}$

- BaBar $A_{SL}^d = (0.06 \pm 0.17^{+0.36}_{-0.32})\%$
 - $1 |q/p| = (0.29 \pm 0.84^{+1.78}_{-1.61}) \cdot 10^{-3}$
- consistent with previous measurement
- consistent with SM
- most precise measurement

CP violation in $B^0 \to (\rho \pi)^0$, Dalitz plot analysis

Motivation

- CP violation in $B^0 \to \pi^+ \pi^- \pi^0$ dominated by $B^0 \to \rho^{\pm} \pi^{\mp}$
- precision measurement $\alpha = \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$

Updated by 2007 BaBar analysis

- increased dataset, $431 f b^{-1}$ vs. Legendre moment L0, L2 $346 \, f b^{-1}$
- improved tracking and particle identification
- reoptimized cuts
- more rigorous study of the ρ lineshape systematic uncertainties

Selection

- measured energy of the *B* candidate between 4.99 and 5.59 GeV
- between 5.200 \bullet m_{ES} and $5.288 GeV/c^{2}$

NN selection

- angle between the beam axis and the B momentum or the B thrust axis

CP violation in $B^0 \to (\rho \pi)^0$, Dalitz plot analysis

Time-dependent amplitudes for B^0 and \overline{B}^0 decays

 $A_{3\pi} = f_{+}A^{+} + f_{-}A^{-} + f_{0}A^{0}$ $\overline{A}_{3\pi} = f_{+}\overline{A}^{+} + f_{-}\overline{A}^{-} + f_{0}\overline{A}^{0}$ $A^{\pm,0} \text{ corresponds } \rho^{\pm,0}$

Fitting

- $m_{ES}, \Delta E, NN$ output
- time dependent DP
- 26 free parameters

$$\begin{split} f^{\rho\pm}_{Q_{\mathrm{tag}}} &= (1\pm \mathcal{A}_{\rho\pi}) \frac{e^{-|\Delta t|/\tau}}{4\tau} \\ &\times \left[1 + Q_{\mathrm{tag}}(\mathcal{S}\pm\Delta\mathcal{S})\sin(\Delta m_d\Delta t) \right. \\ &\left. - Q_{\mathrm{tag}}(\mathcal{C}\pm\Delta\mathcal{C})\cos(\Delta m_d\Delta t) \right], \end{split}$$

$$Q_{\text{tag}} = +1(-1)$$
 for $B_{\text{tag}} = B^0(\bar{B}^0)$

$$\begin{aligned} |\mathcal{A}_{3\pi}^{\pm}(\Delta t)|^{2} &= \frac{e^{-|\Delta t|/\tau}B^{0}}{4\tau_{B^{0}}} \left(|A_{3\pi}|^{2} + |\overline{A}_{3\pi}|^{2}\right) \\ &\mp \left(|A_{3\pi}|^{2} - |\overline{A}_{3\pi}|^{2}\right) \cos(\Delta m_{d}\Delta t) \\ &\pm 2 \operatorname{Im}\left[\frac{q}{p}\overline{A}_{3\pi}A_{3\pi}^{*}\right] \sin(\Delta m_{d}\Delta t) \right) \end{aligned}$$

$$B^0(\mathcal{A}_{3\pi}^-)$$
 or $\bar{B}^0(\mathcal{A}_{3\pi}^+)$

- $\mathcal{A}_{\rho\pi}$ quantifies direct CP violation
- S parameterize mixing-induced CP violation related to α
- C parameterize flavor-dependent direct CP violation
- ΔC asymmetry between rates $\Gamma(B^0 \to \rho^+ \pi^-) + \Gamma(\overline{B}{}^0 \to \rho^- \pi^+)$ and $\Gamma(B^0 \to \rho^- \pi^+) + \Gamma(\overline{B}{}^0 \to \rho^+ \pi^-)$
- ΔS relates to the strong-phase difference between the different amplitudes

Yu.I. Skovpen, QFTHEP-2013, June 30, 2013

Direct CP violation with $B^{\pm} \to D^{(*)}K^{(*)\pm}$

interference between $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ depends on

- weak phase $\gamma = arg[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*]$
- relative strong phase δ_B

•
$$r_B = |\mathcal{A}(b \to u\bar{c}s)/\mathcal{A}(b \to c\bar{u}s)|$$

- the three approaches employed by the *B* factory experiments
- the combination of these approaches were used in this analysis

Direct CP violation with $B^{\pm} \to D^{(*)}K^{(*)\pm}$

• Dalitz plot or Giri-Grossman-Soffer-Zupan (GGSZ) method, based on three-body, self-conjugate final states, such as $K_S \pi^+ \pi^-$

$$\Gamma_{\pm}^{(*)}(m_{-}^{2}, m_{+}^{2}) \propto |\mathcal{A}_{\pm}|^{2} + r_{B^{\pm}}^{(*)}{}^{2} |\mathcal{A}_{\mp}|^{2} + 2\lambda \operatorname{Re}[\mathbf{z}_{\pm}^{(*)}\mathcal{A}_{\pm}^{\dagger}\mathcal{A}_{\mp}] \text{ for } B^{\pm} \to D^{(*)}K^{\pm}$$

$$\Gamma_{\pm}^{s}(m_{-}^{2}, m_{+}^{2}) \propto |\mathcal{A}_{\pm}|^{2} + \kappa^{2}r_{s^{\pm}}^{2} |\mathcal{A}_{\mp}|^{2} + 2\operatorname{Re}[\mathbf{z}_{s\pm}\mathcal{A}_{\pm}^{\dagger}\mathcal{A}_{\mp}] \text{ for } B^{\pm} \to DK^{*\pm}$$

$$m_{-}^{2} = m^{2}(K_{S}^{0}h^{-}), m_{+}^{2} = m^{2}(K_{S}^{0}h^{+}), \mathcal{A}_{\pm} \equiv \mathcal{A}(m_{\pm}^{2}, m_{\mp}^{2})$$

• Gronau-London-Wyler (GLW) method, based on decays to CP-eigenstate final states, such as K^+K^- and $K_S\pi^0$

$$\begin{split} A_{CP\pm}^{(*)} &\equiv \frac{\Gamma(B^- \to D_{CP\pm}^{(*)}K^-) - \Gamma(B^+ \to D_{CP\pm}^{(*)}K^+)}{\Gamma(B^- \to D_{CP\pm}^{(*)}K^-) + \Gamma(B^+ \to D_{CP\pm}^{(*)}K^+)} = \pm \frac{x_-^{(*)} - x_+^{(*)}}{1 + |\mathbf{z}^{(*)}|^2 \pm (x_-^{(*)} + x_+^{(*)})} \\ R_{CP\pm}^{(*)} &\equiv 2 \frac{\Gamma(B^- \to D_{CP\pm}^{(*)}K^-) + \Gamma(B^+ \to D_{CP\pm}^{(*)}K^+)}{\Gamma(B^- \to D^{(*)0}K^-) + \Gamma(B^+ \to \overline{D}^{(*)0}K^+)} = 1 + |\mathbf{z}^{(*)}|^2 \pm (x_-^{(*)} + x_+^{(*)}) \end{split}$$

• Atwood-Dunietz-Soni (ADS) method, based on D decays to doubly-Cabibbo-suppressed final states, such as $D^0 \to K^+ \pi^-$

$$R_{\pm}^{(*)} \equiv \frac{\Gamma(B^{\pm} \to [K^{\mp} \pi^{\pm}]_{D}^{(*)} K^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm} \pi^{\mp}]_{D}^{(*)} K^{\pm})} = r_{B^{\pm}}^{(*)}{}^{2} + r_{D}^{2} + 2\lambda r_{D} \left[x_{\pm}^{(*)} \cos \delta_{D} - y_{\pm}^{(*)} \sin \delta_{D} \right]$$
$$R_{\pm}^{K\pi\pi^{0}} = r_{B^{\pm}}{}^{2} + r_{K\pi\pi^{0}}^{2} + 2\kappa_{K\pi\pi^{0}} r_{K\pi\pi^{0}} \times \left[x_{\pm} \cos \delta_{K\pi\pi^{0}} - y_{\pm} \sin \delta_{K\pi\pi^{0}} \right]$$

Direct CP violation with $B^{\pm} \to D^{(*)}K^{(*)\pm}$

 \mathbf{b}^{+}

0.2

0.4

0.2

***^**+

0.4

∠ s⁺

0 2

GGSZ

Two-dimensional contours up to three standard deviations. The blue and red contours correspond to B^- and B^+ decays.

GGSZ and GLW

GGSZ, GLW, and ADS combination

Direct CP violation with $B^{\pm} \to D^{(*)} K^{(*)\pm}$

Combined GGSZ, GLW, ADS

- $\gamma = (69^{+17}_{-16})^{\circ}$ $\gamma = (68^{+15}_{-14})^{\circ}$ (Belle) and $\gamma = (71.1^{+16.6}_{-15.7})^{\circ}$ (LHCb)
- uncertainty is dominated by the statistical component
- experimental and amplitude-model systematic uncertainties amounting to $\pm 4^{\circ}$
- two-standard-deviation region is $41^{\circ} < \gamma < 102^{\circ}$
- result is inconsistent with $\gamma = 0$ with a significance of 5.9 standard deviations

Phys. Rev. D 87, 052015 (2013)

T transformation is antiunitary $\vec{v} \rightarrow -\vec{v}$ and exchange of in and out states

- P violation in nuclear β decay (T.D.Lee, C.N.Yan, C.S.Wu et.al., 1957)
- CP violation in K^0 mesons (J.W.Cronin et.al., 1964)
- CP violation in B^0 mesons (BaBar and Belle, 2001)

 $\Upsilon(4S)$ decay yields an entangled state of B mesons

•
$$|i\rangle = \frac{1}{\sqrt{2}} \left(B^0(t_1) \bar{B}^0(t_2) - \bar{B}^0(t_1) B^0(t_2) \right)$$

Flavor tag: semileptonic decay to $l^- X(l^+ X)$ projects $\bar{B}^0(B^0) \to B^0(\bar{B}^0)$ tag

• $|i\rangle = \frac{1}{\sqrt{2}} \left(B_{+}(t_1)B_{-}(t_2) - B_{-}(t_1)B_{+}(t_2) \right)$

CP tag: B decay to $J/\psi K_L$ projects $B_+ \to B_-$ tag and B decay to $J/\psi K_S$ projects $B_- \to B_+$ tag

T-transformed processes

4 independent T comparisons

$B^0 \to B_+$	$(l^-,J/\psi K^0_L)$	$B_+ \to B^0$	$(J/\psi K^0_S, l^+)$
$B^0 \rightarrow B$	$(l^-,J/\psi K^0_S)$	$B \to B^0$	$(J/\psi K^0_L, l^+)$
$\bar{B}^0 \to B_+$	$(l^+, J/\psi K_L^0)$	$B_+ \to \bar{B}^0$	$(J/\psi K^0_S, l^-)$
$\bar{B}^0 \to B$	$(l^{+}, J/\psi K_{S}^{0})$	$B \to \bar{B}^0$	$(J/\psi K_L^0, l^-)$

4 independent CP comparisons

4 independent CPT comparisons

Signal sample

• select *B* candidates using beamenergy substituted mass and energy difference

$$m_{ES} = \sqrt{E_{beam}^2 - p_B^2}$$
$$\Delta E = E_B - E_{beam}$$

• background rejection: vetoes to B background and suppress continuum using event shape variables

$$\begin{array}{c} \hline{cc}K_S & B^0 \to J/\psi K_S \\ B^0 \to \psi(2S)K_S \\ B^0 \to \chi_{c1}K_S \\ \hline{cc}K_L & B^0 \to J/\psi K_L \\ \hline{B_{flavor}} & B^0 \to D^*\pi(\rho,a_1) \\ B^0 \to J/\psi K^{*0} \end{array}$$

Fit to signal parameters

8 time-dependent decay rates

$$g_{\alpha,\beta}^{\pm}(|\Delta t|) \propto e^{-\Gamma|\Delta t|} \left[1 + S_{\alpha,\beta}^{\pm} sin(\Delta m_d |\Delta t|) + C_{\alpha,\beta}^{\pm} cos(\Delta m_d |\Delta t|) \right]$$

 $\pm -\Delta t > 0, < 0$

 α,β - flavor, CP reco

• for example $\bar{B}^0 \to B_ (l^+, K_S)$ is characterized by $S^+_{l^+, K_S}$

• T reversed transition $B_- \to \bar{B}^0$ (K_L, l^-) is characterized by $S^-_{l^-, K_L}$

• parameter of T violation:
$$\Delta S_T^+ = S_{l^-, K_L}^- - S_{l^+, K_S}^+$$

 $(\Delta S_T^- = S_{l^-, K_L}^+ - S_{l^+, K_S}^-)$

$$B \to \pi \ell^+ \ell^-$$
 and $B^0 \to \eta \ell^+ \ell^-$ decays

Event selection

- $p_l > 0.3 \ GeV/c$
- $0.03 < m_{ll} < 5 \ GeV/c^2$
- $115 < m_{\gamma\gamma} < 150 \ MeV/c^2 \ \text{for} \ \pi^0$
- η reconstruction $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$
- $500 < m_{\gamma\gamma} < 575 \ MeV/c^2$ $535 < m_{3\pi} < 565 \ MeV/c^2$ for η

- flavour-changing neutral current $b \rightarrow d$
- forbidden at tree level in SM
- predicted fraction $\sim 10^{-8}$
- LHCb $B^+ \to \pi^+ \mu^+ \mu^ Br = (2.3 \pm 0.6 \pm 0.1) \cdot 10^{-8}$
- lepton pair and hadron are fit to common vertex
- $m_{ES} > 5.1 \; GeV/c^2$
- $-300 < \Delta E < 250 \ MeV$
- $B \to J/\psi X$ and $B \to \psi(2S)X$ reject events with m_{ll} near J/ψ and $\psi(2S)$ masses

$B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$ decays

Event selection: NN to reject combinatorial background

Variables for continuum NN

- Fox-Wolfram moments
- polar angle of thrust axis of event
- polar angle of thrust axis of rest of event (ROE)
- $L_i^j = \sum_k p_k^j \cos^i \theta$
- polar angle of B candidate
- probability of vertex fit

Variables for $B\bar{B}$ NN

- m_{ES} and ΔE
- total P_t
- missing energy
- momentum ROE transverse to beam direction
- momentum ROE transverse to thrust axis
- polar angle of B candidate
- probability of vertex fit

Also some set of tune cuts for angles and momenta of particles

To select the best candidate the following ratio is used

$$\mathcal{L}_{R}(x,y) = \frac{\mathcal{P}_{B\overline{B}}^{\mathrm{sig}}(x) + \mathcal{P}_{\mathrm{cont}}^{\mathrm{sig}}(y)}{(\mathcal{P}_{B\overline{B}}^{\mathrm{sig}}(x) + \mathcal{P}_{\mathrm{cont}}^{\mathrm{sig}}(y)) + (\mathcal{P}_{B\overline{B}}^{\mathrm{bkg}}(x) + \mathcal{P}_{\mathrm{cont}}^{\mathrm{bkg}}(y))}$$

$B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$ decays

preliminary

Mode	arepsilon	Yield	$B(10^{-8})$	Upper Limit (10^{-8})
$B^+ \rightarrow \pi^+ e^+ e^-$	0.207	$4.2^{+5.7}_{-4.6}$	$4.3^{+5.9}_{-4.3}\pm2.0$	12.5
$B^0 \rightarrow \pi^0 e^+ e^-$	0.166	$1.0^{+4.2}_{-3.2}$	$1.3^{+5.4}_{-4.1}\pm 0.2$	8.4
$B^0 \to \eta e^+ e^-$			$-4.0^{+10.0}_{-8.0} \pm 0.6$	10.8
$B^0 \to \eta_{\gamma\gamma} e^+ e^-$	0.166	$^{-1.2}^{+3.1}_{-2.4}$	0.0	
$B^0 \to \eta_{3\pi} e^+ e^-$	0.111	$-0.5^{+1.2}_{-0.9}$		
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.149	$-0.5^{+3.1}_{-2.3}$	$-0.7^{+4.4}_{-3.2}\pm0.9$	5.5
$B^0 \to \pi^0 \mu^+ \mu^-$	0.121	$-0.2^{+3.0}_{-2.0}$	$-0.3^{+5.3}_{-3.6}\pm 0.6$	6.9
$B^0 \rightarrow \eta \mu^+ \mu^-$			$-2.0^{+10.0}_{-6.6} \pm 0.4$	11.2
$B^0 \to \eta_{\gamma\gamma} \mu^+ \mu^-$	0.104	$-0.4^{+1.9}_{-1.3}$		
$B^0 \to \eta_{3\pi} \mu^+ \mu^-$	0.063	$-0.1 \substack{+0.6 \\ -0.4}$		
$B \rightarrow \pi e^+ e^-$			$4.0^{+5.1}_{-4.3} \pm 1.6$	11.0
$B \rightarrow \pi \mu^+ \mu^-$			$-0.7^{+4.1}_{-3.1} \pm 1.2$	5.0
$B^+ \rightarrow \pi^+ \ell^+ \ell^-$			$1.6^{+3.6}_{-3.0}\pm 1.2$	6.6
$B^0 \to \pi^0 \ell^+ \ell^-$			$0.5^{+3.7}_{-2.9}\pm 0.3$	5.3
$B^0 \rightarrow \eta \ell^+ \ell^-$			$-2.8^{+6.6}_{-5.2} \pm 0.3$	6.4
$B \to \pi \ell^+ \ell^-$			$1.6^{+3.2}_{-2.7} \pm 1.0$	5.9

$$B \to \pi \ell^+ \ell^-$$
 and $B^0 \to \eta \ell^+ \ell^-$ decays

- observe no statistically significant signal
- lepton-flavor and isospin averaged upper limit at the 90% CL
 B(B → πℓ⁺ℓ⁻) < 5.9 × 10⁻⁸
 factor of three of the SM expectation.
- upper limits have also been calculated for different $\pi \ell^+ \ell^-$ modes
- $\mathcal{B}(B^0 \to \eta \ell^+ \ell^-) < 6.4 \times 10^{-8}$
- upper limits have also been calculated for different $\eta \ell^+ \ell^-$ modes
- lowest upper limits to date for $B \to \pi^0 \ell^+ \ell^-$
- first search for the decays $B^0 \to \eta \ell^+ \ell^-$

arXiv:1303.6010[hep-ex], submitted to Phys. Rev. D

- lowest-order diagrams of SM decay $c\bar{c}$ into $\nu\bar{\nu}$ and SUSY decay into pair of goldstinos
- SM predicts

 $Br(B^+ \to K^+ \nu \bar{\nu} = Br(B^0 \to K^0 \nu \bar{\nu} = (4.5 \pm 0.7) \cdot 10^{-6}$ $Br(B^+ \to K^{*+} \nu \bar{\nu} = Br(B^0 \to K^{*0} \nu \bar{\nu} = (6.8^{+1.0}_{-1.1}) \cdot 10^{-6}$ $Br(J/\psi \to \nu \bar{\nu}) = (4.54 \cdot 10^{-7}) \cdot Br(J/\psi \to l^+ l^-)$

$B \to K^{(*)} \nu \bar{\nu}$ and invisible $J/\psi \to \nu \bar{\nu}, \, \psi(2S) \to \nu \bar{\nu}$ decays

- B_{tag} reconstructed in one of many hadronic final states
- require purity greater than 68% 448 final states
- $\bullet \quad -0.12 < \Delta E < 0.12 \ GeV$
- $5.273 < m_{ES} < 5.290 \ GeV$

Continuum background is suppressed by using multivariate likelihood selector input is six event-shape variables

- angle between B_{tag} momentum and beam axis
- B_{tag} thrust
- B_{tag} thrust along beam axis
- angle between missing momentum and beam axis
- second-to-zeroth Fox-Wolfram moment

Six channels
$$B \to K^{(*)} \nu \bar{\nu}$$

• $B^+ \to K^+ \nu \bar{\nu}$

•
$$B^0 \to K_S \nu \bar{\nu}$$

• $B^+ \to K^{*+} \nu \bar{\nu}$ $K^{*+} \to K^+ \pi^0$ and $K^{*+} \to K_S \pi^+$

•
$$B^0 \to K^{*0} \nu \bar{\nu}$$

$$K^{*0} \to K^+ \pi^-$$
 and $K^{*0} \to K_S \pi^0$

 $\pi^{0}: 100 < m_{\gamma\gamma} < 160 \ MeV/c^{2}$ $K_{S}: \pm 7 \ MeV/c^{2} \text{ of nominal}$ $K^{*}: \pm 70 \ MeV/c^{2} \text{ of nominal}$

$B \to K^{(*)} \nu \bar{\nu}$ and invisible $J/\psi \to \nu \bar{\nu}, \, \psi(2S) \to \nu \bar{\nu}$ decays

Phys. Rev. D87, 112005 (2013)

- $s_B = m_{\nu \bar{\nu}}^2 / m_B^2$
- combinatorial (shaded) m_{ES} peaking (solid)
- signal MC (dashed) $Br(B^+ \to K^+ \nu \bar{\nu}) = 20 \cdot 10^{-5}$ other modes $50 \cdot 10^{-5}$
- events to the left of the vertical line are selected to obtain limits

Results

- $0 < s_B < 0.3$ signal region to calculate upper limits
- $Br(B \to K \nu \bar{\nu}) < 3.2 \cdot 10^{-5}$
- $Br(B \to K^* \nu \bar{\nu}) < 7.9 \cdot 10^{-5}$

 $Br(J/\psi \to \nu\bar{\nu}) < 3.9 \cdot 10^{-3} \text{ and } Br(\psi(2S) \to \nu\bar{\nu}) < 15.5 \cdot 10^{-3}$ BES: $Br(J/\psi \to \nu\bar{\nu}) < (1.2 \cdot 10^{-2}) \cdot Br(J/\psi \to \mu^+\mu^-) 90\%$ CL

Direct asymmetry in $B \to X_s \gamma$ decays

- $A_{CP} = \frac{\Gamma_{b \to s\gamma} \Gamma_{\bar{b} \to \bar{s}\gamma}}{\Gamma_{b \to s\gamma} + \Gamma_{\bar{b} \to \bar{s}\gamma}}$
- $\propto Im \left[(V_{ub} V_{us}^*) / (V_{tb} V_{ts}^*) \right]$
- $-0.6\% < A_{CP}^{SM} < 2.8\%$ long distance dominated
- $A_{CP}(average) = -(1.2 \pm 2.8)\%$ BaBar, Belle, CLEO

- $\Delta A_{X_s\gamma} \propto Im(C_{8g}/C_{7\gamma})$
- electro-magnetic $C_{7\gamma}$ and chromo-magnetic C_{8g} dipole operators are real in SM

•
$$\Delta A_{X_s \gamma} = 0$$
 in SM

Direct asymmetry in $B \to X_s \gamma$ decays

#	Final State	#	Final State
1*	$B^+ \to K_S \pi^+ \gamma$	20	$B^0 \rightarrow K_S \pi^+ \pi^- \pi^+ \pi^- \gamma$
2*	$B^+ \rightarrow K^+ \pi^0 \gamma$	21	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \pi^0 \gamma$
3*	$B^0 ightarrow K^+ \pi^- \gamma$	22	$B^0 ightarrow K_S \pi^+ \pi^- \pi^0 \pi^0 \gamma$
4	$B^0 o K_S \pi^0 \gamma$	23*	$B^+ o K^+ \eta \gamma$
5*	$B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$	24	$B^0 o K_S \eta \gamma$
6*	$B^+ ightarrow K_S \pi^+ \pi^0 \gamma$	25	$B^+ ightarrow K_S \eta \pi^+ \gamma$
7*	$B^+ ightarrow K^+ \pi^0 \pi^0 \gamma$	26	$B^+ ightarrow K^+ \eta \pi^0 \gamma$
8	$B^0 ightarrow K_S \pi^+ \pi^- \gamma$	27*	$B^0 o K^+ \eta \pi^- \gamma$
9*	$B^0 ightarrow K^+ \pi^- \pi^0 \gamma$	28	$B^0 o K_S \eta \pi^0 \gamma$
10	$B^0 ightarrow K_S \pi^0 \pi^0 \gamma$	29	$B^+ ightarrow K^+ \eta \pi^+ \pi^- \gamma$
11*	$B^+ o K_S \pi^+ \pi^- \pi^+ \gamma$	30	$B^+ ightarrow K_S \eta \pi^+ \pi^0 \gamma$
12^{*}	$B^+ ightarrow K^+ \pi^+ \pi^- \pi^0 \gamma$	31	$B^0 o K_S \eta \pi^+ \pi^- \gamma$
13*	$B^+ ightarrow K_S \pi^+ \pi^0 \pi^0 \gamma$	32	$B^0 o K^+ \eta \pi^- \pi^0 \gamma$
14*	$B^0 ightarrow K^+ \pi^+ \pi^- \pi^- \gamma$	<mark>33</mark> *	$B^+ \to K^+ K^- K^+ \gamma$
15	$B^0 ightarrow K_S \pi^0 \pi^+ \pi^- \gamma$	<mark>34</mark>	$B^0 ightarrow K^+ K^- K_S \gamma$
16*	$B^0 ightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$	35	$B^+ ightarrow K^+ K^- K_S \pi^+ \gamma$
17	$B^+ \to K^+ \pi^+ \pi^- \pi^+ \pi^- \gamma$	36	$B^+ ightarrow K^+ K^- K^+ \pi^0 \gamma$
18	$B^+ ightarrow K_S \pi^+ \pi^- \pi^+ \pi^0 \gamma$	37*	$B^0 ightarrow K^+ K^- K^+ \pi^- \gamma$
19	$B^+ \to K^+ \pi^+ \pi^- \pi^0 \pi^0 \gamma$	38	$B^0 \to K^+ K^- K_S \pi^0 \gamma$

- 38 final states
- (*) in CP measurement 10 charged and 6 neutral
- π^0 and η decays to 2γ $E_{\gamma} > 30 \ MeV$ for π^0 $E_{\gamma} > 50 \ MeV$ for η
- $\label{eq:eq:expansion} \begin{array}{l} \bullet \ \ 1.6 < E_{\gamma}^* < 3.0 \ GeV \\ -0.74 < cos \theta < 0.93 \end{array}$
- $0.6 < m_{X_s} < 3.2 \ GeV/c^2$
- $m_{ES} > 5.24 \ GeV/c^2$
- $|\Delta E| < 0.15 \ GeV$
- $|\cos\theta^*_{Troe-\gamma}| < 0.85$

Yu.I. Skovpen, QFTHEP-2013, June 30, 2013

Direct asymmetry in $B \to X_s \gamma$ decays

uncertainty smaller than current world average

• $A_{CP} = (1.7 \pm 1.9 \pm 1.0)\%$ $0.07 \le Im(C_{8q}/C_{7\gamma}) \le 4.74\ 68\%\ CL$ $-1.64 \leq Im(C_{8g}/C_{7\gamma}) \leq 6.52 \ 90\% \ \text{CL}$

• $\Delta A_{X_s \gamma} = (5.0 \pm 3.9 \pm 1.5)\%$ the first measurement

$$B \to D^{(*)} \tau \nu$$
 decay

- SM rate well predicted, $\sim 2\%$
- many common factors in decay rate to e, μ, τ

•
$$R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}l\nu)}$$

independent of $|V_{cb}|$ and to large extent of parametrization of hadronic matrix elements

- SM uncertainty for R(D) 6% and for $R(D^*)$ 2%
- charged Higgs contributions at tree level
- sensitive to vector vs. scalar current

- reconstruct only $\tau^- \to e^- \bar{\nu}_e \nu_{\tau}$ and $\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}$
- fully reconstructing B_{tag} $m_{ES} > 5.27 \ GeV/c^2$ $|\Delta E| < 0.072 \ GeV$
- B_{sig} : $D^{(*)}$, lepton and ν (missing energy)

$$B \to D^{(*)} \tau \nu$$
 decay

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cb}|^2 p_{D(*)} q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_\tau^2}{q^2}\right)^2 \left[\left(|H_+|^2 + |H_-|^2] + |H_0|^2\right) \left(1 + \frac{m_\tau^2}{2q^2}\right) + \frac{3m_\tau^2}{2q^2} |H_s|^2 \right]$$

• H_{\pm}, H_0 - Helicity amplitudes common to e, μ, τ

$$R(D^{(*)})_{SM} = \begin{cases} 0.297 \pm 0.017(D) \\ 0.252 \pm 0.003(D^*) \end{cases}$$

- only H_0 affects $D(e, \mu, \tau)\nu$ decays
- H_s only relevant for au

 $Dl\nu$

 $D^* l \nu$

$B \to D^{(*)} \tau \nu$ decay

- $p_e > 0.3 \ GeV/c$ and $p_{\mu} > 0.2 \ GeV/c$
- $D^0 \to K^- \pi^+, K^- K^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+, K_S \pi^+ \pi^-$
- $D^+ \to K^- \pi^+ \pi^+, K^- \pi^+ \pi^+ \pi^0, K_S \pi^+, K_S \pi^+ \pi^+ \pi^-, K_S \pi^+ \pi^0, K^+ \pi^+$
- $D^{*+} \to D^0 \pi^+, \ D^+ \pi^0$
- $D^{*0} \rightarrow D^0 \pi^0, \ D^0 \gamma$

- $|\cos\Delta\theta_{th}| < 0.8$, $\Delta\theta_{th}$ angle between thrust axes B_{tag} and B_{sig}
- $q^2 > 4 \ GeV^2$
- $p_{miss} > 0.2 \ GeV$
- boosted decision tree multivariate method with variables:

To extract signal from a fit to two dimensional distribution m_{miss}^2 vs. p_l

$B \to D^{(*)} \tau \nu$ decay

Phys. Rev. Lett. 109, 101802 (2012)

- excess over the SM predictions for *R(D)* and *R(D*)* of 2.0σ and 2.7σ
- $\mathcal{R}(D^{(*)})_{\text{th}} = \mathcal{R}(D^{(*)})_{\text{SM}}$ probability of 6.9×10^{-4} SM predictions is excluded at the 3.4σ
- $\mathcal{R}(D) = 0.440 \pm 0.058 \pm 0.042$ $\mathcal{R}(D)_{SM} = 0.297 \pm 0.017$
- $\mathcal{R}(D^*) = 0.332 \pm 0.024 \pm 0.018$ $\mathcal{R}(D^*)_{SM} = 0.252 \pm 0.003$

average of the previous measurements (shading)

$B \to D^{(*)} \tau \nu$ decay

Two-Higgs-Doublet Model (2HDM)

$$H_{eff} = \frac{4G_F V_{Cb}}{\sqrt{2}} \left[(\bar{c}\gamma_{\mu} P_L b) (\bar{\tau}\gamma_{\mu} P_L \nu_{\tau}) + S_L (\bar{c}\gamma_{\mu} P_L b) (\bar{\tau}\gamma_{\mu} P_L \nu_{\tau}) + S_R (\bar{c}\gamma_{\mu} P_R b) (\bar{\tau}\gamma_{\mu} P_L \nu_{\tau}) \right]$$

$$H_s^{2HDM} \simeq H_s^{SM} \cdot \left(1 + (S_R \pm S_L) \frac{q^2}{m_\tau (m_b \mp m_c)} \right)$$
type III : S_R and S_L independent complex parameters
type II : $S_R = -m_b m_\tau tan\beta/m_{H^{\pm}}$ and $S_L = 0$

$$Dl\nu$$

$$D^* l\nu$$

$$\int_{0}^{\frac{1}{2}} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac$$

Efficiency corrected q^2 distributions for $D\tau\nu$ (top) and $D^*\tau\nu$ (bottom) events with $m_{miss}^2 > 1.5 \ GeV^2$ scaled to the results of the isospin-constrained fit. Left: SM. Center: $tan\beta/m_{H^{\pm}} = 0.30 \ GeV^{-1}$. Right: $tan\beta/m_{H^{\pm}} = 0.45 \ GeV^{-1}$. The uncertainty on the data points includes the statistical uncertainties of data and simulation.

- favored regions for real values of S_R and S_L
- bottom two solutions are excluded by the measured q^2 spectra with significance of at least 2.9σ

- BaBar finished collecting data five years ago but the collaboration continues to publish new results
- the current publication rate is about 30 journal publications per year
- many analysis in progress