Searches for GeV-scale sterile neutrinos with CERN SPS proton beam

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

-XXIst International Workshop on Quantum Field Theory and High Energy Physics, St.-Petersburg, Repino, 26.06.2013

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

26.06.2013, QFTHEP'2013 1 / 16

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

▲ 글 ▶ 그리님

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

▲ 글 ▶ 그리님

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and the cosmological problems

▲ 글 ▶ _ 글| 글

Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile: new fermions uncharged under the SM gauge group neutrino: explain observed oscillations by mixing with SM (active) neutrinos

Attractive features:

- possible to achieve within renormalizable theory
- only N = 2 Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with $N \ge 3$ at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?

Disappointing feature:

Major part of parameter space is UNTESTABLE

Dmitry Gorbunov (INR)

▲ 글 ▶ _ 글| 글

4/16

Active neutrino masses without new fields

Dimension-5 operator

 $\Delta L = 2$

$$\mathscr{L}^{(5)} = rac{eta_L}{4\Lambda} F_{lphaeta} ar{L}_lpha ilde{H} H^\dagger L^c_eta + ext{h.c.}$$

 L_{α} are SM leptonic doublets, $\alpha = 1, 2, 3$, $\tilde{H}_a = \varepsilon_{ab}H_b^*$, a, b = 1, 2; in a unitary gauge $H^T = (0, (\nu + h)/\sqrt{2})$ and

$$\mathscr{L}_{\nu\nu}^{(5)} = rac{\beta_L v^2}{4\Lambda} rac{F_{\alpha\beta}}{2} ar{v}_{\alpha} v_{\beta}^c + \mathrm{h.c.}$$

hence

$$\Lambda \sim 3 imes 10^{14}\, ext{GeV} imes eta_L imes \left(rac{3 imes 10^{-3}\, ext{eV}^2}{\Delta m_{ ext{atm}}^2}
ight)^{1/2}$$

The model has to be UV-completed at the neutrino scale $\Lambda_{\nu} < \Lambda \dots$ What is beyond the neutrino scale Λ_{ν} ? Why neutrino scale, 1 eV, is so low?

Seesaw mechanism: $M_N \gg 1 \text{ eV}$ (Type I)

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

When Higgs gains $\langle H \rangle = v / \sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = v \frac{f_{\alpha l}}{\sqrt{2}} \overline{v}_{\alpha} N_{l} + \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.} = \left(\overline{v}_{1}, \dots, \overline{N}_{1}^{c} \dots\right) \begin{pmatrix} 0 & v \frac{\hat{f}}{\sqrt{2}} \\ v \frac{\hat{f}^{\dagger}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} (v_{1}, \dots, N_{1} \dots)^{\mathsf{T}}$$

Then for $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}^{D\dagger} \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \propto \theta^2 M_N \lll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i}v_i + \theta_{\alpha l}N_l$

active-active mixing: $U^{\dagger} \hat{M}^{\vee} U = diag(m_1, m_2, m_3)$

active-sterile mixing:

$$\theta_{\alpha l} \propto \frac{(M^D)_{\alpha l}^{\dagger}}{M_N} = \hat{t}^{\dagger} \frac{v}{M_N} \ll 1$$

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

김 글 🔊 글 글 글

seesaw at work

Where is sterile neutrino scale?

eigenvalues:
$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}^{D\dagger} \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \lll M_N$

SEESAW says nothing about the sterile neutrino scale M_N !

Unitarity:
$$f \lesssim 1 \implies M_N \lesssim 3 \times 10^{14} \text{ GeV} \times \left(\frac{3 \cdot 10^{-3} \text{ eV}^2}{\Delta m_{atm}^2}\right)^{1/2} \longrightarrow \Lambda \text{ in } (LH)^2/\Lambda$$

Integrating out sterile neutrinos get dim-5 operator

 $-f_{\alpha l}\overline{L}_{lpha}\widetilde{H}N_{l}-rac{M_{N_{l}}}{2}\overline{N}_{l}^{c}N_{l}\rightarrow f^{2}(LH)^{2}/M_{N}$

SM Higgs without NP at EW-scale favors sterile neutrinos at EW-scale (or below) !

• Majorana mass violates scale-invarinace
$$\implies$$
 finite corrections $\delta m_h^2 \propto f^2 M_N^2$
• Scale invariance helps to abandon infinite corrections $\delta m_h^2 \propto f^2 \Lambda^2 M_N^2$
• In SM scale invariance is broken by the Higgs mass and running of coupling constants $T_{\mu}^{\mu} \propto \beta(\alpha) \times \hat{O} + (m_h^2 + \alpha \Lambda^2) \times h^2 \implies$ quadratic divergences are irrelevant W.Bardeen (1995)

Sterile neutrinos: M_{N_l} violate lepton symmetry

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active net	itrino sector	
$2 \Delta m_{ii}^2$:	oscillation	
1	experiments	2
$3 \theta_{ij}$: oscilla	tion experiments	
1 CP-phase:	oscillation	
	experiments	
2(1) Majorana p	ohases: 0vee,	
	0νμμ	
$1(0) m_v$: ³ H	$I \rightarrow {}^{3}He + e + \bar{v}_{e},$	4
	cosmoloay	

: N = 2 sterile neutrinos (works if $m_v = 0$

Majorana masses M_{N_l}
New Yukawa couplings $f_{\alpha l}$
which form2: Dirac masses $M^D = f \langle H \rangle$
3+1: mixing angles
2+1: CP-violating phases

4 new parameters in total help with leptogenesis

8: N = 3 sterile neutrinos:

Majorana masses M_{N_l} : New Yukawa couplings $f_{\alpha l}$

which form

3: Dirac masses $M^D = f \langle H \rangle$

: mixing angles

3+3: CP-violating phases

9 new parameters in total both BAU and DM are possible

★ 문 ▶ 문[님

Sterile neutrinos: M_{N_l} violate lepton symmetry

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: $N = 2$ sterile neutrinos (works if $m_V = 0$!!!)	18: $N = 3$ sterile neutrinos:
2 Δm_{ij}^2 : oscillation experiments 3 θ_{ij} : oscillation experiments 1 CP-phase: oscillation experiments 2(1) Majorana phases: 0vee, 0v $\mu\mu$	2: Majorana masses M_{N_l} 9: New Yukawa couplings $f_{\alpha l}$ which form 2: Dirac masses $M^D = f \langle H \rangle$ 3+1: mixing angles 2+1: CP-violating phases	 3: Majorana masses M 15: New Yukawa couplings f which for 3: Dirac masses M^D = f⟨F 3+3: mixing angle 3+3: CP-violating phase
1(0) m_v : ³ H \rightarrow ³ He+e+ \bar{v}_e , cosmology,	4 new parameters in total help with leptogenesis	9 new parameters in total both BAU and DM are possible

★ 문 ▶ 문 범

Sterile neutrinos: M_{N_i} violate lepton symmetry

Þ Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: $N = 2$ sterile neutrinos (works if $m_v = 0$!!!)	18: $N = 3$ sterile neutrinos:	
$2 \Delta m_{ij}^2$: oscillation experiments $3 \theta_{ij}$: oscillation experiments 1 CP-phase: oscillation	 Majorana masses M_{N_l} 9: New Yukawa couplings f_{αl} which form 	3: Majorana masses M_{N_I} 15: New Yukawa couplings $f_{\alpha I}$ which form	
experiments 2(1) Majorana phases: $0vee$, $0v\mu\mu$	2: Dirac masses $M^D = f\langle H \rangle$ 3+1: mixing angles 2+1: CP-violating phases	3+3: mixing angles 3+3: CP-violating phases	
1(0) m_v : ³ H \rightarrow ³ He+e+ \bar{v}_e , cosmology,	4 new parameters in total help with leptogenesis	9 new parameters in total both BAU and DM are possible	

▶ 프네님

vMSM: 2 GeV-scale & 1 keV-scale neutrinos

need very small mixing $\theta_{\alpha I}^2 \ll 1$

T.Asaka, S.Blanchet, M.Shaposhnikov (2005) 2 GeV-scale seesaw neutrinos

- give masses and mixing to active neutrinos
- violate CP out-of-equilibrium oscillations v_a ↔ N_{2,3}

in the early Universe redistribute lepton charge

DM: 1-50 keV

mixing with active neutrinos:

- $\tau_{N_1} > \tau_U \rightarrow$ little contribution to m_V
- signature in X-rays $N_1 \rightarrow \gamma v_a$
- produced in early Universe in plasma needs strong fine-tuning

easily produced by inflaton XNN M.Shaposhnikov, I.Tkachev (2006), F.Bezrukov, D₂G. (2009)

8/16

26.06.2013. QFTHEP'2013

GeV-scale sterile neutrinos at CERN

need two!

need two!

ov (INR) GeV-sca

Dmitry Gorbunov (INR)

Direct searches for sterile neutrinos: 2 approaches

Weak decays due to mixing

9/16

vMSM parameter space

 $\theta_{vN}^2 \propto U^2$

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

26.06.2013, QFTHEP'2013 10 / 16

船

Neutrino production in pp-collisions: meson decays

Experiment	E, GeV	N _{POT} , 10 ¹⁹	$\sigma_c/\sigma_{ m tot}$	$\sigma_b/\sigma_{ m tot}$
CNGS	400	4.5	$0.45 imes 10^{-3}$	3×10 ⁻⁸
NuMi	120	5	1×10^{-4}	10 ⁻¹⁰
T2K	30	100	$0.5 imes10^{-5}$	10 ⁻¹²
NuTeV	800	1	$1 imes 10^{-3}$	2×10 ⁻⁷

Pure geometrical factor as compared to CHARM

LBNE	PoT	detector	distance	beam	detector	charm
		length	to target	energy	area	production
HiResM _v	1.0×10^{22}	35 m	500 m	120 GeV	$4 \times 4 m^2$	$1.0 imes 10^{-4}$
CHARM	2.5×10^{18}	34 m	480 m	400 GeV	$3 \times 3 m^2$	$4.5 imes 10^{-4}$

$$\frac{N_{signal}^{HiResM_{v}}}{N_{signal}^{CHARM}} = \frac{1.0 \times 10^{22}}{2.5 \times 10^{18}} \times \frac{35}{34} \times \left(\frac{480}{500}\right)^{2} \times \left(\frac{120}{400}\right)^{2} \times \frac{4 \times 4}{3 \times 3} \times \frac{1.0 \times 10^{-4}}{4.5 \times 10^{-4}} \approx 130$$

 $N_{signal} \propto \theta_{vN_2}^2 \times \theta_{vN_2}^2$

order of magnitude improvement in $\theta_{vN_2}^2$

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

26.06.2013. QFTHEP'2013 11 / 16

김 글 🔊 글 글 글

CNGS site is free after OPERA

vMSM parameter space for $M_N < 2 \,\text{GeV}$

To fully explore the region $M_N < 2 \,\text{GeV}$

multisectional detector (presumably on surface)

GeV-scale sterile neutrinos at CERN 26.06.2013,

26.06.2013, QFTHEP'2013 14 / 16

▲ 글 ▶ _ 글| 글

Sterile neutrinos: dedicated experiment is needed

- Most economic explanation of neutrino oscillations within renormalizable approach: N = 2 Majorana neutrinos
- Capable of explaining baryon asymmetry of the Universe even with $\delta_{CP} = 0$
- One more neutrino can serve as (naturally Warm) dark matter

vMSM

direct searches are feasible for $M_N < 2 \,\text{GeV}$ (5 GeV)

- 100-m length detector at SNGS site operated on upgraded SPS beam allows to cover major part of paramater space
- 3-km scale detector is needed to fully explore the model

▲ 글 ▶ _ 글| 글

< 注 → 注|日

Backup slides

★ 문 ▶ 문[님

N

Heavy sterile neutrinos: $M_N \simeq 1 \text{ keV-5 GeV}$ vMSM

T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

- Good fact: small finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \ll m_H^2$ True low-energy scale modification of the SM
- Good fact: At T > 100 GeV active-sterile neutrino oscillations produce lepton asymmetry in the early Universe, if $\Delta M_{N_{2,3}} \ll M_{N_2}$, M_{N_3} E.Akhmedov, V.Rubakov, A.Smirnov (1998)
- To make phenomenologically complete: Dark Matter?
 - NOT a seesaw neutrino! $m_v \ll m_{atm,sol}$

general statement

 $\tau_{N \rightarrow 3\nu} \sim 1/\left(G_F^2 M_N^5 \theta_{\alpha N}^2\right) \sim 1/\left(G_F^2 M_N^4 m_\nu\right) \sim 10^{11}\,\text{yr}\,(10\,\text{keV}/M_N)^4$

either decay or equilibrate and then contribute to hot dark matter

 production in primordial plasma due to mixing with active neutrinos is ruled out from searches at X-ray telescopes

▶ Possible for 1-50 keV (WDM-CDM range) either with further unbelievable fine-tuning in M_{N_l} ($\Delta M_N \sim 10^{-7}$ eV) to get $L \gg B$ and use the resonant production or with ANOTHER source of production, e.g. inflaton decays... then untestable

M.Shaposhnikov, I.Tkachev (2006), F.Bezrukov, D.G. (2009)

瀫

Neutrino oscillations: masses and mixing angles

Solar 2×2 "subsector"

 10^{-3} all solar 95% CI 95% $\Delta m^2 \, [eV^2]$ KamLAND 95% SNO 95% Super-K 95% Ga 95% 10^{-9} 10^{-2} 10^{0} 10^{2} 10^{-4} tan²A

Atmospheric 2 × 2 "subsector"

 $\label{eq:m2} \begin{array}{l} \mbox{arXiv:0806.2237} \\ m_2 > 0.05 \, eV \end{array}$

▶ Ξ[a]

DAYA-BAY, RENO: $\sin^2 2\theta_{13} \approx 0.1$

http://hitoshi.berkeley.edu/neutrino/

also T2K (talk by M.Khabibullin)

Dmitry Gorbunov (INR)

 $m_1 > 0.008 \,\mathrm{eV}$

GeV-scale sterile neutrinos at CERN 2

26.06.2013, QFTHEP'2013 19 / 16

Cosmological limits on active neutrino masses

Neutrino contributions:

Start of structure formation Gravity potentials at recombination Late-time structure formation Universe expansion

LRG+BAO+WMAP5+SNe $\sum m_{\nu} < 0.28 \text{ eV}$ (95% CL)

For $N_v = 3$ light neutrinos

GeV-scale sterile neutrinos at CERN

^{0911.5291,} see also 1112.4940

$$Y_p = 0.2581 \pm 0.025$$
,
 $D/H|_p = (2.87 \pm 0.21) \times 10^{-5}$

1103.1261

similar results from other recent studies including structure formation

1001.4440, 1001.5218, 1202.2889

 $N_v < 4.2$ @ 95%CL

 N_v < 3.6 from D/H,

1205.3785 ∢ ≣ ▶ ≣ ⊫ 3 21 / 16

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

26.06.2013, QFTHEP'2013

Combined analysis for sterile and active neutrinos

LSND+MiniBooNE

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

LSS: SZ-clusters, Weak lensing of CMB

- ΔN_v amplifies shear power: cancel with quintessence contribution and flattening of spectrum, $n_s \rightarrow 1$
- M_N reduces power
- $$\begin{split} N_{eff} &= 3 \rightarrow M_{V} < 0.46\,\text{eV} \\ M_{V} &= 0 \rightarrow N_{eff} = 3.8\pm0.4 \\ M_{V} < 0.62\,\text{eV} \rightarrow N_{eff} = 3.9\pm0.4 \end{split}$$

Dmitry Gorbunov (INR)

GeV-scale sterile neutrinos at CERN

26.06.2013, QFTHEP'2013

23/16

vMSM parameter space with resonant DM

L.Canetti, M.Drewes, M.Shaposhnikov 1204.3902

★ 글 ▶ 글|님

24/16

Lightest sterile neutrino N_1 as Dark Matter

Non-resonant production (active-sterile mixing) is ruled out

 $\begin{array}{l} \mbox{Resonant production (lepton asymmetry) requires} \\ \Delta M_{2,3} \lesssim 10^{-16} \mbox{ GeV} \\ \mbox{arXiv:0804.4542, 0901.0011, 1006.4008} \end{array}$

Dark Matter production from inflaton decays in plasma at $T \sim m_{\chi}$

Not seesaw neutrino!

M.Shaposhnikov, I.Tkachev (2006)

 $M_{N_I} \bar{N}_I^c N_I \leftrightarrow f_I X \bar{N}_I N_I$ Can be "naturally" Warm (250 MeV $< m_{\chi} < 1.8 \,\text{GeV}$)

F.Bezrukov, D.G. (2009)

∢ 글 ▶ _글|님

$$M_1 \lesssim 15 imes \left(rac{m_\chi}{300 \ {
m MeV}}
ight) {
m keV}$$

Dmitry Gorbunov (INR)