

Recent Results from Belle A.Bożek

KEKB and Belle experiment

- World luminosity record L = $2.11 \times 10^{34} cm^{-1} s^{-1}$
- Data taken at $\Upsilon(4S)$, below $\Upsilon(4S)$ (continuum), at $\Upsilon(5S)$, and above $\Upsilon(5S)$ (scan)
- $\Upsilon(4S)$ is right on $B\overline{B}$ threshold
- $\Upsilon(5S)$ is just above $B_s \overline{B}_s$ threshold

A. Bożek, INP Kraków, for Belle Collaboration

Integrated Luminosity

Belle/KEKB Integrated luminosity passed 1000 fb-1

- CKM matrix describes transition between quarks.
- Wolfenstein parametrization (expansion in powers of $\lambda \approx 0.22$) of the unitary CKM matrix:

$$V_{\rm CKM} = \begin{pmatrix} V_{\rm ud} & V_{\rm us} & V_{\rm ub} \\ V_{\rm cd} & V_{\rm cs} & V_{\rm cb} \\ V_{\rm td} & V_{\rm ts} & V_{\rm tb} \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 \left(\rho - i\eta\right) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 \left(1 - \rho - i\eta\right) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}\left(\lambda^4\right)$$

3 real parameters (A, λ, ρ) + one complex phase (η) \rightarrow irreducible phase, source of the CP violation in SM.

• Unitarity of matrix imposes 6 relations, e.g. $V_{td} V_{tb}^* + V_{cd} V_{cb}^* + V_{ud} V_{ub}^* = 0$, which can be representated as triangles in the complex plane.

$$\begin{split} \beta &= \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \\ \alpha &= \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \\ \gamma &= \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{tb}^*}\right) \end{split}$$

Experimental determination of the angles is closely related to measurements of CP asymmetries

Mixing induced CPV manifests itself in a signed time duration " $\Delta t = t_{B_{CP}} - t_{B_{tar}}$ ", and a B meson

• t_{BCP} : time when one B decays to the CP

• $t_{B_{tag}}$: time when the other B decays to the flavor-specific state.

•
$$q:+1$$
 for $B_{tag}=B^0$ and -1 for $B_{tag}=\bar{B}^0$.

There is an interference in ($B^0 \rightarrow f_{CP}$) process between a direct ($B^0 \rightarrow f_{CP}$) decay and a decay through the mixing as $(B^0 \rightarrow \overline{B}^0 \rightarrow f_{CP})$.

Mixing induced CPV manifests itself in a signed time duration " $\Delta t = t_{B_{CP}} - t_{B_{tag}}$ ", and a B meson flavor q, where

- $t_{B_{CP}}$: time when one B decays to the CP eigenstate.
- $t_{B_{tag}}$: time when the other B decays to the flavor-specific state.

•
$$q: +1$$
 for $B_{tag} = B^0$ and -1 for $B_{tag} = \overline{B}^0$.

$$P_{sig}(\Delta t, q; S, A) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \times [1 \pm q(Acos\Delta m_d\Delta t + Ssin\Delta m_d\Delta t)]$$

Mixing induced CP Violation

Mixing induced CPV manifests itself in a signed time duration " $\Delta t = t_{B_{CP}} - t_{B_{tag}}$ ", and a B meson flavor q, where

- $t_{B_{CP}}$: time when one B decays to the CP eigenstate.
- $t_{B_{tag}}$: time when the other B decays to the flavor-specific state.

•
$$q:+1$$
 for $B_{tag}=B^0$ and -1 for $B_{tag}=ar{B}^0.$

$$\begin{array}{l} P_{sig}(\Delta t,q;S,A) &= \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \times \\ \left[1(1-2\mathcal{W}) \pm q(Acos\Delta m_d\Delta t + Ssin\Delta m_d\Delta t)\right] \bigotimes \mathcal{R} \end{array}$$

- ${\mathcal W}$ wrong tag probability
- $\mathcal{R} \ \Delta t$ resolution

CP Violation in $B^0
ightarrow (c\bar{c})K^0$ and $D^{(*)+}D^{(*)-}$

•
$$B^0
ightarrow (c\bar{c})K^0$$

 $(b
ightarrow c ar{c} s$ tree transition)

•
$$B^0 \to D^{(*)+}D^{(*)-}$$

 $(b \rightarrow c \bar{c} d$ tree transition)

Both decays are mainly mediated by a tree diagram. SM prediction: $S = -\eta_{CP} \sin 2\phi_1, A \approx 0$ $\eta_{CP} = \pm 1$ - CP eigenvalue of the final state. In $\Upsilon(4S)$ decays, pairs of B mesons are produced near threshold. $E_B = E_{CM}/2$, small CM momentum (300 MeV/c).

Missing information about K_L^0 momentum: K_L^0 cluster reconstructed in ECL or KLM, match it with the K_L^0 direction from kinematical constraints.

$B^0 ightarrow (c ar c) K^0$ reconstruction

Improvement due to reprocessing with better tracking algorithm in addition to $\approx 40\%$ increase in $N_{B\bar{B}}.$

	Ϳ/ψΚ _s ο	Ϳ/ψΚ _L °	ψ(2 <i>S</i>)K _s ^o	χ _{c1} K _s ο	N _{BB} (x 10 ⁶)	
Signal yield	12727±115	10087±154	1981±46	943±33	772	
Purity [%]	97	63	93	89	112	
Signal yield (ICHEP06)	7484±87	6512±123	-	-	E 2 E	
Purity (ICHEP06) [%]	97	59	-	-	555	

$B^0 ightarrow (c\bar{c}) K^0$ reconstruction

- The CP violation is observed in each charmonium mode.
- The most accurate measurement of UT parameters.

Belle with 772×10⁶ BB: $\mathcal{A} = 0.007 \pm 0.016 \,(\text{stat}) \pm 0.013 \,(\text{syst})$ $\sin (2\phi_1) = 0.668 \pm 0.023 \pm 0.013$ preliminary

CPV in $b \rightarrow c \bar{c} d$ decays

Similar diagrams for B⁰→D*+D*-

- Dominant contribution is from tree-diagram.
- SM predicts $S = -sin2\phi_1$ and A = 0
- Penguins can also contribute, changes values of S and A by few%.
- large deviation can be a clear sign of New Physics.

CPV in $B^0 \rightarrow D^+D^-$ decays

 $K\pi\pi$ and $K_S\pi$ modes are used for CPV $S = -1.06 \pm 0.21 \pm 0.07$ $A = +0.43 \pm 0.17 \pm 0.04$

CPV in $B^0 \rightarrow D^+D^-$ decays

 $K\pi\pi$ and $K_S\pi$ modes are used for CPV $S = -1.06 \pm 0.21 \pm 0.07$ $A = +0.43 \pm 0.17 \pm 0.04$

CPV in $B^0 \rightarrow D^{*+}D^{*-}$ decays

 $B(B^0 \to D^{*+}D^{*-}) = (7.82 \pm 0.38 \pm 0.60) \times 10^{-4}$

- $B^0 \rightarrow D^{*+}D^{*-}$: mixture of CP-even and CP-odd $(P \rightarrow VV \text{ decay})$
- Angular analysis is performed to extract CP violation parameters.
- Distributions of angles θ_{tr} and θ_1 give polarization amplitude ratios R_0 and R_{\perp} .
- We determine S, A, R_0 and R_{\perp} simultaneously from a five-dimensional fit to the ΔE , M_{bc} , $\cos\theta_{tr}$, $\cos\theta_1$ and Δt distributions.

CPV in $B^0 \rightarrow D^{*+}D^{*-}$ decays

Measurement of ϕ_3 in $B \rightarrow DK$ decays

Tree-level determination of ϕ_3 from interference of $B \rightarrow DK(b \rightarrow c\bar{u}s)$ and $B \rightarrow \bar{D}K(b \rightarrow u\bar{c}s)$ amplitudes

 $\begin{array}{l} D^0 \text{ and } \bar{D}^0 \text{ decay into the same final state: } |D >= |D^0 > + re^{i\theta} |\bar{D}^0 > \\ \text{Relative phase in } & B^+ \to DK^+ : \theta = +\phi_3 + \delta \\ B^- \to DK^- : \theta = -\phi_3 + \delta \\ r = \left| \frac{A(B^- \to \bar{D}^0 K^-)}{A(B^- \to D^0 K^-)} \right| = \left| \frac{V_{ub} V^*_{es}}{V_{cb} V^*_{us}} \right| \times [\text{ Color supp}] \approx 0.1 \\ \text{Three techniques to measure } \phi_3 \end{array}$

- GLW: uses CP eigenstates (Gronau and London, PLB 253, 483 (1991), Gronau and Wyler, PLB 265, 172 (1991))
- ADS: uses a final state f such that $D^0 \rightarrow f$ is Cabibbo-favored (CF) and $\overline{D}^0 \rightarrow f$ is doubly-Cabibbo-suppressed (DCS). (Atwood, Dunietz and Soni, PRL 78, 3257 (1997))
- GGSZ: uses Dalitz analysis when $D o K^0_S \pi^+ \pi^-$ (Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003))

Measurement of ϕ_3 in $B \rightarrow DK$ decays (ADS)

 $\overline{\overline{u}}$

 \overline{u}

doubly Cabibbo suppressed D decay

Measurement of ϕ_3 in $B \rightarrow DK$ decays (ADS)

- Use a neural network (NN) to reject continuum qq
 background; include NN output in unbinned ML fit.
- for $B \rightarrow D_{K^+\pi^-}K^-$ 4.1 σ excess of events

$$\begin{split} \mathcal{R}_{\text{ADS}} &= \\ \begin{bmatrix} 1.63 \, {}^{+0.44}_{-0.41} \, \left(\text{stat}\right) \, {}^{+0.07}_{-0.13} \, \left(\text{syst}\right) \end{bmatrix} \% \\ \mathcal{A}_{\text{ADS}} &= \\ -0.39 \, {}^{+0.26}_{-0.28} \, \left(\text{stat}\right) \, {}^{+0.04}_{-0.03} \, \left(\text{syst}\right) \end{split}$$

$D_K\pi K A_{ADS}$					
BaBar PRD 82 (2010) 072008	$-0.86 \pm 0.47 \stackrel{+1.12}{_{-0.16}}$				
Belle PRL 106 (2011) 231803	-0.39 10.28 10.00				
CDF PLHC2011 preliminary	$+0.82 \pm 0.44 \pm 0.09$				
LHCb EPS 2011 preliminary	$\textbf{-0.39} \pm 0.17 \pm 0.02$				
Average HFAG	$\textbf{-0.46} \pm 0.13$				
18 -16 -14 -12 -1 -08 -0.6 -0.4 -0.	2 0 0.2 0.4 0.6 0.8				

PRL 106, 231803 (2011)

from $772 \times 10^6 \ B\overline{B}$ pairs = final Belle data sample

A. Bożek, INP Kraków, for Belle Collaboration

Recent Results from Belle, QFTHEP 2011, Sochi 16

GGSW method measures ϕ_3 via the interference in $B^- \rightarrow [K_S \pi^+ \pi^-]_D K^-$ decays at every point in the D Dalitz plot

$$\begin{aligned} \mathsf{M}_i^{\pm} &= h\{\mathsf{K}_i + r_B^2\mathsf{K}_{-i} + 2\sqrt{\mathsf{K}_i\mathsf{K}_{-i}}(\mathsf{x}_{\pm}c_i + y_{\pm}s_i)\}\\ \mathsf{x}_{\pm} &= r_B\cos(\delta_B\pm\phi_3) \quad y_{\pm} = r_B\sin(\delta_B\pm\phi_3) \end{aligned}$$

$$\begin{split} M_i^{\pm}: \text{ numbers of events in } D &\to K_S^0 \pi^+ \pi^- \text{ bins from } B^{\pm} \to DK^{\pm} \\ K_i: \text{ numbers of events in bins of flavor } \overline{D}^0 \to K_S^0 \pi^+ \pi^- \text{ from } D^* \to D\pi. \\ c_i, s_i \text{ contain information about strong phase difference between symmetric } \\ \text{Dalitz plot points } (m_{K_S^0 \pi^+}^2, m_{K_S^0 \pi^-}^2) \text{ and } (m_{K_S^0 \pi^-}^2, m_{K_S^0 \pi^+}^2): \\ c_i &= \langle \cos \Delta \delta_D \rangle, \quad s_i &= \langle \sin \Delta \delta_D \rangle \end{split}$$

PRD 81, 112002 (2010) former results for the unbinned Dalitz analysis for $B \rightarrow D^{(*)}$ from 657 million $B\bar{B}$ events: $\phi_3 = (78^{+11}_{-12} + \pm 4 \pm 9)^{\circ}$

- new model-independent approach at Belle [EPJC 55, 51 (2008)]:

• bin Dalitz plot and use in each bin strong phase difference obtained in measurements on quantum-correlated D^0 decays in $\psi(3770) \rightarrow DD$ by CLEO

Measurement of ϕ_3 in $B \rightarrow DK$ decays

Simultaneous fit to signal selection variables in all bins. Free parameters: (x, y), normalization, background fractions in bins.

Belle Preliminary

 $\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3)^{\circ}$ $r_B = 0.145 \pm 0.030 \pm 0.011 \pm 0.011$

hep/ex 1106.4046

- 9° Model uncertainty replaced with 4.3° statistical uncertainty from CLEO
- Precision comparable to model-dependent analysis
- First try of novel procedure to be used at LHCb and Super B factories.

DCPV in charmless *B* decays

Tree-penguin interference a source of Direct CP Violation (DCPV) \bullet extract the CKM angle ϕ_2

• the " $K\pi$ puzzle": $\Delta A_{k\pi} \equiv A_{CP}(K^{-}\pi^{0}) - A_{CP}(K^{-}\pi^{+}) \neq 0$

 signals are extracted by 3D-fit on ΔE; M_{bc} and event shape likelihood ratio variables

- $N = 7527 \pm 127$
- $B = (20.00 \pm 0.34 \pm 0.63) \times 10^{-6}$
- $A_{CP} = (-0.069 \pm 0.014 \pm 0.007)$

$$B^0 o \pi^+\pi^-$$

•
$$N = 2111 \pm 89$$

• $B = (5.04 \pm 0.21 \pm 0.19) \times 10^{-6}$

 signals are extracted by 3D-fit on ΔE; M_{bc} and event shape likelihood ratio variables

- *N* = 3731 ± 92
- $B = (12.62 \pm 0.31 \pm 0.56) \times 10^{-6}$
- $A_{CP} = (+0.043 \pm 0.024 \pm 0.002)$

- N = 1846 ± 82
 B = (5.86 ± 0.26 ± 0.38)×10⁻⁶
- $A_{CP} = (+0.025 \pm 0.043 \pm 0.007)$

The " $K\pi$ puzzle" remains, and has not been fully understood yet:

- enhanced color-suppressed tree?
- EW penguin?
 - negligible CP phase in SM) cannot affect ΔA by much
 - perhaps, picking up a new phase from NP?

Invisible, leptonic and semileptonic B decays in Belle

The big advantage of e^+e^- machines is that we have a well define final state. We are able to measure chanels with invisible energy, even with several missing neutrinos (up to 3). There are several tagging methods based on: inclusive or exclusive hadronic decays, semileptonic decays or flavor only tagging. Over the previous years we were able to present results on several channels basically not possible in hadronic machines:

- $B^0 \rightarrow D^{(*)} \ell \nu$ measurement V_{cb} (new result this year)
- $B^0 o X_c \ell
 u$ measurement V_{cb}
- $B^0
 ightarrow \pi \ell
 u$ measurement V_{ub} (new result this year)
- $B^0 \to X_u \ell \nu$ measurement V_{ub}
- $B \rightarrow D^{(*)} \tau \nu$ search for charged Higgs (first measurment)
- $B^+ \rightarrow \tau \nu_{\tau}$ measurement V_{ub} , new physics search (first measurement)
- Search for $B^+ \rightarrow \ell \nu_\ell$
- Search for $B \rightarrow$ invisible -new physics search (new result this year)

Puzzle: Measured sum of exclusive mode BR's $X_c = D + D^* + D^{**}$ doesn't match inclusive BR (10-15% unaccounted).

- Explore mass region above m(D_sK) = 2.46 GeV where resonant and non-resonant contributions are present.
- Disentangling $D_s K l \nu$ and $D_s^* K l \nu$ gives new insights for modelling this region.
- Background to $B_s \rightarrow D_s X I \nu$ at $\Upsilon(5S)$ and hadron colliders. e.g. at LHCb $(f_u + f_d)/f_s \approx 6$
- Select B_{sig} in $D_s(\gamma)Kl^+(D_s \to \phi\pi)$.
- Remaining particles must be consistent with semileptonic B decay (B_{tag}) .
- Minimal signal side selection to limit model dependence.
- Signal extraction based on $X_{mis} = \frac{(E_{beam} E_{vis}) p_{vis}}{\sqrt{E_{beam}^2 M_B^2}}$ and $m(D_S^{(*)})$.
- Measure $D_s K$ and $D_s^* K$ modes simultaneously to measure cross feed.

$B ightarrow D_s K l \nu$

from $657 \times 10^6 \ B\bar{B}$ pairs

 $\Upsilon(5S)$ is over threshold to decay on $B_S \overline{B}_s$.

- Several interesting results on *B_S* decays:
 - $B_s
 ightarrow J/\psi f_0(980)$ observation
 - Evidence for $B_s
 ightarrow J/\psi f_0(1370)$
 - Clear observation of $B_s o J/\psi \eta$
 - $B_S \to D_s^{(*)} D_s^{(*)} \to$ constraint on $\Delta \Gamma_S / \Gamma_S$
- $\bullet\,$ strong interaction physics $\rightarrow\,$

in total 121 fb^{-1} data was taken on $\Upsilon(5S)$

Anomalously large T(r	$\sigma S)\pi\pi$ transition	ons at the T(55) (on-resonance)
Process	$\Gamma_{\rm total} \ [{\rm MeV}]$	$\Gamma_{e^+e^-}$ [keV]	$\Gamma_{\Upsilon(1S)\pi^+\pi^-}$ [MeV]
$\Upsilon(2S) ightarrow \Upsilon(1S) \pi^+ \pi^-$	0.032	0.612	0.0060
$\Upsilon(3S) o \Upsilon(1S) \pi^+\pi^-$	0.020	0.443	0.0009
$\Upsilon(4S) ightarrow \Upsilon(1S) \pi^+ \pi^-$	20.5	0.272	0.0019
$\Upsilon(5S) ightarrow \Upsilon(1S) \pi^+ \pi^-$	110	0.31	0.59

• 2007: 6-points scan (~1fb⁻¹ per point)

>100x larger

Maximum of Hadrons production

- Y_b particle: analog to Y(4260) that has anomalously large $\Gamma(J/\psi\pi\pi)$
- Rescattering of $\Upsilon(5S) \rightarrow B\bar{B}\pi\pi \rightarrow \Upsilon(nS)\pi\pi$

- CLEO observed $e^+e^- \rightarrow h_c \pi^+\pi^-$
 - h_c production cross-section seems to be enhanced near Y(4260)

• Do we have more chance of seeing h_{h} at $\Upsilon(5S)$ if it is in fact Y_{h} ?

J. Wicht: $h_b(nP)$ and Z_b 's at $\Upsilon(5S)$

Analysis procedure:

• Implicit reconstruction of h_b thanks to e^+e^- annihilation constraints

	Yield [10 ³]	$Mass [MeV/c^2]$	Significance
$\Upsilon(1S)$	$105.2 \pm 5.8 \pm 3.0$	$9459.42 \pm 0.53 \pm 1.02$	18.2
$h_b(1P)$	$50.4 \pm 7.8^{+4.5}_{-9.1}$	$9898.25 \pm 1.06^{+1.03}_{-1.07}$	5.5
$\Upsilon(3S) ightarrow \Upsilon(1S)$	55 ± 19	9973.01	2.9
$\Upsilon(2S)$	$143.4 \pm 8.7 \pm 6.8$	$10022.25 \pm 0.41 \pm 1.01$	16.6
$\Upsilon(1D)$	22.1 ± 7.8	10166.2 ± 2.4	2.4
$h_b(2P)$	$84\pm7^{+23}_{-10}$	$10259.76 \pm 0.64 ^{+1.43}_{-1.03}$	11.2
$\Upsilon(2S) \rightarrow \Upsilon(1S)$	$151.6 \pm 9.7^{+9.0}_{-20.0}$	$10304.57 \pm 0.61 \pm 1.03$	15.7
$\Upsilon(3S)$	$44.9\pm5.1\pm5.1$	$10356.56 \pm 0.87 \pm 1.06$	8.5

• Could the observed states be $\chi_{b1}(nP)$? no

• Measured masses are $\approx 3\sigma$ off compared to $\chi_{b1}(nP)$

 $S(h_b(nP))$

 $S(\Upsilon(nP)) = 1$

(2P)

- $\Upsilon(5S) \rightarrow \chi_{b1}(nP)\pi^+\pi^-$ violates isospin (strong interaction)
- Mass are in very good agreement with CoG of $\chi_{b1}(nP)$ states

•
$$h_b(1P):\Delta M = 1.62 \pm 1.52 MeV/c^2$$

• $h_b(2P):\Delta M = 0.48 \pm 1.57 MeV/c^2$

Consistent with hyperfine interaction.

Decays to h_b should be suppressed due to spin-flip

$$\frac{\Gamma(\Upsilon(5S) \to h_b(nP)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = \begin{cases} 0.407 \pm 0.07^{+0.043}_{-0.076} & \text{for } h_b(1P) \\ 0.78 \pm 0.09^{+0.22}_{-0.10} & \text{for } h_b(2P) \end{cases}$$

For $MM(\pi^+\pi^-) \approx M(h_b(2P))$, the allowed phase space is smaller but still two structure

Exclude region with large bkg from photon conversions

Observation of charged Z_b 's states at $\Upsilon(5S)$

- Parameters consistent between all five studied final states
- Masses just above B^*B and B^*B^* thresholds
- Relative phases swapped between Υ ($\approx 0^{\circ}$) and h_b ($\approx 180^{\circ}$)

Indicates Z_b's could be molecules

Toward SuperKEKB and Belle II

- We will start SuperKEKB accelerator from 2014
 - x40 time higher luminosity $(8 \times 10^{35} cm^{-2} s^{-1})$
 - The final integrated luminosity will be over 50 ${\rm ab}^{-1}$
- Improved detector Belle II data taking from 2015
 - better hermeticity
 - granularity to sustain higher event rates.
 - \bullet improved particle identification \rightarrow
 - less material before electromagnetic calorimeter.
 - faster response time

Summary

- Many new Belle results have been reported this year.
 - the best $sin2\phi_1$ measurement
 - $\bullet\,$ the first model independent ϕ_3 measurement
 - new results on DCPV; $\Delta A(K\pi)$ remains large
 - new results for semileptonic B decays
 - Observation of h(1P) and h(2P) and two charged bottomonium-like states in $\Upsilon(5s)$
 - and many others:
 - CPV: $B^{0} \rightarrow \phi K_{S} \gamma$ decays (arXiv:1104.5590), GLW ϕ_{3} results for $B \rightarrow D_{CP} K$ (LP 2011)
 - Rare decays: $B \rightarrow h^+h^-$, h^+h^0 , $B \rightarrow \eta \pi^-$, ηK^- , ηK_S^0 (LP2011)
 - CKM : V_{ub} with $\pi^{\pm}\ell\nu$ (arXiv:1012.0090), V_{cb} with $D^{*+}\ell\nu$ (arXiv:1010.5620)
 - $\Upsilon(5S)$ sample: $B_S \to D_S^{(*)} D_S^{(*)}$ (DPF 2011), evidence for $B_S \to J/\psi f_0(1370)$ (arXiv:1102.2759), Observation of $B_S \to J/\psi \eta$ (EPS 2011), $B_S \to \Lambda_c^- \pi^+ \Lambda$ (EPS 2011)
 - Charm decays : Search for CP Violation in $D \rightarrow K_5^0 P$ (arXiv:1101.3365), ΔA_{CP} between $D^+ \rightarrow \phi \pi^+$ and $D_5^+ \rightarrow \phi \pi^+$ (EPS 2011), $D^+ \rightarrow h^+ \eta$, $h^+ \eta^{,*}$ (arXiv:1107.0553), Search for $1P \rightarrow 1S$ radiative transitions of D (ICHEP 2011), $\gamma \gamma \rightarrow \eta_c(2S) \rightarrow 6$ prong (ICHEP 2011)
 - New Particles: Observation of $X(3872) \rightarrow J/\psi\gamma$ and Search for $X(3872) \rightarrow \psi'\gamma$ (arXiv:1008.1774), $X(3872) \rightarrow J/\psi\pi^+\pi^-$ (arXiv:1107.0163), Search for $Y(4260) \rightarrow J/\psi\pi^0\pi^0$ (EPS 2011)
 - τ decays: Search for LFV τ decay into $\ell V^0(V^0 = \rho, \phi, \omega, K^{*0}, \bar{K}^{*0})$ (arXiv:1101.0755), Search for LFV τ decay into $\ell P^0(P^0 = \pi^0, \eta, \eta')$ (ICHEP 2010), CPV in $\tau \to K_S \pi \nu$ (arXiv:1101.0349), $\tau \to \ell h h'(h, h' = \pi^+, K^+)$ (FPCP 2011), $\tau \to \Lambda h, \bar{\Lambda} h$ (EPS 2011)
 - $\Upsilon(1,2,3S)$: Limits on $\Upsilon(1S) \to \gamma R$, where \dot{R} is $\chi_{c0}, \chi_{c1}, \chi_{c2}, \eta_C, X(3872), X(3915)$ and $\Upsilon(4140)$ (arXiv:1008.1774), Limits on $\Upsilon(2S) \to \gamma R$, where R is $\chi_{cJ}, \eta_C, X(3872), X(3915), Y(4140), X(4350$ (EPS 2011), $\Upsilon(2S) \to \Upsilon(1S)\eta$ (EPS 2011)

• looking forward for even more results based on full, improved, reprocessed data

and SuperKEKB and Belle 2

Backup

B-factory Approaches to Measuring $B \rightarrow X \ell \nu$

• SM strongly helicity suppressed by factor of order $(m_v/m_B)^2$

$$\begin{split} \mathcal{B}(B^0 \to \nu \overline{\nu}) = & \tau_{B^0} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi \sin^2 \Theta_W} \right)^2 F_{B^0}^2 m_\nu^2 m_{B^0} \\ & \times \sqrt{1 - 4m_\nu^2 / m_{B^0}^2 |V_{tb}^* V_{td}|^2 Y^2(x_t)}, \end{split}$$

G. Buchalla, A.J. Buras, Nucl. Phys. B 400,225(1993)

- Any signal is a sign of New physics
- Several New Physics models predict significant BRs for invisible decay of B⁰
 - e.g. **R-parity** violating models:

$$10^{-7} < \mathcal{B}(B^0 \to \bar{\nu} \tilde{\chi}_1^0) < 10^{-6}$$

NuTeV Collab., T. Adams et al., PRD 65, 015001 A. Dedes, H. Dreiner, and P. Richardson, PRL 87 41801

New at Lepton Photon 2011 [740 fb⁻¹]

150

 $h_{h}(nP)$ properties

 3.0σ

arXiv:1102.4565