QFTHEP 2011 – Sochi, Russia – Sep 30th 2011

Recent results from BABAR

The XXth International Workshop Quantum Field Theory and High Energy Physics

Alejandro Pérez INFN – Sezione di Pisa On behalf of the BABAR Collaboration

Outline

- Introduction
 - The experimental environment, BABAR dataset and detector
 - Experimental Issues
- Recent highlights
 - Branching Fraction (BF) of Hadronic B-decays
 - > Color-suppressed decays $\overline{B}^0 \rightarrow D^{(*)0}h^0$ ($h^0 = \pi^0$, η , ω , η')
 - $\rightarrow \overline{B}^{0} \rightarrow \Lambda^{+}_{c} \overline{\Lambda} K^{-}$
 - CP Violation (CPV)
 - > CPV in $\tau^- \rightarrow \pi^- K^0_{s}(n\pi^0)v_{\tau}$, n = 0,1,2
 - > T-odd correlations in $D^+/D^+_{s} \rightarrow K^+K^0_{s}\pi^+\pi^-$ decays
 - $> B^+ \rightarrow K^+ \pi^0 \pi^0$
 - Bottomonium Spectroscopy
 - > Bottomonium radiative transitions with converted photons ($\gamma \rightarrow e^+e^-$)

Conclusions

PEP-II: a B factory at SLAC

BABAR Physics

7 Runs over the course of 9 years

- 1st collision May 26, 1999
- Final data taken 12:43 p.m., Apr 2008

Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

469 submitted/published papers:

- **CPV**, CKM angles: α , β , γ
- Semi-Leptonic B decays: |V_{ub}|, |V_{cb}|
- B B mixing: |V_{td}|
- D D mixing
- Precision measurements, rare decays of B, charm hadrons, τ
- Spectroscopy, discovery of new states
- QCD
- Limits on new physics (NP)

31 publications in 2010

- ~470×10⁶ $B\overline{B}$ (0.5 × Belle)
- ~690×10⁶ cc
- ${\sim}500{\times}10^6~\tau^+\tau^-$
- ~1.2×10⁸ Υ (3S) (7 × Belle+CLEO)
- ~1.0×10⁸ Υ(3S) (0.5 × Belle+CLEO)

BABAR Detector

Experimental Issues

- Small S/B ratio, mostly continuum ($e^+e^- \rightarrow q\bar{q}$, $q \neq b$) background.
- Use kinematical and event-shape variables to discriminate:

Branching Fraction of Hadronic B Decays

•
$$\overline{\mathbf{B}}^{0} \rightarrow \mathbf{D}^{(*)0} \mathbf{h}^{0}, \mathbf{h}^{0} = \pi, \eta, \omega, \eta'$$

•
$$B^0 \rightarrow \Lambda^+_{c} \Lambda K^-$$

$B^0 \rightarrow D^{(*)^0}h^0$: Motivation

- Neutral B⁰→D(*)⁰h⁰ decays proceed through color-suppressed internal W[±] diagrams
- Strong interactions in the final state (FSI) can modify decay dynamics
 - Perturbative QCD (pQCD)

e.g. PRD 69, 094018 (2004), PRD 68, 097502 (2003)

• Soft Collinear Effective Theory (SCET)

e.g. PRD 65, 054022 (2002), PRD 68, 114009 (2003), PRL 608, 77 (2005)

- Previous BF measurements seems to disagree with factorization approximation
- Non-factorizable contributions my be dominant for color-suppressed modes
- Stronger experimental constraints needed to distinguish among QCD models (pQCD, SCET, ...)

$B^0 \rightarrow D^{(*)0}h^0$: Strategy

- D^{(*)0} candidates:
 - D⁰: reconstructed in several modes (K⁻ π^+ , K⁻ $\pi^+\pi^0$, K⁻ $\pi^+\pi^-\pi^+$, K⁰_s $\pi^+\pi^-$).
 - $|M_{_{REC}}(D^0) M_{_{PDG}}(D^0)| < \sim 3\sigma (5.0, 5.5, 6.1, 11.0 \text{ MeV/c}^2)$
 - D*⁰: reconstructed in D*⁰ \rightarrow D⁰(π^{0}/γ). |M(D*⁰) M(D⁰)| < 1 σ (1.3–7 MeV/c²)
- **h**⁰ candidates reconstructed in several modes: $\pi^0 \rightarrow \gamma\gamma$, $\eta \rightarrow (\gamma\gamma/\pi^+\pi^-\pi^0)$, $\omega \rightarrow \pi^+\pi^-\pi^0$, $\eta' \rightarrow (\rho^0\gamma/\pi^+\pi^-\eta(\rightarrow\gamma\gamma))$. Mass window depends on resolution
- B⁰ candidates:
 - A total of 72 modes counting all D^{(*)0}h⁰ combinations
 - Signal window $m_{FS} > 5.27 \text{ GeV/c}^2$
- Use Fisher to further reduce continuum qq background
- B⁻ \rightarrow D^{(*)0}h⁻ (h⁻ = π^{-} , ρ^{-} ,) as control sample (Data vs MC comparison)
- Signal yields extracted with unbinned maximum likelihood fit to ΔE variable
- Cross-feed between $B^0 \rightarrow D^{*0}h^0 \Leftrightarrow B^0 \rightarrow D^0h^0$ modes estimated with iterative procedure

Data Sample:

454×10⁶ BB

Alejandro Pérez, QFTHEP 2011>

$\mathbf{B}^{0} \rightarrow \mathbf{D}^{(*)0} \mathbf{h}^{0}$: Results (II) Data Sample:

- Plots corresponds to $D^{*0} \rightarrow D^0 \pi^0$
- For every $h^0 = \pi^0$, η , ω , η' mode the plot show the measurement integrated on the D^0 modes ($K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$, $K_s^0\pi^+\pi^-$)
- Signal yields are extracted with significances above 5o

Alejandro Pérez, QFTHEP 2011 S

$\mathbf{B}^{0} \rightarrow \Lambda^{+} \mathbf{A}^{K^{-}}$: Motivation

- BF(B \rightarrow baryons) ~7%, but sum of known modes accounts only ~1%
- B→baryons poorly understood theoretically ⇒ study of as many exclusive modes as possible can help to understand the decay mechanism
- Threshold enhancement in bayon-antibaryon mass has been observed
- B \rightarrow baryons may provide evidence of new/poorly known resonances

 $\overline{\mathsf{B}}{}^{0} \rightarrow \Lambda^{+}_{c} \overline{\Lambda} \mathsf{K}^{-}$ Feynman diagrams

 $B^0 \rightarrow \Lambda^+ \Lambda K^-$: Strategy

- Λ^+_c candidates: $\Lambda^+_c \rightarrow pK^-\pi^+$. Vertexing, 2.273 < M(Λ^+_c) < 2.299 GeV/c²
- $\overline{\Lambda}$ candidates: $\overline{\Lambda} \rightarrow \overline{p}\pi^+$. Vertexing, 1.113 < M(L) < 1.119 GeV/c²
- B⁰ candidates:
 - Mass constraint (Λ^+_{c} mass fixed to PDG) of $\Lambda^+_{c}\Lambda K^-$ to same vertex
 - Signal window $5.272 < m_{_{\rm FS}} < 2.288 \text{ GeV/c}^2$
- Distance between B and $\overline{\Lambda}$ vertexes in xy plane > 0.4cm
 - Rejection of 99.6% of $\overline{B}{}^0 \rightarrow \Lambda^+ \overline{p} K^- \pi^+$ background
 - Rejection of 18.0% of combinatoric background
- Signal yield extracted with binned maximum likelihood fit to ΔE variable
- In the BF measurement, efficiency is corrected accounting for the phase-sapce distribution (two-body invariant masses) observed on data

QFTHEP 2011 Sochi, Russia. Sep 30th 2011 Alejandro Pérez,

CP Violation

- CPV in $\tau^- \rightarrow \pi^- K^0_{\ s}(n\pi^0)v_{\tau}$, n = 0,1,2
- T-odd correlations in $D^+/D^+_{s} \rightarrow K^+K^0_{s}\pi^+\pi^-$
- $B^+ \rightarrow K^+ \pi^0 \pi^0$

CPV in $\tau^- \rightarrow \pi^- K^0_{s}(n\pi^0)v_{\tau}$: Motivation

- SM prediction $A_{CP}^{SM} = (0.332 \pm 0.006)\%$ PLB 625, 47 (2005)
- A deviation of the measured A_{CP} from A^{SM}_{CP} would be a hint of NP
 - e.g. an additional CPV phase from Charged Higgs boson PLB 398, 407 (1997)
- Additional π^0 s in the final state are not expected to change the A_{CP}
 - Can consider the modes $\tau^- \rightarrow \pi^- K^0_{s}(n\pi^0)v_{\tau}$, with n=0,1,2

CPV in $\tau^- \rightarrow \pi^- K^0_{s}(n\pi^0)v_{\tau}$: Strategy

Entries

- Leptonic tag technique very useful to reduce backgrounds
- Tag-side: only hard leptons (e,μ)
 - *p*^{*}_i > 4.0 GeV/c (rejects non-τ decays backgrounds)
- Signal-side:
 - $M(\pi^-K^0_s(n\pi^0)) < 1.8 \text{ GeV/c}^2$ (rejects qq backgrounds)
 - Likelihood ration to reduce remaining backgrounds
 - q \overline{q} : visible energy, # neutral clusters, Thrust , total p_{τ}
 - K^{0}_{s} : displaced vertex, M(K^{0}_{s}), 10 momentum and θ of K^{0}_{s} candidate 1

CPV in $\tau^- \rightarrow \pi^- K^0_{s}(n\pi^0)v_{\tau}$: **Results**

• Measure raw A_{CP} after subtracting continuum $q\overline{q}$ and non- K_{S}^{0} **437×10⁶** $\tau^{+}\tau^{-}$

 $\tau\text{-decays.}$ Raw $\mathsf{A}_{_{CP}}$ corrected by

- Different K^0/\overline{K}^0 interactions with material
- (0.14±0.03)% for e-tag and (0.14±0.02)% for μ -tag
- Dilution from backgrounds modes with A_{CP} different than signal

CPV in $D^+/D^+_{s} \rightarrow K^+K^0_{s}\pi^+\pi^-$: Motivation

- Direct CPV in D decays:
 - CKM suppressed in SM O(10⁻³). NP can increase/reduce effect
 - Current experimental precision O(10⁻³)
- New strategy based on Bigi hep-ph/0107102
- CPT invariance: T-violation \Rightarrow CPV
- Define T-odd observable

$$C_{\tau} \equiv p_{K^{+}} \cdot (p_{\pi^{+}} \times p_{\pi^{-}})$$

Build the following asymmetries $A_{\tau} = \frac{\Gamma(C_{\tau} > 0) - \Gamma(C_{\tau} < 0)}{\Gamma(C_{\tau} > 0) + \Gamma(C_{\tau} < 0)}$ Measured on D⁺_(s)

$$\overline{A}_{\tau} = \frac{\Gamma(\overline{C}_{\tau} > 0) - \Gamma(\overline{C}_{\tau} < 0)}{\Gamma(\overline{C}_{\tau} > 0) + \Gamma(\overline{C}_{\tau} < 0)}$$

Measured on D⁻_(s)

- Final state interaction (FSI) may induce T-odd asymetries $A_{\tau} \neq 0$
- Remove FSI effects by measuring A T-violation observable

$$\mathcal{A}_{\tau} \equiv \frac{1}{2} (\mathbf{A}_{\tau} - \overline{\mathbf{A}}_{\tau})$$

CPV in D⁺/D⁺ \rightarrow K⁺K⁰ $\pi^+\pi^-$: Strategy

- Inclusive $D^+_{(s)}$ reconstruction $e^+e^- \rightarrow XD^+_{(s)}; D^+_{(s)} \rightarrow K^+K^0_{\ s}\pi^+\pi^-; K^0_{\ s} \rightarrow \pi^+\pi^$ $p^{*}(D^{+}_{(s)}) > 2.5 \text{ GeV/c}$
- 21k D⁺ Cabibbo-suppressed
- 30k D⁺ Cabibbo-favored
- Use Likelihood ratio (LR) technique
 - Decay distance in the transverse plane L_{xv}
 - CM p*(D⁺_(S))

Alejandro Pérez,

- Vertexing probability difference $P_1 - P_2$
 - $P_1 \equiv 4$ particle vertex
 - $P_{2} \equiv primary vertex$

Data Sample:

520 fb⁻¹

$B^+ \rightarrow K^+ \pi^0 \pi^0$: Motivation

Large hadronic uncertainties in SM \Rightarrow no clear interpretation in terms of NP

- Larger Tree/Penguin ratio expected for $B \rightarrow K^*\pi/K\rho$ modes \Rightarrow Larger CP asymmetries
- Is there a similar puzzle in the $B \rightarrow K^*\pi$ system? Need to compare $A_{CP}(K^{*+}\pi^{-}) \approx A_{CP}(K^{*+}\pi^{0})$. $K^{*+}\pi^{0}$ contributes to $B^+ \rightarrow K^+\pi^{0}\pi^{0}$
- Dominant contributions to $B^+ \rightarrow K^+ \pi^0 \pi^0$ Dalitz plot may help clarify interpretation of inclusive time-dependent CP-asymmetry of $B^0 \rightarrow K^0_{\ s} \pi^0 \pi^0$.

SM expects $S_{CP}(B^0 \rightarrow K^0_{S} \pi^0 \pi^0) = -\sin(2\beta)$ Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

$B^+ \rightarrow K^+ \pi^0 \pi^0$: Strategy

- loose cut NN_{out} > 0.3 \Rightarrow rejects (keeps) 82% (90%) of continuum (signal)
- Signal yield and global A_{CP} extracted with unbinned maximum likelihood fit to m_{ES} and NN_{out} variables
- Fraction of self-cross-feed (SCF) events strongly dependent on DP.
 Iterative method to estimate SCF fraction using sPlots NIM A555, 356 (2005)

$B^+ \rightarrow K^+ \pi^0 \pi^0$: Results (I)

To be submitted to PRD

Data Sample:

471×10⁶ BB

Inclusive $B^+ \rightarrow K^+ \pi^0 \pi^0$ measurement:

- Convergence after 4 iterations \Rightarrow Signal Yield = 1220 ± 85 and f_{SCE} = 9.7%
- 10σ significance including systematic effects!
- BF(B⁺→K⁺ $\pi^{0}\pi^{0}$) = (16.2 ± 1.2_{stat} ± 1.5_{syst})×10⁻⁵

•
$$A_{CP}(B^+ \rightarrow K^+ \pi^0 \pi^0) = (-6.0 \pm 6.0_{\text{stat}} \pm 4.0_{\text{syst}})\%$$

$B^+ \rightarrow K^+ \pi^0 \pi^0$: Results (II)

Quasi-two-body contributions:

To be submitted to PRD

Data Sample:

471×10⁶ BB

- Use sPlot technique to obtain DP distributions from m_{es}-NN_{out} fit. Project DP onto the 2-body invariant masses
- Signal peaks from K*(892)⁺ π^0 , f₀(980)K⁺, χ_{c0} K⁺ are clearly seen
- Broad peak at ~1400 MeV/c² in the K⁺ π^0 mass, possibly from K^{*}_{0/2}(1430)⁺ π^0
- No enhancement from $f_x(1300)$ in pipi mass. Deap at ~1500 MeVc²
- BF and A_{CP} extracted from fit to 2-body invariant masses around resonant masses

$B^+ \rightarrow K^+ \pi^0 \pi^0$: Results (III)

To be submitted to PRD

Data Sample: 471×10⁶ BB

- First inclusive measurement of $B^+ \rightarrow K^+ \pi^0 \pi^0$!
- More statistics is needed to better test $A_{CP}(K^{*+}\pi^{-}) \approx A_{CP}(K^{*+}\pi^{0})$

Mode	$\mathcal{B}(B^+ \to Rh \to K^+ \pi^0 \pi^0)$	$\mathcal{B}(B^+ \to Rh)$	A_{CP}	
$B^+ \to K^+ \pi^0 \pi^0$	$(16.2 \pm 1.2 \pm 1.5) \times 10^{-6}$		$-0.06 \pm 0.06 \pm 0.04$	
$B^+ \to K^*(892)^+ \pi^0$	$(2.7 \pm 0.5 \pm 0.4) \times 10^{-6}$	$(8.2 \pm 1.5 \pm 1.1) \times 10^{-6}$	$-0.06 \pm 0.24 \pm 0.04$	To be compared with $A_{CP}(K^+\pi^-) = -0.25\pm0.07\pm0.02$
$B^+ \to f_0(980)K^+$	$(2.8 \pm 0.6 \pm 0.5) \times 10^{-6}$		$0.18 \pm 0.18 \pm 0.04$	Срс
$\underline{B^+ \to \chi_{c0} K^+}$	$(0.51 \pm 0.22 \pm 0.09) \times 10^{-6}$	$(18 \pm 8 \pm 3 \pm 1) \times 10^{-5}$	$-0.96 \pm 0.37 \pm 0.04$	

Bottomonium Spectroscopy

• Bottomonium (bb) radiative transitions with $\gamma \rightarrow e^+e^-$

The bb Spectrum: Introduction

- Studies of bb (bottomonium) and cc (charmonium) bound states provide insight about inter-quark forces
- Searches of predicted states (Not discussed here)
 - Discovery and confirmation of the bottomonium ground state (L=0,S=0) $\eta_{\rm b}(1S)$ after 30 years of hunting
 - Searches of the h_b(1P) state to understand hyperfine mass-splitting of P-wave states
- Study of radiative transitions (This talk)
 - Measurement of electric (E1) and magnetic (M1) transition rates
 - Better understanding of modeldependencies of inter-quark potential
 - Useful spectroscopic studies of mass measurements

b transitions using $\gamma \rightarrow e^+e^-$: Motivation

- Bottomonia radiative transitions well described by effective potential models (non-relativistic)
- Higher-order relativistic and model-dependent effects may play substantial role in suppressed radiative transitions (e.g. E1 $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(1P)$ and "hindered" M1 $\Upsilon(nS) \rightarrow \gamma \eta_{b}(n'S)$)
- Doppler broadening and detector resolution (EMC) may lead to unresolved radiated photon energies from different transitions
- Want to separate the individual contributions for more precise mass-splitting measurements
- Use converted photons (γ→e⁺e⁻) in detector material
- Pros: lower resolution (~5MeV) than EMC detected γ (~25MeV)
- Cons: decreased efficiency (0.1 2.5%)

b transitions using $\gamma \rightarrow e^+e^-$: Strategy

- Selection
 - N_{tracks} and distribution (|cos(θ_{thrust})|)
 consistent with a multi-hadron event
 - Good photon conversion candidate: χ^2 fit, m(e^+e^-), $\rho_{_{\gamma}}$ and π^0 veto
- Fit to CM photon energy spectrum (E_{γ}^{*}) in four different regions
 - IV. Υ(3S): 180 < E^{*}_γ < 300 MeV.
 - _____χ_{b.J}(2P)→γΥ(2S)
 - V. Υ(3S): 300 < E*_γ < 600 MeV.
 - Υ (3S) $\rightarrow \gamma \chi_{pJ}$ (1P) and Υ (3S) $\rightarrow \gamma \eta_{p}$ (2S)
 - VII. Υ(3S): 600 < E*_γ < 1100 MeV.
 - $\chi_{h1}(2P) \rightarrow \gamma \Upsilon(1S) \text{ and } \Upsilon(3S) \rightarrow \gamma \eta_{h}(1S)$
 - VI. Υ(2S): 300 < E^{*}_γ < 800 MeV.

 $\chi_{h_1}(1P) \rightarrow \gamma \Upsilon(1S) \text{ and } \Upsilon(2S) \rightarrow \gamma \eta_h(1S)$ Alejandro Pérez, QFTHEP 2011 Sochi, Russia. Sep 30th 2011

bb transitions using $\gamma \rightarrow e^+e^-$: Results (I)

Region IV. Y(3S): 180 < E* < 300 MeV

arXiv: 1104.5254 Accepted by PRD Data sample: 111×10⁶ Y(3S)

- Measurement of $\chi_{bJ}(2P) \rightarrow \gamma Y(2S)$ transitions (J = 1,2 **nost precise!**)
- Potentially sensitive to D-wave bb states (6): $Y(1D_J) \rightarrow \gamma \chi_{bJ}(1P)$

bb transitions using $\gamma \rightarrow e^+e^-$: Results (II)

Region V. Y(3S): 300 < E*, < 600 MeV

arXiv: 1104.5254 Accepted by PRD Data sample: $111 \times 10^6 \text{ Y}(3\text{ S})$

- Measurement of Y(3S) $\rightarrow \gamma \chi_{bJ}$ (1P) and Y(3S) $\rightarrow \gamma \eta_{b}$ (2S) transitions
- Complicated: Overlaps with $\chi_{bJ}(1P) \rightarrow \gamma Y(1S)$. Many ways to produce $\chi_{bJ}(1P)$
- Y(3S)→γη_b(2S) in 335 < E^{*}_y < 375 MeV. BF < 1.9×10⁻³ at 90% CL

bb transitions using $\gamma \rightarrow e^+e^-$: Results (III)

Region VII. Y(3S): 600 < E*, < 1100 MeV

arXiv: 1104.5254 Accepted by PRD

- Measurement of $\chi_{bJ}(2P) \rightarrow \gamma Y(1S)$ and $Y(3S) \rightarrow \gamma \eta_{b}(1S)$ transitions
- Most precise measurement of BF($\chi_{b1,2}(2P) \rightarrow \gamma Y(1S)$)
- BF(Y(3S) $\rightarrow \gamma \eta_{h}(1S)$): ~2.7σ significance (including systematics)

bb transitions using $\gamma \rightarrow e^+e^-$: Results (IV)

Region VI. Y(2S): 300 < E*_v < 800 MeV

arXiv: 1104.5254 Accepted by PRD Data sample: 89×10⁶ Y(2S)

- Measurement of $\chi_{bJ}(1P) \rightarrow \gamma Y(1S)$ and $Y(2S) \rightarrow \gamma \eta_{b}(1S)$ transitions
- Most precise measurement of BF($\chi_{b1,2}$ (1P) $\rightarrow \gamma Y(1S)$)

■ BF(Y(2S) $\rightarrow \gamma \eta_{h}(1S)$): ~1.7 σ significance (including systematics) Background

bb transitions using $\gamma \rightarrow e^+e^-$: Results (V)

Decay	BABAR (%)	Theory (%)
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(2S))$	(< 2.9)	1.27	-
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(2S))$	19.1 ± 2.3	20.2	88)
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(2S))$	8.2 ± 1.4	10.1	(19
$\mathcal{B}(\chi_{b0}(2P) \to \gamma \Upsilon(1S))$	(< 1.2)	0.96	6
$\mathcal{B}(\chi_{b1}(2P) \to \gamma \Upsilon(1S))$	9.9 ± 1.1	11.8	27
$\mathcal{B}(\chi_{b2}(2P) \to \gamma \Upsilon(1S))$	$7.1^{+1.0}_{-0.9}$	5.3	38,
$\mathcal{B}(\chi_{b0}(1P) \to \gamma \Upsilon(1S))$	(< 4.6)	3.2	
$\mathcal{B}(\chi_{b1}(1P) \to \gamma \Upsilon(1S))$	36.2 ± 2.8	46.1	PR
$\mathcal{B}(\chi_{b2}(1P) \to \gamma \Upsilon(1S))$	$20.2^{+1.6}_{-1.8}$	22.2	

arXiv: 1104.5254 Accepted by PRD

- BF($\chi_{bJ}(nP) \rightarrow \gamma Y(mS)$) from E*_{γ} spectrum. Some of the most precise measurements
- Theoretical predictions in reasonable agreements with our measurements

- $Y(3S) \rightarrow \gamma \chi_{bJ}(1P)$: J = 1 suppressed w.r.t J = 0,2
- Expected small transition rate ⇒ relativistic corrections
- No good agreement with any particular model

Source J = 0J = 1J=2BABAR $< 22 \ 216 \pm 25$ 55 ± 10 Moxhay-Rosner 2525150Grotch et al. 3.4194114 Daghighian-Silverman 650 16 100Fulcher 10 2030 Lähde 15011040 Ebert *et al.* 67 2797

Alejandro Pérez,

Conclusions

- BABAR last data collected in 2008, but collaboration still very active
- Many results (over 100 ongoing analyses) on a variety of topics
- BABAR continues to produce interesting and competitive results
- Stay tuned for more results

