

Search for Higgs boson at CMS

Roberta Volpe National Central University (Taiwan) for the CMS Collaboration

The ingredients needed to find and study the Higgs

Analyses included in the latest combination:

- & · H→γγ • & H→ZZ • & H→WW • & H→TT
- •⊱ H→bb

Properties of the new particle with the combination results

Short look at new Higgs analyses (published for LHCP and LP)

- Performance of LHC
- CMS detector
- Data recording
- Physics Object reconstruction

Higgs(-like) boson observation

CMS Integrated Luminosity, pp

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

Pixels

- Performance of LHC
- CMS detector
- Data recording
- Physics Object reconstruction
 - understand the PU

• Standard Model measurements examples:

the performance is made as stable as possible as a function of the number of vertices

Roberta Volpe

[dd]

 σ_{tot}

10⁵

10⁴

10³

- CMS detector
- Data recording
- Physics Object reconstruction
 - understand the PU
- Standard Model measurements
 - understand the background

Higgs(-like) boson observation

Roberta Volpe

EW cross section measurements

Ζ

Wγ

Zγ

W

≥2j

≥3j

QFTHP 2013, June 23-30, Repin, Russia

CMS

7 TeV CMS measurement (stat⊕syst)

8 TeV CMS measurement (stat@syst)

WZ

1.1 fb

ΖZ

4.9 fb

5.3 fb⁻

. Rev. D80 (2009) 05400

8.5

√s (TeV)

7 TeV Theory prediction

8 TeV Theory prediction

- CMS detector
- Data recording
- Physics Object reconstruction
 - understand the PU
- Standard Model measurements
 - understand the background

Higgs(-like) boson observation

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

Higgs production modes and decays

Roberta Volpe

CMS publications of SM Higgs analyses

Н→үү	CMS-PAS-HIG-13-001	05
H→ZZ→4I	CMS-PAS-HIG-13-002	13-0
H→WW→2l 2v, 0/1 jet	CMS-PAS-HIG-13-003	-9H
$H \rightarrow WW \rightarrow 2l 2\nu$, VBF tag	CMS-PAS-HIG-12-042	PAS-I
$H \rightarrow WW \rightarrow 2I 2v$, WH tag	CMS-PAS-HIG-13-009	-SMS-I
$H \rightarrow \tau \tau$, inclusive and VBF	CMS-PAS-HIG-13-004	
$H \rightarrow \tau \tau$, WH and ZH tag	CMS-PAS-HIG-12-053	atior
H→bb, VH tag	CMS-PAS-HIG-12-044	mbin
H→bb, ttH tag	arXiv:1303.0763, JHEP	Co

H→Zγ	CMS-PAS-HIG-13-006
ttH H→γγ	CMS-PAS-HIG-13-015
H→ZZ→2l 2v	CMS-PAS-HIG-13-014
H→WW→lvqq′	CMS-PAS-HIG-13-008
H→bb, VBF tag	CMS-PAS-HIG-13-011
H→bb, VH tag	CMS-PAS-HIG-13-012

VH, H→WW→lvlv, V→qq′	CMS-PAS-HIG-13-017	
H→YY properties	CMS-PAS-HIG-13-016	

VERY NEW!

(shown for the first time last Monday at LP2013)

Roberta Volpe

Statistical treatment of data

Each analysis as well as the combination uses:

ATL-PHYS-PUB/CMS NOTE 2011.11,2011/005,(2011)

modified frequentist approach: CL_S Systematic uncertainties: frequentist paradigm Asymptotic formulae

agreement with ATLAS in summer 2011

Test Statistic: Profile likelihood ratio

$$q_0 = -2 \ln \frac{\mathcal{L}(\operatorname{obs} | b, \hat{\theta}_0)}{\mathcal{L}(\operatorname{obs} | \hat{\mu} \cdot s + b, \hat{\theta})}$$

p-value
$$p_0 = P(q_0 \ge q_0^{obs} \mid b)$$

local significance Z

$$p_0 = \int_{Z}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \, \mathrm{d}x$$

signal parameter a:

$$q(a) = -2 \ln \frac{\mathcal{L}(\text{obs} | s(a) + b, \hat{\theta}_a)}{\mathcal{L}(\text{obs} | s(\hat{a}) + b, \hat{\theta})}$$

$$\mathcal{L}(\text{obs} | s(\hat{a}) + b, \hat{\theta}) = \mathcal{L}_{\max}$$

Roberta Volpe

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

5.1 fb⁻¹ @ 7TeV + 19.6 fb⁻¹ @ 8TeV

10

$M_{YY} = 125.9 \text{ GeV}$ $\sigma_M / M = 0.9\%$

Roberta Volpe

search for a peak over a smoothly falling bkg shape in $m_{\gamma\gamma}$ distribution

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

p_(Z) (GeV/c)

H→Y

HIG-13-001

MVA diphoton selection

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

12

H→Y

Roberta Volpe

5

5

Ð

2

Ð

3

Background composition and estimation

in [100,150] GeV

72% of the selected data is constituted of

MC not used in the bkg estimation

irreducible bkg (2 prompt photons)

HIG-13-001

Background composition

Background modeling

• fit to the data mass spectrum in [100,180] GeV range

• several fitting function tested

• choice of the functional form and number of degrees of freedom performed with possible bias study

another analysis, MVA mass sideband analysis, with different background modeling, has been performed and gives similar results

(see old publication **HIG-12-001** for a description of such analysis)

from 3th to 5th order polynomial

(possible bias < 0.2 x stat unc.)

Roberta Volpe

Η→γγ

Н→үү

HIG-13-001

Roberta Volpe

Н→үү

HIG-13-001

$M_{\rm H} = 125.4 \pm 0.5$ (stat.) ± 0.6 (syst.) GeV

The systematic uncertainty is dominated by the overall photon energy scale uncertainty (0.47%)

 $\mu_V \mu_F$ are found to be consistent well within 1 sigma with SM

Roberta Volpe

HIG-13-002

H→ZZ

- **∻** 4 isolated high pT leptons
 - from the same vertex
 - from Z decays

• & low background, the most is irreducible non resonant ZZ

• high resolution: 2-4 GeV

Background composition H \rightarrow ZZ **HIG-13-002 4I with I= e,µ**

2|2T

QFTHP 2013, June 23-30, Repin, Russia

~25 events in signal region, not enough full angular analysis

Construct a likelihood ratio discriminator based on kinematical quantities

Matrix Element Likelihood Analysis: uses kinematic inputs to build a kinematic discriminant (**KD**) for signal to background discrimination using {**m1,m2,θ1,θ2,θ*,Φ,Φ1**}

MELA =
$$\left[1 + \frac{\mathcal{P}_{\mathbf{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\mathbf{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

H→ZZ

HIG-13-002

≁z'

Z

 Φ_1^p

Event Categorization

HIG-13-002

 $H \rightarrow ZZ$

Split events by **number of jets** and use different variables to separate contributions

cut on

121.5 < m_{4l} <130.5 GeV

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

2

H→ZZ

Roberta Volpe

Properties: mass and couplings

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

 $H \rightarrow ZZ$

H→ZZ

HIG-13-002

HIG-13-003

- ⇒2 opposite charged leptons (leptons only e, μ)
- →2 neutrinos → missing transverse energy (MET)
- No Higgs mass peak
- & Basically a counting analysis
- Selection optimization for each mass point

Analysis on the full data set for WW+0 jets and +1 jets categories (The W+2jets (VBF) channel is in progress)

Roberta Volpe

Selection, bkg estimation

same flavor channels: cut based analysis selection on the variables:

max min		
$m_{\rm H}$ $p_{\rm T}^{\epsilon,\rm max}$ $p_{\rm T}^{\epsilon,\rm max}$ $m_{\ell\ell}$ $\Delta\phi_{\ell\ell}$ $m_{\rm T}$	$m_{\ell\ell} = m_{\ell\ell} \Delta c$	m_{T}

different flavor channels: bi-dimensional analysis

m_{ll} and m_T

After the only WW selection

CMS Preliminary

1000

excess of events over the bkg observed

QFTHP 2013, June 23-30, Repin, Russia

300

m_{II} [GeV/c²]

 $H \rightarrow WW$

HIG-13-003

CMS Preliminary

s = 8 TeV, L = 19.5 fb

√s = 7 TeV. L = 4.9 fb⁻¹

150

CMS Preliminary

√s = 8 TeV, L = 19.5 fb^{*}

vs = 7 TeV, L = 4.9 fb⁻¹

200

1-iet ei

 $\Delta \phi_{\mu} [^{\circ}]$

0-jet eu

m.,=125 GeV

HIG-13-003

m_{II} VS m_T

0 Jet-bin

1 Jet-bin

CMS Preliminary

HIG-13-003

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

2⁺m is disfavored with CLs of 14%

Roberta Volpe

M_T (GeV)

QFTHP 2013, June 23-30, Repin, Russia

M_T (GeV)

3 high pt leptons (e, μ)

divide in categories:

- Opposite Sign Same Flavor (**OSSF**)
- Same Sign Same Flavor (SSSF)

main background contributions

 $\Delta R_{\ell^+\ell^-}$ is used as discriminant

CMS preliminary

SSSF√s = 8 TeV

SSSF

3

4

 $\Delta R(I^{\dagger}I)$

entries

 10^{2}

1

10-1

0

1

2

 $WZ \rightarrow 3\ell\nu$ $Z + \gamma$ $ZZ \to 4\ell$ tribosons

 $m_{\rm H}$ =125 top & V+jets L = 19.5 fb⁻¹

2

Roberta Volpe

0

1

entries

10²

10

1

10⁻¹

WZ

Η→ττ

$\forall \forall H \rightarrow \tau \tau$, background estimation

Н→тт

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

Η→ττ

Η→ττ

HIG-13-004

Compatibility test with SM Higgs production

$\hat{\mu} = 1.1 \pm 0.4$

Upper limit

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

H→bb

QFTHP 2013, June 23-30, Repin, Russia

combination

HIG-13-005

high resolution channels

	Analyses				Lumi	(fb^{-1})
H decay	Prod. tag	Exclusive final states	channels	resolution	7 TeV	8 TeV
	untagged	$\gamma\gamma$ (4 diphoton classes)	4 + 4	1-2%	5.1	19.6
$\gamma\gamma$	VBF-tag	$\gamma \gamma + (jj)_{\text{VBF}}$ (two dijet classes for 8 TeV)	1+2	<1.5%	5.1	19.6
	VH-tag	$\gamma\gamma + (e, \mu, MET)$		<1.5%		19.6
$77 \rightarrow 10$	$N_{\rm jet} < 2$	10 11 2021	3+3	1 20/	5.1	10.6
$\Sigma \Sigma \rightarrow 4c$	$\dot{N_{jet}} \ge 2$	4e, 4 μ , 2e2 μ		1-2 /0	5.1	19.0
	0/1-jets	(DF or SF dileptons) \times (0 or 1 jets)	4 + 4	20%	4.9	19.5
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)		20%	4.9	12.1
	WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)			4.9	19.5
	0/1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (low or high p_T^{\tau})$	16 + 16			
	1-jet	$\tau_h \tau_h$		15%	4.9	19.6
ττ	VBF-tag $(e\tau_h, \mu\tau_h, e\mu, \mu\mu, \tau_h\tau_h) + (jj)_{VBF}$		5 + 5			
	ZH-tag (ee, $\mu\mu$) × ($\tau_h \tau_h$, $e\tau_h$, $\mu\tau_h$, $e\mu$)		8+8		5.0	10.5
	WH-tag $\tau_h \mu \mu, \tau_h e \mu, e \tau_h \tau_h, \mu \tau_h \tau_h$		4 + 4		5.0	
	VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \times (\text{low or high } p_T(V) \text{ or loose b-tag})$	10 + 13	10%	5.0	12.1
bb	ttH_tag	(ℓ with 4, 5 or \geq 6 jets) × (3 or \geq 4 b-tags); (ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-tagged jets)			5.0	51
	ill I-tag				5.0	5.1

Decay mode	Expected (σ)	Observed (σ)	
ZZ	7.1	6.7	
$\gamma\gamma$	3.9	3.2	
WW	5.3	3.9	
bb	2.2	2.0	
au au	2.6	2.8	J

mass measurement and compatibility tests for several properties

The mass meas. with: γγ and ZZ combination HIG-13-005

use the high resolution channel to measure the mass

• relative signal strength between YY and ZZ constrained to the SM value

• Overall signal strength as free parameter

68% CL contour

combination

HIG-13-005

Roberta Volpe

BSM particles and coupling to fermions

combination

HIG-13-005

• presence of BSM particles

 $H \rightarrow \gamma \gamma$ decay and $gg \rightarrow H$ production are sensitive to the presence to new particles which couple with H

• test for asymmetries in the couplings to fermions

in models with 2 Higgs doublets (2HDM)

the coupling of the neutral boson to fermions can be different w.r.t. the Yukawa couplings in the SM

Independent couplings

Roberta Volpe

For some models the BR($H \rightarrow Z\gamma$) and BR ($H \rightarrow \gamma\gamma$) are not correlated, so a combined analysis of the two decay modes can give information on new physics

main systematics (apart the theo sys):
event class migration
signal scale and resolution

		at m _H =125 GeV
expected	6÷19 × SM	12 × SM
observed	$3\div31 \times SM$	9 × SM

QFTHP 2013, June 23-30, Repin, Russia

H→Zγ

HIG-13-011

CMS Preliminary \s = 8 TeV L = 19.0 fb⁻¹

VBF

200

150

100

50F

50

-50

14

12

10

8

6

4

2

0^L

115

80

100

120

CMS Preliminary

√s = 8 TeV

 $L = 19.0 \text{ fb}^{-1}$

VBF H→ bb

120

140

160 180

125

Data-Fit

95% Asymptotic CL Limit on σ / $\sigma_{\rm SM}$

Events / 2.5 GeV

VBF and VH production, with H→bb

W,Z

Background-only Fit

Signal (125 GeV) × 10

220

240 M_{bb} (GeV)

CAT4

Data

200

CL_s H125 Injected

 CL_{s} Expected ± 1 σ

 CL_s Expected ± 2 σ

130

135

Higgs Mass (GeV)

____ CL_s Observed - CL Expected

 $Fit \pm 1\sigma$

Fit $\pm 2\sigma$

w,z

н

95% CL limit observed (expected) at 125 GeV: 1.79 (0.89) Significance observed (expected) at 125 GeV : 2.1σ (2.2 σ) Signal strength at 125 GeV: μ = 0.97±0.48

background estimated from selected data

NEW

combine semileptonic and fully hadronic ttbar decays

		Expected					
Higgs Mass	Observed	Median	68% C.L. Range	95% C.L. Range			
110 GeV/c^2	2.2	2.4	[1.7, 3.5]	[1.4, 5.1]			
115 GeV/c^2	2.8	2.6	[1.9, 3.9]	[1.5, 5.6]			
120 GeV/c^2	4.9	2.9	[2.1, 4.3]	[1.7,6.4]			
125 GeV/c^2	3.3	3.1	[2.2, 4.6]	[1.8,6.9]			
130 GeV/c^2	3.5	3.6	[2.6, 5.4]	[2.0, 8.1]			
135 GeV/c^2	4.7	4.3	[3.1, 6.6]	[2.4,9.9]			
140 GeV/c^2	6.8	4.9	[3.6, 7.5]	[2.9, 11.5]			

QFTHP 2013, June 23-30, Repin, Russia

H→γ

H→bb

very

QFTHP 2013, June 23-30, Repin, Russia

- WW analysis lepton cuts
- **>** 2 jets:
 - |jet η|<2.5
 - 65<Mjj<105 GeV
 - Δηjj<1.5

7 TeV: cut and count8 TeV: shape analysis

Searches for high mass Higgs

QFTHP 2013, June 23-30, Repin, Russia

Roberta Volpe

model with a singlet scalar where a heavy boson couples with the 125 GeV state

QFTHP 2013, June 23-30, Repin, Russia

NEW H-WW

H→ZZ

Keeping on looking for deviation from SM, by using the phase-1 dataset with new analyses, and plan strategies to be ready to use the next LHC run dataset

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

<u>Thank you</u>

0.95

0.90

0.85

0.9

1.0

1.1

Cv

Back Up

Roberta Volpe

CMS-NOTE-2012-006

CMS submission to the European Strategy Group

CMS Projection

CMS Projection

$$m_{\gamma_1,\gamma_2}^2 = 2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta)$$

Good photon energy resolution

 $Z \rightarrow ee$ mass resolution better than 1.2% for electrons with low bremsstrahlung in the barrel.

> $Z \rightarrow ee$ lineshape: good agreement between data/MC

Stable performance already using promptly reconstructed data

Z mass resolution as a function of time after application of analysis level corrections

QFTHP 2013, June 23-30, Repin, Russia

Events/0.2 GeV

H→Y

 $m_{\gamma_1,\gamma_2}^2 = 2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta)$

Efficient vertex finding algorithm

- ▶ Higgs production vertex is selected using a Boosted Decision Tree (BDT)
- Inputs: Σp_T^2 of vertex tracks, vertex recoil wrt diphoton system, pointing from converted photons
- An additional BDT is used to estimate the vertex probability in the MVA analysis.
- Solution Control samples: $Z \rightarrow \mu \mu$ for unconverted photons, γ +jets for converted photons

HIG-13-001

Cut based diphoton selection

Cut based

HIG-13-001

photon pt cuts scaled with m_{YY}

cut-based photon identification

• Photon identification data/MC efficiency scale factors computed from $Z \rightarrow ee$ and $Z \rightarrow \mu \mu \gamma$.

choose the ID photon pair with highest sum E_T

- 4 categories are defined according to the photon characteristics
 - Barrel-endcap and converted/unconverted from shower shape
 - Different mass resolution and S/B among the 4 categories

converted photons discriminated by

 $R_9 = \Sigma E(3 \times 3) / E_{SC}$

1						

Cat 0	Both photons in barrel	Both photons $R_9 > 0.94$
Cat 1	Both photons in barrel	At least one photon with $R_9 < 0.94$
Cat 2	At least one photon in endcaps	Both photons $R_9 > 0.94$
Cat 3	At least one photon in endcaps	At least one photon with $R_9 < 0.94$

>5000 - CM - CM - CM

-4000

S/(S+B) Weighted E

1 Focal p-value 10⁻¹

10⁻³

10⁻⁴

10⁻⁵

110

ŝ

1 Events /

CMS Preliminary

 $\sqrt{s} = 7$ TeV, L = 5.1 fb⁻¹ (MVA)

 $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹ (MVA)

120

130

Results: fitted signal strenght

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

H→vv

HIG-13-001

A large number of tests have been performed. No source of systematic error was found. Differences appear to be of a statistical nature.

Roberta Volpe

HIG-13-001

Mass spectrum for each category plots sh Best fit with

plots shown are for 8 TeV Best fit with a floating signal strenght

Roberta Volpe

semi leptonic

CMS Experiment at LHC, CERN Data recorded: Thu Nov 1 02:13:01 2012 CEST Run/Event: 206446 / 1072391444 Lumi section: 784

fully hadronic

CMS Experiment at LHC, CERN Data recorded: Sat Nov 24 19:16:36 2012 CEST Run/Event: 207889 / 771018991 Lumi section: 783

$\mathbf{H} \rightarrow \mathbf{TT}, \mathbf{Selection}$

HIG-13-004

Roberta Volpe

QFTHP 2013, June 23-30, Repin, Russia

1

combination

HIG-13-005

Model parameters	Assessed scaling factors (68% and 95% CL intervals)					
λ_{WZ}, κ_Z	λ_{WZ}	[0.75,1.13]	[0.60,1.40]			
$\lambda_{WZ}, \kappa_Z, \kappa_f$	λ_{WZ}	[0.73,1.00]	[0.62,1.19]			
$\kappa_{\rm V}, \kappa_{\rm f}$	$\kappa_{\rm V}$	[0.81,0.97]	[0.73,1.05]			
	κ_{f}	[0.71,1.11]	[0.55,1.31]			
$\kappa_{\gamma}, \kappa_{g}$	κ_{γ}	[0.79,1.14]	[0.59,1.30]			
	$\kappa_{\rm g}$	[0.73,0.94]	[0.63,1.05]			
$\mathcal{B}(H \to BSM), \kappa_{\gamma}, \kappa_{g}$	$\mathcal{B}(H \rightarrow BSM)$	[0.00,0.24]	[0.00,0.52]			
$\lambda_{\rm du}, \kappa_{\rm V}, \kappa_{\rm u}$	λ_{du}	[1.00,1.60]	[0.74,1.95]			
$\lambda_{\ell q}, \kappa_{V}, \kappa_{q}$	$\lambda_{\ell q}$	[0.89,1.62]	[0.57,2.05]			
	κ _V	[0.84,1.23]	[0.60,1.39]			
	$\kappa_{\rm b}$	[0.61,1.69]	[0.00,2.63]			
$\kappa_V, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$	κ_{τ}	[0.82,1.45]	[0.53,1.81]			
	κ_{t}	[0.00,2.03]	[0.00,4.20]			
	$\kappa_{\rm g}$	[0.65,1.15]	[0.49,1.77]			
	κ_{γ}	[0.77, 1.27]	[0.55,1.55]			
as above + $\mathcal{B}(H \rightarrow BSM)$, but $\kappa_V \leq 1$	$\mathcal{B}(H \rightarrow BSM)$	[0.00,0.30]	[0.00,0.64]			

QFTHP 2013, June 23-30, Repin, Russia