QFTHEP 2011 - Sochi, Russia - Sep 30 2011

Recent results from BABAR

The XXth International Workshop Quantum Field Theory and High Energy Physics

Alejandro Pérez
INFN - Sezione di Pisa
On behalf of the BABAR Collaboration

Outline

a Introduction

- The experimental environment, BABAR dataset and detector
- Experimental Issues
a Recent highlights
- Branching Fraction (BF) of Hadronic B-decays
> Color-suppressed decays $B^{0} \rightarrow D^{(*)} h^{0}\left(h^{0}=\pi^{0}, \eta, \omega, \eta^{\prime}\right)$
, $\overline{\mathrm{B}}^{0} \rightarrow \Lambda^{+}{ }_{\mathrm{c}} \bar{\Lambda} \mathrm{K}^{-}$
- CP Violation (CPV)
, CPV in $\tau^{-} \rightarrow \pi^{-} \mathrm{K}_{\mathrm{S}}^{0}\left(\mathrm{n} \pi^{0}\right) \nu_{\tau^{\prime}} \mathrm{n}=0,1,2$
> T -odd correlations in $\mathrm{D}^{+} / \mathrm{D}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0}{ }_{\mathrm{S}} \pi^{+} \pi^{-}$decays
> $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$
- Bottomonium Spectroscopy
, Bottomonium radiative transitions with converted photons ($\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$)
- Conclusions

PEP=Il: a B factory at SLAC

Mass ($\mathrm{GeV} / \mathrm{c}^{2}$)

$e^{+} e^{-} \rightarrow$ Cross-Section (nb) $b \bar{b}$ 1.10 $c \bar{c}$ 1.30 $s \bar{s}$ 0.35 $u \bar{u}$ 1.39 $d \bar{d}$ 0.35 $\tau^{+} \tau^{-}$ 0.94 $\mu^{+} \mu^{-}$ 1.16 $e^{+} e^{-}$ ~ 40

BABAR Physics

7 Runs over the course of 9 years

- $1^{\text {st }}$ collision May 26, 1999
- Final data taken 12:43 p.m., Apr 2008

Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

469 submitted/published papers:
a CPV, CKM angles: α, β, γ
a Semi-Leptonic B decays: $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|$
a $B-B$ mixing: $\left|V_{t d}\right|$

- $\mathrm{D}-\mathrm{D}$ mixing
a Precision measurements, rare decays of B, charm hadrons, τ
a Spectroscopy, discovery of new states
a QCD
a Limits on new physics (NP)

31 publications in 2010

$$
\begin{aligned}
& \sim 470 \times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}(0.5 \times \text { Belle }) \\
& \sim 690 \times 10^{6} \mathrm{c} \overline{\mathrm{C}} \\
& \sim 500 \times 10^{6} \tau^{+} \tau^{-} \\
& \sim 1.2 \times 10^{8} \mathrm{r}(3 \mathrm{~S})(7 \times \text { Belle+CLEO }) \\
& \sim 1.0 \times 10^{8} \mathrm{Y}(3 \mathrm{~S})(0.5 \times \text { Belle+CLEO })
\end{aligned}
$$

BABAR Detector

Detection of γ, e^{-}identification and $\pi^{0} \rightarrow \gamma \gamma$ reconstruction, Measurements of Energy
Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

Experimental Issues

- Small S/B ratio, mostly continuum ($e^{+} e^{-} \rightarrow \bar{q} \bar{q}, q \neq b$) background.
- Use kinematical and event-shape variables to discriminate:

Beam-energy substituted mass

$$
m_{E S}=\sqrt{E_{\text {beam }}^{*}{ }^{2}-p_{B}^{* 2}}
$$

Energy difference
$\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$

Event topology
(multivariate methods)

Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

Branching Fraction of Hadronic B Decays

- $\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}, h^{0}=\pi, \eta, \omega, \eta^{\prime}$
- $\bar{B}^{0} \rightarrow \Lambda^{+}{ }_{c} \bar{\Lambda} K^{-}$

$\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$: Motivation

a Neutral $\mathrm{B}^{0} \rightarrow \mathrm{D}\left(^{*}\right)^{0} \mathrm{~h}^{0}$ decays proceed through color-suppressed internal $\mathrm{W}^{ \pm}$diagrams
a Strong interactions in the final state (FSI) can modify decay dynamics

- Perturbative QCD (pQCD)

$$
\begin{aligned}
& \text { e.g. PRD 69, } 094018 \text { (2004), } \\
& \text { PRD 68, } 097502 \text { (2003) }
\end{aligned}
$$

- Soft Collinear Effective Theory (SCET)

$$
\begin{aligned}
& \text { e.g. PRD 65, } 054022 \text { (2002), } \\
& \text { PRD 68, } 114009 \text { (2003), } \\
& \text { PRL 608, } 77 \text { (2005) }
\end{aligned}
$$

a Previous BF measurements seems to disagree with factorization approximation
a Non-factorizable contributions my be dominant for color-suppressed modes
a Stronger experimental constraints needed to distinguish among QCD models (pQCD, SCET, ...)

$\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}^{(*) 0} \mathrm{~h}^{0}$: Strategy

a $D^{(*) 0}$ candidates:

- D^{0} : reconstructed in several modes ($\mathrm{K}^{-} \pi^{+}, \mathrm{K}^{-} \pi^{+} \pi^{0}, \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}, \mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}$).

$$
\left|M_{R E C}\left(D^{0}\right)-M_{P D G}\left(D^{0}\right)\right|<-3 \sigma\left(5.0,5.5,6.1,11.0 \mathrm{MeV} / \mathrm{c}^{2}\right)
$$

- $\mathrm{D}^{\star 0}$: reconstructed in $\mathrm{D}^{\star 0} \rightarrow \mathrm{D}^{0}\left(\pi^{0} / \gamma\right)$. $\left|\mathrm{M}\left(\mathrm{D}^{\star 0}\right)-\mathrm{M}\left(\mathrm{D}^{0}\right)\right|<1 \sigma\left(1.3-7 \mathrm{MeV} / \mathrm{c}^{2}\right)$
a \mathbf{h}^{0} candidates reconstructed in several modes: $\pi^{0} \rightarrow \gamma \gamma, \eta \rightarrow\left(\gamma / / \pi^{+} \pi^{-} \pi^{0}\right)$,
$\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}, \eta^{\prime} \rightarrow\left(\rho^{0} \gamma / \pi^{+} \pi^{-} \eta(\rightarrow \gamma \gamma)\right)$. Mass window depends on resolution
a \mathbf{B}^{0} candidates:
- A total of 72 modes counting all $\mathrm{D}^{(*)} \mathrm{h}^{0}$ combinations
- Signal window $m_{E S}>5.27 \mathrm{GeV} / \mathrm{C}^{2}$
a Use Fisher to further reduce continuum qq background
a $B^{-} \rightarrow D^{(*)} h^{-}\left(h^{-}=\pi^{-}, \rho^{-}\right.$, as control sample (Data vs MC comparison)
a Signal yields extracted with unbinned maximum likelihood fit to $\Delta \mathrm{E}$ variable
a Cross-feed between $B^{0} \rightarrow D^{* 0} h^{0} \Leftrightarrow B^{0} \rightarrow D^{0} h^{0}$ modes estimated with iterative procedure

$\bar{B}^{0} \rightarrow D^{(*) 0} h^{0}$: Results (I)

$\bar{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~h}^{0}$ modes

a For every $\mathrm{h}^{0}=\pi^{0}$, η, ω, η ' mode the plot show the measurement integrated on the D^{0} modes ($\mathrm{K}^{-} \pi^{+}$, $\mathrm{K}^{-} \pi^{+} \pi^{0}, \mathrm{~K}^{-} \pi^{+} \pi^{-} \pi^{+}$, $\mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}$)

- Signal yields are extracted with significances above 5σ

Data Sample: 454×10^{6} B \bar{B}

$\overline{\mathbf{B}}^{0} \rightarrow \mathrm{D}^{* 0} \mathbf{h}^{0}$ modes

Data Sample:
454×10^{6} B \bar{B}

$\overline{\mathbf{B}}^{0} \rightarrow \mathrm{D}^{(*)} \mathrm{h}^{0}$: Results (Illi)

a BFs consistent with previous measurements
a $\mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{* 0} \mathrm{~h}^{0}\right) / \mathrm{BF}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~h}^{0}\right)$ consistent with 1.0 (within 30%) as expected by SCET but disagrees with pQCD

$B A B A R$ Preliminary	
$\mathcal{B}\left(\bar{B}^{0} \rightarrow\right)\left(\times 10^{-4}\right)$	This measurement
$D^{0} \pi^{0}$	$2.69 \pm 0.09 \pm 0.13$
$D^{* 0} \pi^{0}$	$3.05 \pm 0.14 \pm 0.28$
$D^{0} \eta$	$2.53 \pm 0.09 \pm 0.11$
$D^{* 0} \eta$	$2.69 \pm 0.14 \pm 0.23$
$D^{0} \omega$	$2.57 \pm 0.11 \pm 0.14$
$D^{* 0} \omega$	$4.55 \pm 0.24 \pm 0.39$
$D^{0} \eta^{\prime}$	$1.48 \pm 0.13 \pm 0.07$
$D^{* 0} \eta^{\prime}$	$1.48 \pm 0.22 \pm 0.13$

$00.20 .40 .60 .811 .21 .41 .61 .8{ }^{2} 2.2$
$\mathrm{BF}\left(\mathrm{B}^{-4} \rightarrow \mathrm{D}^{+0} \mathrm{~h}^{0}\right) / \mathrm{BF}\left(\mathrm{B}^{\mathrm{o}} \rightarrow \mathrm{D}^{0} \mathrm{~h}^{0}{ }^{0}\right)$
a Measure f_{L} for $\mathrm{B}^{0} \rightarrow \mathrm{D}^{\star 0} \omega$ mode for the first time!

$$
f_{L}=\left(66.5 \pm 4.7_{\text {stat }} \pm 1.5_{\text {syst }}\right) \%
$$

a Much lower value than HQET predictions

$$
f_{L}=(89.5 \pm 1.9) \% \text { e.g. PRD 42, } 3732 \text { (1990), PRL 264, } 455 \text { (1991) }
$$

Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

$\overline{\mathrm{B}}^{0} \rightarrow \mathbf{\Lambda}^{+}{ }_{\mathrm{c}}^{\mathbf{A}} \mathrm{K}^{-}$: Motivation

- $\mathrm{BF}(\mathrm{B} \rightarrow$ baryons $) \sim 7 \%$, but sum of known modes accounts only $\sim 1 \%$
a $B \rightarrow$ baryons poorly understood theoretically \Rightarrow study of as many exclusive modes as possible can help to understand the decay mechanism
a Threshold enhancement in bayon-antibaryon mass has been observed
a $\mathrm{B} \rightarrow$ baryons may provide evidence of new/poorly known resonances

$\overline{\mathcal{B}}^{0} \rightarrow \mathrm{~A}^{+}{ }_{\mathrm{c}} \bar{\Lambda}^{-}$: Strategy

a $\Lambda^{+}{ }_{\mathrm{c}}$ candidates: $\Lambda_{\mathrm{c}}^{+} \rightarrow \mathrm{pK}^{-} \pi^{+}$. Vertexing, $2.273<\mathrm{M}\left(\Lambda^{+}{ }_{\mathrm{c}}\right)<2.299 \mathrm{GeV} / \mathrm{c}^{2}$
a $\bar{\Lambda}$ candidates: $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}$. Vertexing, $1.113<\mathrm{M}(\mathrm{L})<1.119 \mathrm{GeV} / \mathrm{c}^{2}$

- \mathbf{B}^{0} candidates:
- Mass constraint (Λ^{+}mass fixed to PDG) of $\Lambda_{c}^{+} \Lambda K^{-}$to same vertex
- Signal window $5.272<\mathrm{m}_{\mathrm{ES}}<2.288 \mathrm{GeV} / \mathrm{c}^{2}$
a Distance between B and $\bar{\Lambda}$ vertexes in xy plane $>0.4 \mathrm{~cm}$
- Rejection of 99.6% of $\overline{\mathrm{B}}^{0} \rightarrow \Lambda^{+}{ }_{\mathrm{c}} \overline{\mathrm{p}}^{-} \pi^{+}$background
- Rejection of 18.0% of combinatoric background
a Signal yield extracted with binned maximum likelihood fit to $\Delta \mathrm{E}$ variable
a In the BF measurement, efficiency is corrected accounting for the phase-sapce distribution (two-body invariant masses) observed on data

$\overline{\mathcal{B}}^{0} \rightarrow \Lambda^{+}{ }_{c} \overline{\mathbf{A}} \mathrm{~K}^{-}$: Results

$\Lambda^{+}{ }_{\mathrm{c}}{ }^{\bar{\Lambda}}$

Signal Yield: 51 ± 9 events , $\sim 8 \sigma$ significance

$$
\mathrm{BF}\left(\overline{\mathrm{~B}^{0}} \rightarrow \Lambda_{\mathrm{c}}^{+} \overline{\bar{\Lambda}} \mathrm{K}^{-}\right)=\left(3.8 \pm 0.8_{\text {stat }} \pm 0.2_{\text {syst }} \pm 1.0_{\Lambda c}\right) \times 10^{-5}
$$

a Within signal region look at all combinations of 2-body invariant masses of the $\mathrm{B}^{0} \rightarrow \Lambda^{+}{ }_{\mathrm{c}} \Lambda \mathrm{K}^{-}$ final state. Enhancement at high $\left(\Lambda^{+} \mathrm{K}^{-}\right)$mass arXiv: 1107.5751
Submitted to PRD
Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

CP Violation

- CPV in $\tau^{-} \rightarrow \pi^{-} K_{s}^{0}\left(n \pi^{0}\right) v_{\tau}, n=\mathbf{0 , 1 , 2}$
- T-odd correlations in $\mathrm{D}^{+} / \mathrm{D}^{+}{ }_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}$
- $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \pi^{0} \pi^{0}$

CPV in $\tau^{-} \rightarrow \pi^{-} \mathbb{K}_{s}^{0}\left(n \pi^{0}\right) v_{\tau}:$ Motivation

a Standard Model (SM) predicts no CPV in $\tau^{-} \rightarrow \pi^{-} \overline{\mathrm{K}}^{0} \nu_{\tau}$ decays
a CPV in the Kaon sector induces a nonzero $A_{C P}$ on the $\tau^{-} \rightarrow \pi^{-} \mathrm{K}_{\mathrm{s}}^{0} \nu_{\tau}$ final state
$\mathrm{A}_{\mathrm{CP}}=\frac{\Gamma\left(\tau^{+} \rightarrow \pi^{+} \mathrm{K}_{\mathrm{s}}^{0} \bar{v}_{\tau}\right)-\Gamma\left(\tau^{-} \rightarrow \pi^{-} \mathbf{K}_{\mathrm{s}}^{0} v_{\tau}\right)}{\Gamma\left(\tau^{+} \rightarrow \pi^{+} \mathrm{K}_{\mathrm{s}}^{0} \bar{v}_{\tau}\right)+\Gamma\left(\tau^{-} \rightarrow \pi^{-} \mathrm{K}^{0}{ }_{\mathrm{s}}{ }_{\tau}\right)}$

a $\quad \mathrm{SM}$ prediction $\mathrm{A}^{\mathrm{SM}}{ }_{\mathrm{CP}}=(0.332 \pm 0.006) \%$ PLB 625, 47 (2005)

- A deviation of the measured $A_{C P}$ from $A^{S M}{ }_{C P}$ would be a hint of NP
- e.g. an additional CPV phase from Charged Higgs boson PLB 398, 407 (1997)
a Additional π^{0} s in the final state are not expected to change the $A_{C P}$
- Can consider the modes $\tau^{-} \rightarrow \pi^{-} K^{0}{ }_{s}\left(n \pi^{0}\right) \nu_{\tau^{\prime}}$, with $n=0,1,2$

CPV in $\tau^{-} \rightarrow \pi^{-} \mathbb{K}_{5}^{0}\left(n \pi^{0}\right) v_{\tau}$: Strategy

- Leptonic tag technique very useful to reduce backgrounds
a Tag-side: only hard leptons (e, μ)
- $p^{*}>4.0 \mathrm{GeV} / \mathrm{c}$ (rejects non- τ decays backgrounds)
a Signal-side:
- $\mathrm{M}\left(\pi^{-} \mathrm{K}_{\mathrm{s}}^{0}\left(\mathrm{n} \pi^{0}\right)\right)<1.8 \mathrm{GeV} / \mathrm{c}^{2}$

(rejects $q \bar{q}$ backgrounds)
- Likelihood ration to reduce remaining backgrounds $\mathrm{q} \overline{\mathrm{q}}$: visible energy, \# neutral clusters, Thrust , total p_{T}
$\mathrm{K}_{\mathrm{s}}^{0}$: displaced vertex, $\mathrm{M}\left(\mathrm{K}_{\mathrm{s}}^{0}\right)$, momentum and θ of $\mathrm{K}_{\mathrm{s}}^{0}$ candidate

CPV in $\tau^{-} \rightarrow \pi^{-} \mathbb{K}_{5}^{0}\left(n \pi^{0}\right) v_{\tau}$: Results

- Measure raw $A_{C P}$ after subtracting continuum $\mathrm{q} \bar{q}$ and non $-\mathrm{K}_{\mathrm{s}}^{0} 437 \times 10^{6} \tau^{+} \tau^{-}$ τ-decays. Raw A_{CP} corrected by
- Different $\mathrm{K}^{0} / \bar{K}^{0}$ interactions with material (0.14 ± 0.03) $\%$ for e-tag and (0.14 ± 0.02) $\%$ for μ-tag
- Dilution from backgrounds modes with A_{CP} different than signal

Source	Fractions (\%)		BABAR Preliminary
	e-tag	μ-tag	
$\tau^{-} \rightarrow \pi^{-} K_{S}^{0}\left(>0 \pi^{0}\right) \nu_{\tau}$	78.4 ± 4.0	77.4 ± 4.0	
$\tau^{-} \rightarrow K^{-} K_{S}^{0}\left(\geq 0 \pi^{0}\right) \nu_{\tau}$	4.2 ± 0.3	4.0 ± 0.3	
$\tau^{-} \rightarrow \pi^{-} K^{0} \bar{K}^{0} \nu_{\tau}$	15.6 ± 3.7	15.7 ± 3.7	$A^{\text {Sm }}$

Result:

$A_{c p}\left(\tau^{-} \rightarrow \pi^{-} K_{s}^{0}\left(n \pi^{0}\right) \nu_{\tau}\right)=\left(-0.45 \pm 0.24_{\text {stat }} \pm 0.11_{\text {syst }}\right) \%$
arXiv: 1109.1527 Submitted to PRD

CPV in $D^{+} / D_{s}^{+} \rightarrow K^{+} K_{s}^{0} \pi^{+} \pi^{-}:$Motivation

a Direct CPV in D decays:

- CKM suppressed in SM O(10 $\left.{ }^{-3}\right)$. NP can increase/reduce effect
- Current experimental precision $\mathrm{O}\left(10^{-3}\right)$
a New strategy based on Bigi hep-ph/0107102
a CPT invariance: T-violation \Rightarrow CPV
a Define T-odd observable
$C_{T} \equiv \overrightarrow{\mathrm{p}}_{\mathrm{K}^{+}} \cdot\left(\overrightarrow{\mathrm{p}}_{\pi^{+}} \times \overrightarrow{\mathrm{p}}_{\pi^{-}}\right)$

a Build the following asymmetries

$$
\begin{array}{cc}
A_{T}=\frac{\Gamma\left(C_{T}>0\right)-\Gamma\left(C_{T}<0\right)}{\Gamma\left(C_{T}>0\right)+\Gamma\left(C_{T}<0\right)} & \bar{A}_{T}=\frac{\Gamma\left(\bar{C}_{T}>0\right)-\Gamma\left(\bar{C}_{T}<0\right)}{\Gamma\left(\bar{C}_{T}>0\right)+\Gamma\left(\bar{C}_{T}<0\right)} \\
\text { Measured on } \mathrm{D}_{(\mathrm{s})}^{+} & \text {Measured on } \mathrm{D}_{(\mathrm{s})}^{-}
\end{array}
$$

a Final state interaction (FSI) may induce T-odd asymetries $A_{T} \neq 0$

- Remove FSI effects by measuring A T-violation observable

$$
\mathcal{A}_{T} \equiv 1 / 2\left(A_{T}-\bar{A}_{T}\right)
$$

CPV in $D^{+} / D_{s}^{+} \rightarrow K^{+} K_{s}^{0} \pi^{+} \pi^{-}$: Strategy

- Inclusive $\mathrm{D}_{(\mathrm{s})}^{+}$reconstruction

Data Sample:
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{XD}^{+}{ }_{(s)} ; \mathrm{D}^{+}{ }_{(\mathrm{s})} \rightarrow \mathrm{K}^{+} K^{0}{ }_{s} \pi^{+} \pi^{-} ; K^{0}{ }_{s} \rightarrow \pi^{+} \pi^{-}$
a $\mathrm{p}^{*}\left(\mathrm{D}_{(\mathrm{s})}^{+}\right)>2.5 \mathrm{GeV} / \mathrm{c}$

- $\mathrm{CM} \mathrm{p}^{*}\left(\mathrm{D}^{+}{ }_{(\mathrm{s})}\right)$
- Vertexing probability difference $P_{1}-P_{2}$

$$
P_{1} \equiv 4 \text { particle vertex }
$$

$\mathrm{P}_{2} \equiv$ primary vertex
Alejandro Pérez, QFTHEP 2011 Sochi, Russia

CPV in $D^{+} / D_{s}^{+} \rightarrow \mathbb{K}^{+} \mathbf{K}_{s}^{0} \pi^{+} \pi^{-}:$Results (1)

CPV in $\mathrm{D}^{+} / \mathrm{D}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}^{+} \mathbf{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}:$Results (III)

PRD 84, 031103 (2011) $520 \mathrm{fb}^{-1}$

$$
D^{+} \rightarrow K^{+} K_{s}^{0} \pi^{+} \pi^{-}
$$

$$
D_{s}^{+} \rightarrow K^{+} K^{0}{ }_{s} \pi^{+} \pi^{-}
$$

$$
\begin{aligned}
& A_{T}\left(\mathrm{D}^{+}\right)=\left(+11.2 \pm 14.1_{\text {stat }} \pm 5.7_{\text {syst }}\right) \times 10^{-3} \quad A_{T}\left(\mathrm{D}_{\mathrm{s}}^{+}\right)=\left(-99.2 \pm 10.7_{\text {stat }} \pm 8.3_{\text {syst }}\right) \times 10^{-3} \\
& A_{T}\left(\mathrm{D}^{-}\right)=\left(+35.1 \pm 14.3_{\text {stat }} \pm 7.2_{\text {syst }}\right) \times 10^{-3} \quad A_{T}\left(\mathrm{D}_{\mathrm{s}}^{-}\right)=\left(-72.1 \pm 10.9_{\text {stat }} \pm 10.7_{\text {syst }}\right) \times 10^{-3}
\end{aligned}
$$

Large FSI in $\mathrm{D}_{\mathrm{s}}^{+}$than D^{+}decays arXiv: 1107.1232 (2011)

$$
\mathcal{A}_{T}\left(\mathrm{D}^{+}\right)=\left(-12.0 \pm 10.0_{\text {stat }} \pm 4.6_{\text {syst }}\right) \times 10^{-3}
$$

$\begin{aligned} & \text { FOCus(2005) } \longmapsto \\ & \text { BaBar(2011) } \end{aligned}$		$\mathrm{D}^{\prime} \rightarrow \mathrm{K}^{\prime} \mathrm{K}_{9}^{6} \mathrm{r}^{\prime} \mathrm{I}^{\prime}$
		$\mathrm{D}^{+} \rightarrow \mathbb{R}^{\prime} \mathrm{K}^{+1} \times \pi$

a T-violation asymmetry consistent with 0
a A factor of 10 improvement over previous results
Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 24

$$
\mathcal{A}_{T}\left(\mathrm{D}_{\mathrm{S}}^{+}\right)=\left(-13.6 \pm 7.7_{\text {stat }} \pm 3.4_{\mathrm{sys}}\right) \times 10^{-3}
$$

Focissase	
(1)	

Similar BABAR analysis with
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{+} \pi^{-}\left(\sim 47 \mathrm{k} \mathrm{D}^{0}\right)$

$$
\mathcal{A}_{T}\left(\mathrm{D}^{0}\right)=\left(+1.0 \pm 5.1_{\text {stat }} \pm 4.4_{\text {syst }}\right) \times 10^{-3}
$$

$$
\text { PRD 81, } 111103 \text { (2010) }
$$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$: Motivation

a \quad Expected $A_{c p}\left(\mathrm{~K}^{+} \pi^{-}\right) \approx A_{c p}\left(\mathrm{~K}^{+} \pi^{0}\right)$
a Experiment finds

$$
\begin{gathered}
\left.\begin{array}{c}
A_{C P}\left(\mathrm{~K}^{+} \pi^{0}\right)=+0.050 \pm 0.025 \\
A_{C P}\left(\mathrm{~K}^{+} \pi^{-}\right)=-0.098 \pm 0.012
\end{array}\right\} \begin{array}{l}
\text { 5c difference } \\
\text { "K } \pi \text { puzzle" } \\
\text { SM o NP? }
\end{array} \\
\text { Mod. Phys. Let. A 24, } 1983(2009)
\end{gathered}
$$

a Large hadronic uncertainties in $\mathrm{SM} \Rightarrow$ no clear interpretation in terms of NP

a Larger Tree/Penguin ratio expected for $\mathrm{B} \rightarrow \mathrm{K}^{*} \pi / \mathrm{K} \rho$ modes \Rightarrow Larger CP asymmetries
a Is there a similar puzzle in the $\mathrm{B} \rightarrow \mathrm{K}^{*} \pi$ system? Need to compare $A_{C P}\left(\mathrm{~K}^{\star+} \pi^{-}\right) \approx A_{C P}\left(\mathrm{~K}^{*+} \pi^{0}\right) . \mathrm{K}^{*+} \pi^{0}$ contributes to $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$
a Dominant contributions to $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$ Dalitz plot may help clarify interpretation of inclusive time-dependent CP-asymmetry of $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}^{0} \pi^{0} \pi^{0}$.
SM expects $S_{C P}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0} \pi^{0} \pi^{0}\right)=-\sin (2 \beta)$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$: Strategy

a $\pi^{0} \rightarrow \gamma \gamma .115<\mathrm{M}\left(\pi^{0}\right)<150 \mathrm{MeV} / \mathrm{c}^{2}$
a B^{+}: mass constraint (π^{0} mass fixed to PDG) fit of $\mathrm{K}^{+} \pi^{0} \pi^{0}$ to same vertex
a Δ E correlated with Dalitz Plot (DP) \Rightarrow not used in the fit. Signal window $-150<\Delta \mathrm{E}<50 \mathrm{MeV}$

a Veto: $0.40<\mathrm{M}\left(\pi^{0} \pi^{0}\right)<0.55 \mathrm{GeV} / \mathrm{c}^{2}$ to exclude $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{K}_{\mathrm{s}}^{0}\left(\rightarrow \pi^{0} \pi^{0}\right) \quad \mathrm{m}_{\pi^{0}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ Background (rejects 96% and keeps $\sim 100 \%$ of signal)
a Use Neural Net $\left(\mathrm{NN}_{\text {out }}\right)$ to further reduce continuum $\bar{q} \bar{q}$ background. Apply loose cut $\mathrm{NN}_{\text {out }}>0.3 \Rightarrow$ rejects (keeps) 82% (90\%) of continuum (signal)

- Signal yield and global $A_{C P}$ extracted with unbinned maximum likelihood fit to $\mathrm{m}_{\text {ES }}$ and $\mathrm{NN}_{\text {out }}$ variables
a Fraction of self-cross-feed (SCF) events strongly dependent on DP. Iterative method to estimate SCF fraction using sPlots NIM A555, 356 (2005)

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$: Results (I)

To be submitted to PRD

Inclusive $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$ measurement:
a Convergence after 4 iterations \Rightarrow Signal Yield $=1220 \pm 85$ and $f_{\text {SCF }}=9.7 \%$
a 10σ significance including systematic effects!

- $\mathrm{BF}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}\right)=\left(16.2 \pm 1.2_{\text {stat }} \pm 1.5_{\text {syst }}\right) \times 10^{-5}$
a $\quad A_{C P}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}\right)=\left(-6.0 \pm 6.0_{\text {stat }} \pm 4.0_{\text {syst }}\right) \%$

$\mathrm{B}^{+} \rightarrow \mathbb{K}^{+} \pi^{0} \pi^{0}$: Results (III)

Quasi-two-body contributions:
a Use sPlot technique to obtain DP distributions from $\mathrm{m}_{\mathrm{ES}}-\mathrm{NN}_{\text {out }}$ fit.
Project DP onto the 2-body invariant masses
a Signal peaks from $\mathrm{K}^{\star}(892)^{+} \pi^{0}, \mathrm{f}_{0}(980) \mathrm{K}^{+}, \chi_{\mathrm{co}} \mathrm{K}^{+}$are clearly seen
a Broad peak at $\sim 1400 \mathrm{MeV} / \mathrm{c}^{2}$ in the $\mathrm{K}^{+} \pi^{0}$ mass, possibly from $\mathrm{K}^{*}{ }_{0 / 2}(1430)^{+} \pi^{0}$
a No enhancement from $f_{x}(1300)$ in pipi mass. Deap at $\sim 1500 \mathrm{MeVc}^{2}$
a BF and A_{CP} extracted from fit to 2-body invariant masses around resonant

$\mathrm{B}^{+} \rightarrow \mathbf{K}^{+} \pi^{0} \pi^{0}$: Results (IIII)

To be submitted to PRD

Data Sample: 471×10^{6} B \bar{B}
a First inclusive measurement of $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0} \pi^{0}$!
a More statistics is needed to better test $A_{C P}\left(\mathrm{~K}^{*+} \pi^{-}\right) \approx A_{C P}\left(\mathrm{~K}^{*+} \pi^{0}\right)$

Mode	$\mathcal{B}\left(B^{+} \rightarrow R h \rightarrow K^{+} \pi^{0} \pi^{0}\right)$	$\mathcal{B}\left(B^{+} \rightarrow R h\right)$	$A_{C P}$
$B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$	$(16.2 \pm 1.2 \pm 1.5) \times 10^{-6}$	\cdots	$-0.06 \pm 0.06 \pm 0.04$
$B^{+} \rightarrow K^{*}(892)^{+} \pi^{0}$	$(2.7 \pm 0.5 \pm 0.4) \times 10^{-6}$	$(8.2 \pm 1.5 \pm 1.1) \times 10^{-6}$	$-0.06 \pm 0.24 \pm 0.04$
$B^{+} \rightarrow f_{0}(980) K^{+}$	$(2.8 \pm 0.6 \pm 0.5) \times 10^{-6}$	\cdots	$0.18 \pm 0.18 \pm 0.04$
$B^{+} \rightarrow \chi_{c 0} K^{+}$	$(0.51 \pm 0.22 \pm 0.09) \times 10^{-6}$	$(18 \pm 8 \pm 3 \pm 1) \times 10^{-5}$	$-0.96 \pm 0.37 \pm 0.04$

To be compared with
$A_{C P}\left(K^{+} \pi^{-}\right)=-0.25 \pm 0.07 \pm 0.02$

Bottomonium Spectroscopy

- Bottomonium (b̄) radiative transitions with $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

The bb̄ Spectrum: Introduction

- Studies of b̄b (bottomonium) and $\bar{c} \bar{c}$ (charmonium) bound states provide insight about inter-quark forces
- Searches of predicted states (Not discussed here)
- Discovery and confirmation of the bottomonium ground state ($\mathrm{L}=0, \mathrm{~S}=0$) $\eta_{b}(1 S)$ after 30 years of hunting
- Searches of the $h_{b}(1 P)$ state to understand hyperfine mass-splitting of P -wave states
a Study of radiative transitions (This talk)
- Measurement of electric (E1) and magnetic (M1) transition rates
- Better understanding of modeldependencies of inter-quark potential
- Useful spectroscopic studies of mass measurements

bb transitions using $\gamma \rightarrow e^{+} e^{-}$: Motivation

a Bottomonia radiative transitions well described by effective potential models (non-relativistic)
a Higher-order relativistic and model-dependent effects may play substantial role in suppressed radiative transitions (e.g. E1 $\Upsilon(3 S) \rightarrow \gamma \chi_{b j}$ (1P) and "hindered" M1 $\mathrm{r}(\mathrm{nS}) \rightarrow \eta_{\mathrm{b}}(\mathrm{n}$ S $)$)
a Doppler broadening and detector resolution (EMC) may lead to unresolved radiated photon energies from different transitions
a Want to separate the individual contributions for more precise mass-splitting measurements
a Use converted photons ($\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$) in detector material
a Pros: lower resolution $(\sim 5 \mathrm{MeV})$ than EMC detected $\gamma(\sim 25 \mathrm{MeV})$
a Cons: decreased efficiency (0.1-2.5\%)

$\overline{\text { bbb }}$ transitions using $\gamma \rightarrow e^{+} e^{-}$: Strategy

a Selection

- $N_{\text {tracks }}$ and distribution $\left(\left|\cos \left(\theta_{\text {trruss }}\right)\right|\right)$ consistent with a multi-hadron event
- Good photon conversion candidate: χ^{2} fit, $m\left(\mathrm{e}^{+} \mathrm{e}^{-}\right), \rho_{\gamma}$ and π^{0} veto
a Fit to CM photon energy spectrum (E^{*}) in four different regions
- IV. Y(3S): $180<\mathrm{E}^{*}<300 \mathrm{MeV}$.
$\chi_{\mathrm{b},}(2 \mathrm{P}) \rightarrow \gamma \mathrm{r}(2 \mathrm{~S})$
- V. $\mathrm{r}(3 \mathrm{~S}): 300<\mathrm{E}_{\gamma}^{*}<600 \mathrm{MeV}$. $\Upsilon(3 S) \rightarrow \gamma \chi_{b 2}(1 \mathrm{P})$ and $\mathrm{r}(3 \mathrm{~S}) \rightarrow \mathrm{m}_{b}(2 \mathrm{~S})$
- VII. Y(3S): $600<\mathrm{E}^{\star}{ }_{\gamma}<1100 \mathrm{MeV}$. $\chi_{\mathrm{n},}(2 \mathrm{P}) \rightarrow \gamma \mathrm{r}(1 \mathrm{~S})$ and $\mathrm{r}(3 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{n}}(1 \mathrm{~S})$
- VI. Y(2S): $300<\mathrm{E}^{*}<800 \mathrm{MeV}$.
$\chi_{\mathrm{v}}(1 \mathrm{P}) \rightarrow \gamma \mathrm{r}(1 \mathrm{~S})$ and $\mathrm{r}(2 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{p}}(1 \mathrm{~S})$
Alejandro Perez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

$\mathrm{b} \mathrm{\bar{b}}$ transitions using $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$: Results (I)

Region IV. Y(3S): $180<\mathrm{E}^{\star}{ }_{\gamma}<300 \mathrm{MeV}$
arXiv: 1104.5254 Accepted by PRD

Data sample: $111 \times 10^{6} \mathrm{Y}$ (3S)

- Measurement of $\chi_{b J}(2 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(2 \mathrm{~S})$ transitions ($\mathrm{J}=1,2$ nost precise!)
- Potentially sensitive to D-wave b̄ states (6): Y(1D $) \rightarrow \gamma \chi_{b J}(1 P)$

Transition	E_{γ}^{*}	Yield	ϵ	Derived Branching		Fraction (\%)
	(MeV)		$(\%)$	$B A B A R$	CUSB	CLEO
$\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon(2 S)$	205.0	-347 ± 209	0.105	$-4.7 \pm 2.8_{-0.8}^{+0.7} \pm 0.5(<2.8)$	3.6 ± 1.6	<5.2
$\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(2 S)$	229.7	4294 ± 251	0.152	$18.9 \pm 1.1 \pm 1.2 \pm 1.8$	13.6 ± 2.4	21.1 ± 4.5
$\chi_{b 2}(2 P) \rightarrow \gamma \Upsilon(2 S)$	242.3	2462 ± 243	0.190	$8.3 \pm 0.8 \pm 0.6 \pm 1.0$	10.9 ± 2.2	9.9 ± 2.7

bh̄ transitions using $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$: Results (III)

Region V. Y(3S): $300<\mathrm{E}_{\gamma}^{*}<600 \mathrm{MeV}$
arXiv: 1104.5254 Accepted by PRD

Data sample: $111 \times 10^{6} \mathrm{Y}(3 \mathrm{~S})$

- Measurement of $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \chi_{b J}(1 \mathrm{P})$ and $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \eta_{b}(2 \mathrm{~S})$ transitions
- Complicated: Overlaps with $\chi_{b J}(1 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})$. Many ways to produce $\chi_{b J}(1 \mathrm{P})$
- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \eta_{b}(2 \mathrm{~S})$ in $335<\mathrm{E}^{\star}<375 \mathrm{MeV}$. $\mathrm{BF}<1.9 \times 10^{-3}$ at $90 \% \mathrm{CL}$

Transition	E_{γ}^{*}	Yield		Derived Branching raction $\left(\times 10^{-3}\right)$	
	(MeV)		(\%)	BABAR	CLEO
$\Upsilon(3 S) \rightarrow \gamma \chi_{b 2}(1 P)$	433.1	9699 ± 318	0.794	$10.5 \pm 0.3_{-0.6}^{+0.7}$	7.7 ± 1.3
$\Upsilon(3 S) \rightarrow \gamma \chi_{b 1}(1 P)$	452.2	483 ± 315	0.818	$0.5 \pm 0.3_{-0.1}^{+0.2}(<1.0)$	1.6 ± 0.5
$\Upsilon(3 S) \rightarrow \gamma \chi_{b 0}(1 P)$	483.5	2273 ± 307	0.730	(2.7 $\pm 0.4 \pm 0.2)$	3.0 ± 1.1

bh transitions using $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$: Results (III)

Region VII. Y(3S): $600<\mathrm{E}^{*}{ }_{\gamma}<1100 \mathrm{MeV}$
arXiv: 1104.5254 Accepted by PRD

Data sample: $111 \times 10^{6} \mathrm{Y}(3 \mathrm{~S})$

- Measurement of $\chi_{b j}(2 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})$ and $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \eta_{b}(1 \mathrm{~S})$ transitions
- Most precise measurement of $\mathrm{BF}\left(\chi_{\mathrm{b1}, 2}(2 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})\right)$
- $\mathrm{BF}\left(\mathrm{Y}(3 \mathrm{~S}) \rightarrow \eta_{b}(1 \mathrm{~S})\right): \sim 2.7 \sigma$ significance (including systematics)

Transition	$\begin{gathered} \hline E_{\gamma}^{*} \\ (\mathrm{MeV}) \end{gathered}$	Yield	$\begin{gathered} \hline \epsilon \\ (\%) \end{gathered}$	Derived Branching	raction (\%)	
				$B A B A R$	CUSB	CLEO
$\chi_{60}(2 P) \rightarrow \gamma \Upsilon(1 S)$	742.7	469_{-259}^{+260}	1.025	$0.7 \pm 0.4_{-0.1}^{+0.2} \pm 0.1(<1.2)$	<1.9	<2.2
$\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(1 S)$	764.1	149655_{-383}^{+381}	1.039	$9.9 \pm 0.3_{-0.4}^{+0.5} \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4
$\chi_{b 2}(2 P) \rightarrow \gamma \Upsilon(1 S)$	776.4	11283_{-385}^{+384}	1.056	$7.0 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0
$\Upsilon(3 S) \rightarrow \gamma \eta_{b}(1 S)$	$907.9 \pm 2.8 \pm 0.9$	933_{-262}^{+263}	1.388	$0.058 \pm 0.016_{-0.016}^{+0.014}(<0.085)$	-	-

Region VI. Y(2S): $300<\mathrm{E}^{\star}{ }_{\gamma}<800 \mathrm{MeV}$
arXiv: 1104.5254 Accepted by PRD

Data sample:
$89 \times 10^{6} \mathrm{Y}(2 \mathrm{~S})$

- Measurement of $\chi_{b J}(1 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})$ and $\mathrm{Y}(2 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}(1 \mathrm{~S})$ transitions
- Most precise measurement of $\mathrm{BF}\left(\chi_{\mathrm{b} 1,2}(1 \mathrm{P}) \rightarrow \gamma \mathrm{Y}(1 \mathrm{~S})\right)$
- $\mathrm{BF}\left(\mathrm{Y}(2 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}(1 \mathrm{~S})\right): \sim 1.7 \sigma$ significance (including systematics)

Background Subtracted

Transition	E_{γ}^{*}	Yield		ϵ	Derived Branchin				Fraction (\%)	
	(MeV)		$(\%)$	$B A B A R$	CB	CUSB	CLEO			
$\chi_{b 0}(1 P) \rightarrow \gamma \Upsilon(1 S)$	391.5	391 ± 267	0.49	$2.2 \pm 1.5_{-0.7}^{+1.0} \pm 0.2(<4.6)$	<5	<12	1.7 ± 0.4			
$\chi_{b 1}(1 P) \rightarrow \gamma \Upsilon(1 S)$	423.0	12604 ± 285	0.54	$34.9 \pm 0.8 \pm 2.2 \pm 2.0$	3 ± 7	40 ± 10	33.0 ± 2.6			
$\chi_{b 2}(1 P) \rightarrow \gamma \Upsilon(1 S)$	442.0	7665_{-272}^{+270}	0.57	$19.5 \pm 0.7_{-1.5}^{+1.3} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4			
$\Upsilon(2 S) \rightarrow \gamma \eta_{b}(1 S)$	$613.7_{-2.6-1.1}^{+3.0+0.7}$	1109 ± 348	1.05	$0.11 \pm 0.04_{-0.05}^{+0.07}(<0.21)$	-	-	-			

$\mathrm{b} \overline{\mathrm{b}}$ transitions using $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$: Results (V)

Decay	BABAR (\%)	Theory (\%)
$\overline{\mathcal{B}}\left(\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon(2 S)\right)$	(<2.9)	1.27
$\mathcal{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(2 S)\right)$	19.1 ± 2.3	20.2 ¢
$\mathcal{B}\left(\chi_{b 2}(2 P) \rightarrow \gamma \Upsilon(2 S)\right)$	8.2 ± 1.4	10.1
$\mathcal{B}\left(\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon(1 S)\right)$	(<1.2)	0.96 จ
$\mathcal{B}\left(\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(1 S)\right)$	9.9 ± 1.1	11.8 N
$\mathcal{B}\left(\chi_{b 2}(2 P) \rightarrow \gamma \Upsilon(1 S)\right)$	$7.1_{-0.9}^{+1.0}$	5.3 ¢ ${ }^{\text {m }}$
$\overline{\mathcal{B}}\left(\chi_{b 0}(1 P) \rightarrow \gamma \Upsilon(1 S)\right)$	(<4.6)	3.2 -
$\mathcal{B}\left(\chi_{b 1}(1 P) \rightarrow \gamma \Upsilon(1 S)\right)$	36.2 ± 2.8	46.1 숨
$\mathcal{B}\left(\chi_{b 2}(1 P) \rightarrow \gamma \Upsilon(1 S)\right)$	$20.2{ }_{-1.8}^{+1.6}$	22.2

arXiv: 1104.5254 Accepted by PRD

■ $B F\left(\chi_{b j}(n P) \rightarrow \gamma Y(m S)\right)$ from E_{γ}^{*} spectrum. Some of the most precise measurements

- Theoretical predictions in reasonable agreements with our measurements
- $\mathrm{Y}(3 \mathrm{~S}) \rightarrow \gamma \chi_{\mathrm{bJ}}(1 \mathrm{P}): \mathrm{J}=1$ suppressed w.r.t J = 0,2
- Expected small transition rate \Rightarrow relativistic corrections
■ No good agreement with any particular model

Source	$J=0$	$J=1$	$J=2$
BABAR	55 ± 10	<22	216 ± 25
Moxhay-Rosner	25	25	150
Grotch et al.	114	3.4	194
Daghighian-Silverman	16	100	650
Fulcher	10	20	30
Lähde	150	110	40
Ebert et al.	27	67	97

Conclusions

- BABAR last data collected in 2008, but collaboration still very active
- Many results (over 100 ongoing analyses) on a variety of topics
- BABAR continues to produce interesting and competitive results
- Stay tuned for more results

