LHC Data & Aspects of New Physics

Stefano Di Chiara

Alanne, SDC, Tuominen; arXiv:1303.3615

QFTHEP 2013, St. Petersburg

- LHC data and Need for New Physics
- Technicolor (TC), Extended TC, and Near-Conformality
- Goodness of Fit Analysis of a TC Model
- Conclusions

EW Observables

All the Standard Model (SM) free parameters can be determined from experiment: the SM fits satisfactorily the data.

No deviation between prediction and measurement of EW observables is larger than 3 σ :

Higgs Linear Couplings

The measured Higgs boson couplings fit within 1 σ the SM prediction:

Only tension in $H \rightarrow \gamma \gamma$ coupling strength measured by ATLAS:

 $a_{\gamma\gamma}^{\rm ATLAS} = 1.65^{+0.35}_{-0.30} \,, \quad a_{\gamma\gamma}^{\rm CMS,MVA} = 0.78^{+0.28}_{-0.26} \,, \quad a_{\gamma\gamma}^{\rm CMS,Cut-B.} = 1.11^{+0.32}_{-0.30} \,.$

New physics states lower limits generally at O(1) TeV.

S. Di Chiara Giardino et al. 1303.3570

ATLAS-CONF-2013-012 CMS-PAS-HIG-13-001

SM Fine Tuning

SM Higgs mass at one loop:

$$M_{H}^{2} = (M_{H}^{0})^{2} + \Delta M_{H}^{2}, \quad (M_{H}^{0})^{2} = \frac{\lambda v^{2}}{2},$$

$$\Delta M_{H}^{2} = \frac{3\Lambda^{2}}{8\pi^{2}v^{2}} \left(M_{H}^{2} - 4m_{t}^{2} + 2M_{W}^{2} + M_{Z}^{2}\right) + O\left(\log\frac{\Lambda^{2}}{v^{2}}\right) =$$

$$H_{H}^{I} = \left(\int_{f}^{f} H_{H}^{I} + H_{H}^{W,Z,H}\right) \left(\int_{f}^{W,Z,H} H_{H}^{I} + H_{H}^{I}\right) + H_{H}^{I} + H$$

If $\Lambda = 2.4 \times 10^{18}$ GeV (Planck scale) $\Rightarrow \frac{\Delta M_H^2}{M_H^2} \simeq 10^{32}$: λ has to be fixed up to the 32nd digit to cancel miraculously the quantum correction ...

Dynamical EW Symmetry Breaking

In QCD at a scale Λ_{QCD} the interaction becomes strong and the quarks form a bound state with non-zero *vev*:

 $\langle 0 | \bar{u}_L u_R + \bar{d}_L d_R | 0 \rangle \neq 0, \ T_L^3 + Y_L = Y_R = Q \Rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

Redefine fields in terms of composite colorless states, like pions:

$$q = (u,d), \ j_{5a}^{\mu} = \bar{q}\gamma^{\mu}\gamma^{5}\frac{\tau_{a}}{2}q = f_{\pi}\partial^{\mu}\pi_{a}$$

and plug in \mathcal{L}_{k-f}

$$\mathcal{L}_{k-f} \supset \frac{g}{2} f_{\pi^+} W^+_{\mu} \partial^{\mu} \pi^+ + \frac{g}{2} f_{\pi^-} W^-_{\mu} \partial^{\mu} \pi^- + \frac{g}{2} f_{\pi^0} W^0_{\mu} \partial^{\mu} \pi^0 + \frac{g'}{2} f_{\pi^0} B^+_{\mu} \partial^{\mu} \pi^0$$

$$\bigvee^{W^{\pm}} \bigvee^{W^{\pm}} = \bigvee^{W^{\pm}} + \bigvee^{W^{\pm}} \xrightarrow{\pi^{\pm}} - \swarrow +$$

$$= \frac{1}{p^2} + \frac{1}{p^2} (gf_{\pi^{\pm}}/2)^2 \frac{1}{p^2} + \dots = \frac{1}{p^2 - (gf_{\pi^{\pm}}/2)^2}$$

The EW bosons have acquired mass:

$$M_W^{QCD} = gf_{\pi^{\pm}}/2, \ \rho = \frac{M_W^{QCD}}{\cos \theta_w M_Z^{QCD}} = 1,$$

Given the experimental value for the pion decay constant

$$f_{\pi} = 93 \,\mathrm{MeV} \quad \Rightarrow \quad M_W^{QCD} = 29 \,\mathrm{MeV!}$$

S. Di Chiara

Technicolor

The effective Lagrangian expansion breaks down at

$$\Lambda_{QCD} \simeq 4\pi f_{\pi} = 1.2 \,\text{GeV} \Rightarrow \Lambda_{TC} \simeq 4\pi v = 3 \,\text{TeV}, \ v = 246 \,\text{GeV}.$$

A Technicolor (TC) model able to give the right masses to the EW gauge bosons is simply "scaled up" QCD:

$$SU(N)_{TC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$$
.

No fundamental scalar \Rightarrow no fine-tuning!

The mass spectrum can be estimated by multiplying the mass of QCD composite states by v/f_{π} .

Technicolor

The effective Lagrangian expansion breaks down at

$$\Lambda_{QCD} \simeq 4\pi f_{\pi} = 1.2 \,\text{GeV} \Rightarrow \Lambda_{TC} \simeq 4\pi v = 3 \,\text{TeV}, \ v = 246 \,\text{GeV}.$$

A Technicolor (TC) model able to give the right masses to the EW gauge bosons is simply "scaled up" QCD:

$$SU(N)_{TC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$$
.

No fundamental scalar \Rightarrow no fine-tuning!

The mass spectrum can be estimated by multiplying the mass of QCD composite states by v/f_{π} .

To generate the SM fermion masses an Extended Technicolor (ETC) interaction is necessary.

S. Di Chiara

Susskind '79

Extended Technicolor

If the ETC gauge group gets broken at some large scale $\Lambda_{ETC} \gg \Lambda_{TC}$, the massive ETC gauge bosons can be integrated out.

Four fermion interactions, technifermion condensate \Rightarrow SM mass terms

$$\bigvee_{\psi_L}^{Q_L} G_{ETC}^{\mu} \bigvee_{Q_R}^{\psi_R} \to \frac{g_{ETC}^2}{M_{ETC}^2} (\bar{Q}_L Q_R) (\bar{\psi}_R \psi_L) \Rightarrow m_{\psi} \approx \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{Q}Q \rangle .$$

The lowest ETC scale is determined by the heaviest mass:

$$m_t = 173 \text{ GeV} \approx \frac{\Lambda_{TC}^3}{\Lambda_{ETC}^2} \Rightarrow \Lambda_{ETC} \simeq 10 \text{ TeV}$$

This limit would be incompatible with FCNC which require $\Lambda_{ETC} > 10^4$ TeV, but...

S. Di Chiara

Eichten, Lane '80

Running vs Walking TC

for $\Lambda_{ETC} > \mu > \Lambda_{TC}$:

• Running TC: $\alpha(\mu) \propto \frac{1}{\ln \mu}$, $\Rightarrow \langle \overline{Q}Q \rangle_{ETC} \simeq \langle \overline{Q}Q \rangle_{TC}$

• Walking TC:
$$\beta(\alpha_*) = 0 \Rightarrow \langle \overline{Q}Q \rangle_{ETC} \simeq \langle \overline{Q}Q \rangle_{TC} \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma_m(\alpha_*)}$$

Walking TC obtains big boost to fermion masses, FCNC are unaffected.

Yamawaki et al. '86, Appelquist et al '86

Walking in the SU(N)

Phase diagram for theories with fermions in the:

- fundamental representation (grey)
- two-index antisymmetric (blue)
- two-index symmetric (red)
- adjoint representation (green)

The S parameter for a TC model is estimated by:

$$S_{th} \approx \frac{1}{6\pi} \frac{N_f}{2} d(\mathbf{R}),$$

 $12\pi S_{exp} \le 6 @ 95\%$ 11

Higgs Mass

In QCD the composite scalar is σ (or $f_0(500)$ in PDG):

 $M_{\sigma} = 400 - 550 \text{ MeV} \quad \Rightarrow \quad M_H^{TC} \simeq M_{\sigma} v / f_{\pi} = 1 - 1.4 \text{ TeV}$

To this estimate one must add also the (Higgsless) SM loop corrections:

For SM-like $f_{\Pi} = v, r_t = s_{\pi} = 1, M_H = 125 \text{ GeV} \Rightarrow M_H^{TC} = 550 \text{ GeV}.$

Techni-Dilaton

Dilaton=Goldstone boson associated with conformal invariance:

$$\langle 0 \mid \Theta^{\mu}_{\mu} \mid D \rangle = -f_D m_D^2 , \quad \Theta^{\mu}_{\mu} = \beta \frac{\partial \mathcal{L}}{\partial g}$$

For a walking theory $\beta \propto \alpha_c (\alpha_* - \alpha_c)$ is close to zero, therefore

$$m_D^2(N_f^*) \propto N_f^c - N_f^* \ll 1$$

If one could measure $m_D(N_f^* = 1) \equiv 1$ TeV, for two techni-fermions in the symmetric representation ($N_f^c = 2.5$), one would find

$$m_D(N_f^*) = M_H^{TC} = \sqrt{\frac{N_f^c - 2}{N_f^c - 1}} \text{ TeV} = 600 \text{ GeV} ,$$

which together with the SM loop corrections would be enough to generate $m_H = 125$ GeV.

S. Di Chiara

Dietrich, Tuominen, Sannino '05; Yamawachi et al. '12

Next to Minimal Walking Technicolor

TC-fermions in the $SU(3)_{TC}$ 2-index symmetric representation: a = 1, 2, 3;

$$Q_L^a = \begin{pmatrix} U_L^a \\ D_L^a \end{pmatrix}, \ Q_R^a = \begin{pmatrix} U_R^a \\ D_R^a \end{pmatrix}$$

Gauge anomalies cancel for hypercharge assignment

$$Y(Q_L) = 0, \ Y(U_R, D_R) = \left(\frac{1}{2}, -\frac{1}{2}\right)$$

 $U(1)_{Y}$

 $SU(2)_L$

 $SU(3)_C$

 $SU(3)_{TC}$

TC Lagrangian

The elementary TC Lagrangian has a global $SU(2)_L \times SU(2)_R$ symmetry:

$$\mathcal{L}_{TC} = -\frac{1}{4} \mathcal{F}^a_{\mu\nu} \mathcal{F}^{a\mu\nu} + i\bar{Q}_L \gamma^\mu D_\mu Q_L + i\bar{U}_R \gamma^\mu D_\mu U_R + i\bar{D}_R \gamma^\mu D_\mu D_R,$$

with the covariant derivatives defined by the fields' quantum numbers. The chiral symmetry is broken by the condensate:

$$\langle Q_{Ri}^{\alpha} \bar{Q}_{Li}^{\beta} \epsilon_{\alpha\beta} \rangle \neq 0 \qquad \Rightarrow \qquad SU(2)_L \times SU(2)_R \to SU(2)_V$$

The 3 Nambu-Goldstone bosons are absorbed by the Z and W bosons.

Bosonic Technicolor

- No know viable ETC theory exists
- A scalar field coupling with the fermions provides a device to transmit EW symmetry breaking to the SM matter sector
- The scalar can be part of a supersymmetric theory or a composite originating from a dynamical ETC sector

We introduce a SM Higgs scalar with $\mu^2 > 0$ and

$$\mathcal{L} \supset y_{TC} \bar{Q}_L H Q_R$$
.

Low Energy Lagrangian

Effective Lagrangian has the same global symmetry as fundamental one:

$$\mathcal{L}_{bTC} = D_{\mu}M^{\dagger}D^{\mu}M - m_{M}^{2}M^{\dagger}M - \frac{\lambda_{M}}{3!}\left(M^{\dagger}M\right)^{2} \\ + \left[c_{3}y_{TC}D_{\mu}M^{\dagger}D^{\mu}H + c_{1}y_{TC}f^{2}M^{\dagger}H + \frac{c_{2}y_{TC}}{3!}(M^{\dagger}M)(M^{\dagger}H) \right. \\ + \left.\frac{c_{4}y_{TC}}{3!}\lambda_{H}(H^{\dagger}H)(M^{\dagger}H) + \text{h.c.}\right] ,$$

 $M \sim Q_L \bar{Q}_R$, $M \to u_L M \bar{u}_R$, with $u_{L,R} \in SU(2)_{L,R}$.

The model that we consider is specified by the effective Lagrangian

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm bTC},$$

where \mathcal{L}_{SM} contains the SM sectors \mathcal{L}_{Higgs} and $\mathcal{L}_{Yuk}.$

EW Symmetry Breaking

The coefficients c_i are estimated by naive dimensional analysis:

$$c_1 \sim \omega$$
, $c_2 \sim \omega$, $c_3 \sim \omega^{-1}$, $c_4 \sim \omega^{-1}$; $\omega \leq 4\pi$

The vevs of M and H are constrained by m_W :

$$v_w^2 = v^2 + f^2 + 2c_3 y_{TC} f v = (246 \text{ GeV})^2, \quad \langle M \rangle = \frac{f}{\sqrt{2}}, \quad \langle H \rangle = \frac{v}{\sqrt{2}}.$$

bNMWT low energy theory is equivalent to type-I 2Higgs Doublet Model:

$$\begin{pmatrix} M \\ H \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ -A & B \end{pmatrix} \begin{pmatrix} M_2 \\ M_1 \end{pmatrix}, \ A = \frac{1}{\sqrt{1 - c_3 y_{TC}}}, \ B = \frac{1}{\sqrt{1 + c_3 y_{TC}}},$$

Experimental Validation

Parametrization of Lagrangian sector relevant for Higgs physics at LHC:

$$\mathcal{L}_{\text{eff}} = a_V \frac{2m_W^2}{v_w} h W_{\mu}^+ W^{-\mu} + a_V \frac{m_Z^2}{v_w} h Z_{\mu} Z^{\mu} - a_f \sum_{\psi=t,b,\tau} \frac{m_{\psi}}{v_w} h \bar{\psi} \psi$$
$$+ a_{V'} \frac{2m_{W'}^2}{v_w} h W_{\mu'}^{\prime+} W^{\prime-\mu} - a_S \frac{2m_S^2}{v_w} h S^+ S^-,$$

In bNMWT:

$$a_V = s_{\beta-\alpha}$$
, $a_f = \frac{c_{\alpha-\rho}}{s_{\beta-\rho}}$, with $s_{\rho} = \sqrt{\frac{1-c_3 y_{TC}}{2}}$,

where α and β are the mixing angles of the neutral and charged scalars, respectively, and $s_{\alpha}, c_{\alpha}, t_{\alpha} = \sin \alpha, \cos \alpha, \tan \alpha$.

Higgs Physics Data

Signal strengths defined by

$$\hat{\mu}_{ij} = \frac{\sigma_{\text{tot}} \text{Br}_{ij}}{\sigma_{\text{tot}}^{\text{SM}} \text{Br}_{ij}^{\text{SM}}} , \quad \text{Br}_{ij}^{\text{SM}} = \frac{\Gamma_{h \to ij}}{\Gamma_{\text{tot}}}$$

Measured values for inclusive processes used in the fit:

ij	ATLAS	CMS	Tevatron
ZZ	1.50 ± 0.40	0.91 ± 0.27	
$\gamma\gamma$	1.65 ± 0.32	1.11 ± 0.31	6.20 ± 3.30
WW	1.01 ± 0.31	0.76 ± 0.21	0.89 ± 0.89
au au	0.70 ± 0.70	1.10 ± 0.40	
bb	-0.40 ± 1.10	1.30 ± 0.70	1.54 ± 0.77

Higgs Physics Data

For exclusive processes total cross section defined by

$$\sigma_{\rm tot} = \sum_{\Omega = h, qqh, \dots} \epsilon_{\Omega} \sigma_{pp \to \Omega}$$

Measured values for exclusive processes used in the fit:

	ATLAS 7TeV	ATLAS 8TeV	CMS 7TeV	CMS 8TeV
$\gamma\gamma JJ$	2.7 ± 1.9	2.8 ± 1.6	2.9 ± 1.9	0.3 ± 1.3
$pp \rightarrow h$	22.5%	45.0%	26.8%	46.8%
$\mid pp \rightarrow qqh \mid$	76.7%	54.1%	72.5%	51.1%
$pp \rightarrow t\bar{t}h$	0.6%	0.8%	0.6%	1.7%
$\mid pp \rightarrow Vh \mid$	0.1%	0.1%	0%	0.5%

New Physics Predictions

The new physics predictions are obtained from the SM ones

$$\hat{\Gamma}_{ij} \equiv \frac{\Gamma_{h \to ij}}{\Gamma_{h_{\rm SM} \to ij}^{\rm SM}} , \quad \hat{\sigma}_{\Omega} \equiv \frac{\sigma_{\omega \to \Omega}}{\sigma_{\omega \to \Omega}^{\rm SM}},$$

in terms of the coupling coefficients in the effective Lagrangian:

$$\hat{\sigma}_{hqq} = \hat{\sigma}_{hA} = \hat{\Gamma}_{AA} = |a_V|^2 \quad , \qquad \hat{\sigma}_{h\bar{t}t} = \hat{\sigma}_h = \hat{\Gamma}_{gg} = \hat{\Gamma}_{\psi\psi} = |a_f|^2 \quad ,$$
$$A = W, Z \quad ; \qquad \psi = b, \tau, c, \dots$$

The diphoton final states are produced through a loop triangle diagram, and the decay rate is a function of $a_f, a_V, a_S, a_{V'}$ and of the mass spectrum.

Data Fit

To determine the experimentally favored values of the free parameters $a_f, a_V, a_{V'}, a_S$, we minimize the quantity

$$\chi^2 = \sum_{i} \left(\frac{\mathcal{O}_i^{\exp} - \mathcal{O}_i^{th}}{\Delta^{\exp}} \right)^2,$$

with \mathcal{O}^{\exp} being the experimental measurements (with uncertainty Δ) and $\mathcal{O}_i^{\text{th}}$ the theoretical predictions of the Higgs coupling strengths. The best fit values are

$$a_V = 0.97^{+0.10}_{-0.11}$$
, $a_f = 1.02^{+0.25}_{-0.32}$, $a_S = -4.4^{+3.8}_{-3.3}$,

with goodness of fit determined by

$$\chi^2_{\rm min}/{\rm d.o.f.} = 0.85$$
, $P(\chi^2 > \chi^2_{\rm min}) = 62\%$, ${\rm d.o.f.} = 14$.

Parameter Space Scan

We minimize the potential and scan the parameter space for viable data points:

• Experimental constraints: all SM particle masses matched to experiment, plus constraints on new physics:

$$m_{H^{\pm}} = m_{A^0} > 100 \text{ GeV} , \ m_{H^0} > 600 \text{ GeV} , \ \left| \frac{s_{\alpha - \rho}}{s_{\beta - \rho}} \right| < 1 ,$$

as well as the constraints on the $S\$ & $T\$ EW parameters.

• Theoretical constraints:

 $0 < \lambda_H, \lambda_M < (2\pi)^2, \ 2\pi < |c_1|, |c_2|, |c_3^{-1}|, |c_4^{-1}| < 8\pi \ |y_\psi| < 2\pi ,$

as well as a $5\Lambda_{TC}$ cutoff on the mass spectrum.

EW S&T Parameters

90%CL viable region (in green) of S & T EW parameters: black (grey) points=EW symmetry breaking by composite (elementary) scalar field.

68% (green), 90% (blue), and 95% (yellow) CL region; in black (grey) are the bNMWT (Type-I 2HDM) viable data points; the blue stars mark the optimal signal strengths.

- bNMWT: χ^2_{\min} /d.o.f. = 0.93, $P(\chi^2 > \chi^2_{\min}) = 54\%$, d.o.f. = 18
- 2HDM: $\chi^2_{\min}/d.o.f. = 0.91$, $P(\chi^2 > \chi^2_{\min}) = 57\%$, d.o.f. = 18
- SM: $\chi^2_{\text{min}}/\text{d.o.f.} = 0.89$, $P(\chi^2 > \chi^2_{\text{min}}) = 60\%$, d.o.f. = 19

Favored regions for $a_S = 0$

 a_f

- bNMWT: χ^2_{min} /d.o.f. = 0.93, $P(\chi^2 > \chi^2_{min}) = 54\%$, d.o.f. = 18
- 2HDM: $\chi^2_{\min}/d.o.f. = 0.91$, $P(\chi^2 > \chi^2_{\min}) = 57\%$, d.o.f. = 18
- SM: $\chi^2_{\text{min}}/\text{d.o.f.} = 0.89$, $P(\chi^2 > \chi^2_{\text{min}}) = 60\%$, d.o.f. = 19

We have not included composite vector resonances in the low energy spectrum, yet...

Favored regions for $a_S = 0$

Composite Vector Bosons

Composite vector bosons described by the traceless Hermitian matrix:

$$A_L^{\mu} = A_L^{a\mu} T^a ,$$

where T^a are the SU(2) generators. Under an arbitrary SU(2) transformation, A_L^{μ} transforms homogeneously (unlike gauge vector bosons):

$$A_L^{\mu} \rightarrow u A_L^{\mu} u^{\dagger}$$
, where $u \in SU(2)$.

The techniquark content is expressed by the bilinears:

$$A_{Li}^{\mu,j} \sim Q_{Li} \sigma^{\mu} \bar{Q}_L^j - \frac{1}{4} \delta_i^j Q_{Lk} \sigma^{\mu} \bar{Q}_L^k \ .$$

Replacing L with R above gives the definitions for A_R^{μ} .

bNMWTVector Sector

Mass and interaction terms for the composite vectors are introduced via gauge invariant (at the microscopic level) operators:

$$m_{A}^{2} \operatorname{Tr} \left[C_{L\mu}^{2} + C_{R\mu}^{2} \right] , \quad C_{L}^{\mu} \equiv A_{L}^{\mu} - \frac{g_{L}}{g_{TC}} \tilde{W}^{\mu} , \quad C_{R}^{\mu} \equiv A_{R}^{\mu} - \frac{g_{Y}}{g_{TC}} \tilde{B}^{\mu} ,$$
$$\mathcal{L}_{M-P} = -g_{TC}^{2} r_{2} \operatorname{Tr} \left[C_{L\mu} M C_{R}^{\mu} M^{\dagger} \right] + \frac{g_{TC}^{2} r_{1}}{4} \operatorname{Tr} \left[C_{L\mu}^{2} + C_{R\mu}^{2} \right] \operatorname{Tr} \left[M M^{\dagger} \right]$$

The global symmetry is the same of the TC microscopic Lagrangian.

Vector Mass² Matrix

The vector contribution to S and T is zero because we did not introduce new derivative couplings. To simplify our analysis we fix $r_2 = -r_1$, so that the axial-vector A^{\pm} does not couple to neutral scalar fields. The $(\tilde{W}^{\pm}, V^{\pm}, A^{\pm})$ squared mass matrix is

$$\begin{pmatrix} m_{\tilde{W}}^2 & -\frac{\epsilon m_V^2}{\sqrt{2}} & -\frac{\epsilon m_A^2}{\sqrt{2}} \\ -\frac{\epsilon m_V^2}{\sqrt{2}} & m_V^2 & 0 \\ -\frac{\epsilon m_A^2}{\sqrt{2}} & 0 & m_A^2 \end{pmatrix} ,$$

with

$$m_{\tilde{W}} = \left[x^2 + (1+s^2)\epsilon^2\right]m_A^2, \quad m_V^2 = (1+2s^2)m_A^2,$$

and

$$s \equiv \frac{g_{\text{TC}}f}{2m_A}\sqrt{r_1} , \quad x \equiv \frac{g_L v_w}{2m_A} , \quad \epsilon \equiv \frac{g_L}{g_{TC}}$$

Alanne, SD, Tuominen '13

S. Di Chiara

30

Vector Mixing Only

If the W' coupling is generated only through mixing (s = 0):

$$a_V = c_{\varphi}^2 s_{\beta-\alpha} , \quad a_{V'} = s_{\varphi}^2 s_{\beta-\alpha} ,$$

and the total vector contribution to $h^0 \rightarrow \gamma \gamma$ is (almost) identical to the no-mixing scenario ($\epsilon = 0$).

Mixing only is experimentally disfavored, since it suppresses a_V : optimally $\epsilon = 0$.

Direct Vector-Scalar Coupling

If direct composite vector coupling to h^0 is non-zero:

$$a_V = \eta_W s_{\beta - \alpha}$$
, $a_{V'} = (\eta_{W'} + \eta_{W''}) s_{\beta - \alpha}$,

with

$$\eta_W + \eta_{W'} + \eta_{W''} = 1 + \frac{2\zeta s^2}{1 + 2s^2} + O(\epsilon^5) , \quad \zeta = s_{\beta-\alpha}^{-1} \frac{c_{\alpha+\rho}}{s_{\beta+\rho}}$$

and the total vector contribution to $h^0 \to \gamma \gamma$ can be greatly enhanced compared to the SM.

For negligible vector and scalar mixing ($\epsilon = 0, \beta = \alpha + \frac{\pi}{2}$) we find at 95% CL:

$$a_f = a_V = 1$$
, $a_S = 0$, $a_{V'} = \frac{2s^2}{1+2s^2}$, $\Rightarrow s = 0.32^{+0.17}_{-0.32}$.

S. Di Chiara

68% (green), 90% (blue), and 95% (yellow) CL region; in black (grey) are the bNMWT (Type-I 2HDM+W') viable data points for random values of s and ϵ , with

$0 \le s \le 1$, $0 \le \epsilon \le 0.1$.

 $a_{V'}$

S. Di Chiara

bNMWT & 2HDM+W': $\chi^2_{\rm min}/{\rm d.o.f.} = 0.83$, $P(\chi^2 > \chi^2_{\rm min}) = 65\%$, d.o.f. = 16.

Within bNMWT the data favors extra charged vector resonances with direct coupling to h^0 .

- Technicolor solves fine tuning
- Walking dynamics allow to satisfy experimental constraints
- LHC data favor direct Higgs-vector coupling within bNMWT
- $\bullet\,$ Fit of bNMWT to Higgs physics data as good as that of SM

спасибо!

Backup Slides

Higgs Mechanism

Standard model Higgs scalar:

$$\langle 0 | \phi | 0 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \Rightarrow SU(2)_L \times U(1)_Y \to U(1)_{EM}$$

EW symmetry breaking triggered by potential of the Higgs Lagrangian:

$$\mathcal{L}_{\mathcal{H}} = (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - V(\phi),$$

$$V(\phi) = \mu^{2}\phi^{\dagger}\phi + \frac{1}{4}\lambda \left(\phi^{\dagger}\phi\right)^{2}, \ \mu^{2} < 0.$$

Yukawa couplings allow to give mass also to fermions:

$$\mathcal{L}_Y = -\bar{q}_{Li}Y_{uij}\phi u_{Rj} - \bar{q}_{Li}Y_{dij}\tilde{\phi}d_{Rj} - \bar{L}_{Li}Y_{eij}\phi e_{Rj} + hc.$$

Higgs boson discovered in 2012 at LHC: $M_H = 125$ GeV!

S. Di Chiara

Effective Operators

Without specifying an ETC one can write down the most general ETC sector:

$$\mathcal{L}_{ETC} = \alpha_{ab} \frac{\bar{Q}_L T^a Q_R \bar{Q}_R T^b Q_L}{\Lambda_{ETC}^2} + \beta_{ab} \frac{\bar{Q}_L T^a Q_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2} + \gamma_{ab} \frac{\bar{\psi}_L T^a \psi_R \bar{\psi}_R T^b \psi_L}{\Lambda_{ETC}^2}$$

- first terms generate masses for the uneaten NGB
- second terms generate SM fermion masses
- third terms generate FCNC: $\gamma_{sd} \sim \sin^2 \theta_c \simeq 10^{-2} \Rightarrow \Lambda_{ETC} \gtrsim 10^3 \text{ TeV}$

Fermion Mass Renormalization

The limits on Λ_{ETC} from the large value of m_t and the FCNC experimental data seem to be incompatible, but that was without taking into account renormalization:

$$\gamma_m = \frac{d\log m}{d\log \mu}, \ m^3 \propto \langle \overline{Q}Q \rangle \Rightarrow \langle \overline{Q}Q \rangle_{ETC} = \langle \overline{Q}Q \rangle_{TC} \ \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} \frac{d\mu}{\mu} \gamma_m(\mu)\right)$$

WalkingTC

Look for Walking TC ($\beta(\alpha_*) = 0$) in theory space (Representation (R), Number of colors (N), Number of flavors (N_f)) by studying

$$\beta(g) = -\beta_0 \frac{\alpha^2}{4\pi} - \beta_1 \frac{\alpha^3}{(4\pi)^2}, \ \alpha_* = -4\pi \frac{\beta_0}{\beta_1}, \ \beta_0 = \frac{11}{3} C_2(\mathbf{G}) - \frac{4}{3} T(\mathbf{R}),$$

$$\beta_1 = \frac{34}{3} C_2^2(\mathbf{G}) - \frac{20}{3} C_2(\mathbf{G}) T(\mathbf{R}) - 4C_2(\mathbf{R}) T(\mathbf{R}).$$

The conformal window is defined by requiring asymptotic freedom, existence of a Banks-Zaks fixed point, and conformality to arise before chiral symmetry breaking:

$$\beta_0 > 0 \implies N_f < \frac{11}{4} \frac{d(G)C_2(G)}{d(R)C_2(R)},$$

$$\beta_1 < 0 \implies N_f > \frac{d(G)C_2(G)}{d(R)C_2(R)} \frac{17C_2(G)}{10C_2(G) + 6C_2(R)}$$

$$\alpha_* < \alpha_c \implies N_f > \frac{d(G)C_2(G)}{d(R)C_2(R)} \frac{17C_2(G) + 66C_2(R)}{10C_2(G) + 66C_2(R)}.$$

TC Models

Walking Technicolor candidate models:

- Fundamental:
 - $12\pi S(N = 2, N_f = 8) = 16,$ $12\pi S(N = 3, N_f = 12) = 36$
- Adjoint: $12\pi S(N = 2, N_f = 2) = 6,$ $12\pi S(N = 3, N_f = 2) = 16$
- 2 I. Symmetric: $12\pi S(N = 2, N_f = 2) = 6,$ $12\pi S(N = 3, N_f = 2) = 12$
- 2 I. Antisymmetric: $12\pi S(N = 3, N_f = 12) = 36$

Alternatives to reduce S:

- Partially Gauged TC
- Split TC

The best (fully gauged) Walking TC candidates are:

- Adj, $N = 2, N_f = 2$
- 2-IS, $N = 3, N_f = 2$

Walking on the Lattice

Talk by Patella, Pica, Rago '09

Higgs Decay to Diphoton

$$\Gamma_{h\to\gamma\gamma} = \frac{\alpha_e^2 m_h^3}{256\pi^3 v_w^2} \left| \sum_i N_i e_i^2 F_i \right|^2,$$

where N_i is the number of colors, e_i the electric charge, and

$$F_{A} = [2 + 3\tau_{A} + 3\tau_{A} (2 - \tau_{A}) f(\tau_{A})] a_{V}, \quad A = W, W';$$

$$F_{\psi} = -2\tau_{\psi} [1 + (1 - \tau_{\psi}) f(\tau_{\psi})] a_{f}, \quad \psi = t, b, \tau, \dots;$$

$$F_{S} = \tau_{S} [1 - \tau_{S} f(\tau_{S})] a_{S}, \quad \tau_{i} = \frac{4m_{i}^{2}}{m_{h}^{2}},$$

with

$$f(\tau_i) = \begin{cases} \arcsin^2 \sqrt{1/\tau_i} & \tau_i \ge 1\\ -\frac{1}{4} \left[\log \frac{1 + \sqrt{1 - \tau_i}}{1 - \sqrt{1 - \tau_i}} - i\pi \right]^2 & \tau_i < 1 \end{cases}$$

In the limit of heavy W'^{\pm} and S^{\pm} : $F_{W'} = 7$, $F_S = -\frac{1}{3}$.