

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic CP Violation in Neutrino Oscillations

Tommy Ohlsson

KTH Royal Institute of Technology

Based on T. Ohlsson, H. Zhang & S.Zhou, Phys. Rev. D 87 (2013) 013012; Phys. Rev. D 87 (2013) 053006; Phys. Rev. D (to be published), arXiv:1303.6130

Outline

- Introduction
- RG running of Dirac CP-violating phase
- Leptonic CP violation in v oscillations
- NSI effects @ IceCube (DeepCore & PINGU)
- Summary

Open Questions in v Physics

• Are neutrinos Dirac or Majorana particles?

Lepton number violation, neutrinoless double beta decays

• What is the neutrino mass ordering?

Normal $(m_1 < m_2 < m_3)$ or inverted $(m_3 < m_1 < m_2)$?

• What is the absolute neutrino mass scale?

Is the lightest v massless? Hierarchical or degenerate?

• What is the origin of neutrino masses and flavor mixing?

Seesaw mechanisms, flavor symmetries, ...

• Is there CP violation in the lepton sector?

What is the value of the Dirac CP-violating phase δ ?

Current Status

ROYAL INSTITUTE OF TECHNOLOGY

Precision measurements of neutrino parameters:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{Forero et al., Phys. Rev. D}}_{\text{Fogli et al., Phys. Rev. D}}_{\text{86 (2012) 073012}}$$

	Atmospheric /ReadAcceleratorAccel	ctor / lerator	Solar / Reactor	Gonzalez-Garo JHEP 1212 (20	cia <i>et al</i> ., 012) 123
		bfp $\pm 1\sigma$			3σ range
$\sin^2 \theta_{12}$		0.30 ± 0.013	Pascoli & Sch	Pascoli & Schwetz	
$\theta_{12}/^{\circ}$		33.3 ± 0.8	Adv. HEP (20	013) 503401	$31 \rightarrow 36$
$\sin^2\theta_{23}$		$0.41^{+0.037}_{-0.025} \oplus 0.59^+_{-}$	0.021		$0.34 \rightarrow 0.67$
$\theta_{23}/^{\circ}$		$40.0^{+2.1}_{-1.5} \oplus 50.4^+_{-}$	1.2 1.3		$36 \rightarrow 55$
$\sin^2 \theta_{13}$		0.023 ± 0.0023	3		$0.016 \ \rightarrow \ 0.030$
$\theta_{13}/^{\circ}$		$8.6^{+0.44}_{-0.46}$			$7.2 \rightarrow 9.5$
$\delta/^{\circ}$	Leptonic CP violation	300_{-138}^{+66}			$0 \rightarrow 360$
$\Delta m_{21}^2 / 10^{-5} \mathrm{eV}^2$		7.50 ± 0.185			$7.00 \rightarrow 8.09$
$\Delta m_{31}^2 / 10^{-3} \mathrm{eV}^2$ (NF	H)	$2.47^{+0.069}_{-0.067}$	Noutrino mas	Noutrino mass ordering?	$2.27 \rightarrow 2.69$
$\Delta m_{32}^2 / 10^{-3} \mathrm{eV}^2$ (IH)	$-2.43^{+0.042}_{-0.065}$			$-2.65 \rightarrow -2.24$

Leptonic CP Violation in v Oscillations

Neutrino Mass Ordering

ROYAL INSTITUTE OF TECHNOLOGY

- Medium-baseline reactor experiments: Daya Bay-II, RENO-II
- Long-baseline accelerator experiments: T2K, NOvA, LBNO, LBNE
- Huge neutrino telescopes: PINGU, ORCA

Leptonic CP Violation

Branco et al., Rev. Mod.

Forero et al.

Phys. 84 (2012) 515

ROYAL INSTITUTE OF TECHNOLOGY

Parameter

Neutrino oscillations in vacuum:

$$A_{\alpha\beta}^{\rm CP} \equiv P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) - P(\overline{\mathbf{v}}_{\alpha} \rightarrow \overline{\mathbf{v}}_{\beta})$$

Fogli *et al*.

$$= 16 \underbrace{s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta}_{J: \text{ Jarlskog Invariant}} \sin\frac{\Delta m_{21}^{2}L}{4E} \sin\frac{\Delta m_{32}^{2}L}{4E} \sin\frac{\Delta m_{31}^{2}L}{4E}$$

Gonzalez-Garcia et al.

- First hint from global fits?

$\sin^2\theta_{12}$	0.307	0.300	0.320		
5 II 0 12	0.291-0.325	0.287–0.313	0.303-0.336	-	
$\sin^2\theta_{13}$	0.0241	0.0230	0.0246	_	
	0.386	0.0207-0.0255	0.427	ß	
$\sin^2\theta_{23}$	0.365-0.410	0.385-0.447	0.400-0.461	D	
$\Delta m^2 / 10^{-5} \text{ eV}^2$	7.54	7.50	7.62	Γ	
Δm_{21} 10 CV	7.32–7.80	7.32–7.69	7.43–7.81		
$\Delta m_{31}^2 / 10^{-3} \text{ eV}^2$	2.51	2.47	2.55	-	
51	2.41-2.57	2.40-2.54	2.46-2.61	C	
δ/π	0.77–1.36	0.90–2.03	0-2.0		
				-	

- Predictions from theories?
- Compare between theory & exp. observation of δ: Radiative corrections

- Optimize the exp. setup: CP measures, v-oscillogram

E.g., NSI effects in the ice

Leptonic CP Violation in v Oscillations

RG Running of Neutrino Parameters

Why is RG running important?

- Grand Unified Theories: SU(5), SO(10), ...
- Extra-dimensional models: ADD, UED, ...
- Flavor symmetry models: A₄, S₄, ...

RG Running of Neutrino Parameters

The SM as an effective theory: dimension-5 operator ^{Weir} 43 (2)

Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Majorana neutrino mass matrix:

$$M_{\nu} = \kappa v^2$$

Masses, mixing angles, and leptonic CP-violating phases

Antusch *et al.*, Phys. Lett. B 519 (2001) 238

Renormalization Group Equation:

 $[\Lambda]^{-1}$: high energy scale Λ

 $\mathcal{L}_{\nu} = \frac{1}{2} (\overline{\ell} H) \cdot \kappa \cdot (H^T \ell^C)$

$$16\pi^2 \frac{\mathrm{d}\kappa}{\mathrm{d}t} = \alpha_{\kappa} + C_{\kappa} [(Y_l Y_l^{\dagger})\kappa + \kappa (Y_l Y_l^{\dagger})^T]$$

$$t = \ln\left(\frac{\mu}{\Lambda_{\rm EW}}\right) \qquad C_{\kappa} = -\frac{3}{2}$$
$$\alpha_{\kappa} = -3g_2^2 + \lambda + 2\operatorname{tr}\left[3\left(Y_{\rm u}Y_{\rm u}^+\right) + 3\left(Y_{\rm d}Y_{\rm d}^+\right) + \left(Y_{l}Y_{l}^+\right)\right]$$

- Realized in various seesaw models

- Running of masses is dominated by the flavor-diagonal term (gauge, quark Yuk.)

- RG running of mixing angles and CPviolating phases is dominated by charged-lepton Yukawa couplings

MSSM and 5D-UED

OYAL INSTITUT FTECHNOLOGY

Extensions of the SM: supersymmetry and extra dimensions

$$L_{\nu} = \frac{1}{2} L H_{u} \cdot \kappa \cdot L H_{u}$$

v mass matrix:

$$M_v = \kappa (v \sin \beta)^2$$

RGE coefficients:

 $C_{\kappa}^{\text{MSSM}} = 1$

Tau Yukawa coupling dominated:

$$y_{\tau}^2 = m_{\tau}^2 (1 + \tan^2 \beta) / v^2$$

$$L_{\nu} = \frac{1}{2} LH \cdot \hat{\kappa} \cdot LH$$

v mass matrix: $M_{\nu} = \hat{\kappa} v^2 / (\pi R)$

radius of the extra spatial dimension

RGE coefficients: $C_{\kappa}^{\text{UED}} = C_{\kappa}^{\text{SM}} \left(1 + s\right)$

number of excited KK modes

Coefficient becomes larger at higher- $s \equiv \left| \ln \left(\frac{\mu}{\mu_0} \right) \right|$ energy scales:

RG Running of Dirac CP-violating Phase

ROYAL INSTITUTE OF TECHNOLOGY

In the standard parametrization:

$$\dot{\delta} \approx -\frac{C_{\kappa} y_{\tau}^2}{8\pi^2} \frac{m_1^2}{\Delta m_{21}^2} \bigg\{ s_{23}^2 s_{2(\rho-\sigma)} + \frac{2s_{23}c_{23}}{s_{12}c_{12}s_{13}} \bigg(s_{13}^2 c_{(\delta+\rho-\sigma)} + \frac{\Delta m_{21}^2}{\Delta m_{31}^2} s_{12}^2 c_{12}^2 c_{(\delta+\rho+\sigma)} s_{(\rho-\sigma)} \bigg] \bigg\}$$

enhanced if neutrino masses are nearly degenerate

the same order of magnitude according to the latest global-fit results

- Keep all contributions of the same order.
- RG running depends crucially on the Majorana CP-violating phases; insignificant running for $\rho = \sigma$.
- RG running is in the opposite direction for the MSSM, compared to the SM and 5D-UED.

significant running for large $tan\beta$

Leptonic CP Violation in v Oscillations

Leptonic CP Violation in v Oscillations

Summary for RG Running of $\boldsymbol{\delta}$

> The RGE of the leptonic Dirac CP-violating phase is derived, and small contributions of the same order are included.

> Very tiny RG running effects in the SM, even for nearly-degenerate neutrino masses

> No significant RG running also in the MSSM and 5D-UED, except for a very large tan β in the former case; however, note the dependence on the Majorana phases

> Non-zero δ can be radiatively generated at the low-energy scale even if $\delta = 0$ holds at a high-energy scale.

> For Dirac neutrinos, RG running is even smaller because of the absence of Majorana CP-violating phases.

> Constraints on δ from neutrino oscillation experiments can be directly applied to theory at a superhigh-energy scale.

CP Violation and Matter Effects

ROYAL INSTITUTE OF TECHNOLOGY

Neutrino oscillations in matter:

$$H_{\rm eff} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{31}^2 \end{pmatrix} U^+ + 2\sqrt{2}G_{\rm F}N_e E \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \end{bmatrix}$$

Oscillation probabilities:

$$P_{\mu e}(\delta) = P(v_{\mu} \rightarrow v_{e}) = a \cos \delta + b \sin \delta + c$$

$$\overline{P}_{\mu e}(\delta) = P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = \overline{a} \cos \delta + \overline{b} \sin \delta + \overline{c} \} \Rightarrow A_{\mu e}^{CP}(\delta) = \Delta a \cos \delta + \Delta b \sin \delta + \Delta c$$

- Fake CP violation is induced by matter effects:
 - obscuring the intrinsic CP-violating effects by δ
- How to describe leptonic CP violation?
 - working observables based on oscillation probabilities

Working Observables

ROYAL INSTITUTE OF TECHNOLOGY

Series expansions of the probabilities in terms of $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and s_{13} :

$$a \approx +8\alpha J_r \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{A-1} \cos \Delta$$

$$b \approx -8\alpha J_r \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{A-1} \sin \Delta$$

$$c \approx 4s_{13}^2 s_{23}^2 \frac{\sin^2 (A-1)\Delta}{(A-1)^2}$$

$$J_r \equiv s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2$$

$$\Delta a \approx +8\alpha J_r \Theta_- \frac{\sin A\Delta}{A} \cos \Delta$$

$$\Delta b \approx -8\alpha J_r \Theta_+ \frac{\sin A\Delta}{A} \sin \Delta$$

$$\Delta c \approx 4s_{13}^2 s_{23}^2 \Theta_+ \Theta_-$$

$$\Theta_{\pm} \equiv \frac{\sin (A-1)\Delta}{A-1} \pm \frac{\sin (A+1)\Delta}{A+1}$$

Here $\Delta = \Delta m_{31}^2 L/4E$ and $A = VL/2\Delta$, with V being the matter potential, Δ the oscillation phase, and L the distance between the source and the detector.

$$\underline{\Delta P_{\mu e}^{CP}(\delta) \& \Delta P_{\mu e}^{m}} \underline{\Delta A_{\mu e}^{CP}(\delta) \& \Delta A_{\mu e}^{m}}$$

Definitions:

$$\Delta P_{\mu e}^{\text{CP}}(\delta) \equiv P_{\mu e}(\delta) - P_{\mu e}(\delta = 0)$$
$$\Delta P_{\mu e}^{\text{m}} \equiv \max \left[P_{\mu e}(\delta) \right] - \min \left[P_{\mu e}(\delta) \right]$$

Definitions:

$$\Delta A_{\mu e}^{\text{CP}}(\delta) \equiv A_{\mu e}^{\text{CP}}(\delta) - A_{\mu e}^{\text{CP}}(\delta = 0)$$
$$\Delta A_{\mu e}^{\text{m}} \equiv \max \left[A_{\mu e}^{\text{CP}}(\delta) \right] - \min \left[A_{\mu e}^{\text{CP}}(\delta) \right]$$

Neutrino Oscillograms of the Earth

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic CP Violation in v Oscillations

Oscillograms for CP Violation

ROYAL INSTITUTE OF TECHNOLOGY

Conventional CP asymmetry

Working observable

Leptonic CP Violation in v Oscillations

Oscillograms for CP Violation

ROYAL INSTITUTE OF TECHNOLOGY

Working observable

Locating future experiments

Leptonic CP Violation in v Oscillations

Non-Standard Neutrino Interactions

ROYAL INSTITUTE OF TECHNOLOGY

Neutrino oscillations in matter with NSIs:

$$H_{\rm eff} = \frac{1}{2E} \left\{ U \begin{pmatrix} 0 & & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{31}^2 \end{pmatrix} U^+ + 2\sqrt{2}G_{\rm F}N_e E \begin{bmatrix} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} + \begin{pmatrix} \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} \end{pmatrix} \right] \right\}$$

Oscillation probability with NSIs:

$$P_{\mu\mu}^{\text{NSI}} \simeq P_{\mu\mu}^{\text{SD}} - |\varepsilon_{\mu\tau}| c_{\phi_{\mu\tau}} \left(s_{2\times23}^3 A \Delta \sin \Delta + 4s_{2\times23} c_{2\times23}^2 A \sin^2 \frac{\Delta}{2} \right) + (|\varepsilon_{\mu\mu}| - |\varepsilon_{\tau\tau}) |s_{2\times23}^2 c_{2\times23} \left(\frac{A\Delta}{2} \sin \Delta - 2A \sin^2 \frac{\Delta}{2} \right)$$

- Deviation from the std. probability; only mu-tau flavors are involved
- Not suppressed by mixing angle θ_{13} or the mass ratio $\Delta m_{21}^2 / \Delta m_{31}^2$

Neutrino Parameter Mappings

ROYAL INSTITUTE OF TECHNOLOGY

ĩ

Leptonic mixing matrix elements in matter:

$$\begin{split} U_{e3}^{\rm m} &= \sin\hat{\theta}_{13} + \frac{\cos\hat{\theta}_{13}}{2\hat{C}} \left\{ \sin 2\hat{\theta}_{13} \left[\alpha s_{12}^2 + A(\varepsilon_{ee} - \tilde{\varepsilon}_{\tau\tau}) \right] + 2A \left[\cos 2\hat{\theta}_{13} \operatorname{Re}(\tilde{\varepsilon}_{e\tau}) + i\operatorname{Im}(\tilde{\varepsilon}_{e\tau}) \right] \right\} \\ U_{e2}^{\rm m} &= -\frac{c_{13}}{2A} \alpha \sin 2\theta_{12} - \tilde{\varepsilon}_{e\mu} + \frac{\tan\theta_{13}}{A} \tilde{\varepsilon}_{\mu\tau}^* , \\ U_{\mu3}^{\rm m} &= s_{23} \cos\hat{\theta}_{13} e^{\mathrm{i}\delta} \left\{ 1 - \frac{A \tan\hat{\theta}_{13}}{\hat{C}} \left[\cos 2\hat{\theta}_{13} \operatorname{Re}(\tilde{\varepsilon}_{e\tau}) + i\operatorname{Im}(\tilde{\varepsilon}_{e\tau}) \right] \right\} + \frac{\alpha c_{23} \sin 2\theta_{12} \sin\hat{\theta}_{13}}{1 + A + \hat{C}} , \end{split}$$

Modified NSI parameters:

 $-\varepsilon c - \varepsilon s$

Modified mixing angle:

Oscillation Probabilities with NSIs

ROYAL INSTITUTE OF TECHNOLOGY

Significant deviation in the high-energy range:

IceCube (DeepCore and PINGU)

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic CP Violation in v Oscillations

Number of Events @ PINGU

Leptonic CP Violation in v Oscillations

Sensitivity @ IceCube (DeepCore)

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic CP Violation in v Oscillations

Summary

> Future neutrino oscillation experiments aim to determine the neutrino mass ordering and measure the Dirac CP-violating phase.

> Usually theoretical prediction for the CP phase is given at a super-high energy scale, which should be compared with low-energy measurements. So, RG running has to be taken into account.

> Two new working observables have been introduced to describe intrinsic leptonic CP violation, disentangle the fake CP-violating effects, and optimize the experimental setup.

> The possibility to constrain NSIs has been investigated at IceCube (DeepCore and PINGU).