Chiral symmetry and form factors of neutrino-nucleon interactions.

<u>Kanshin Kirill</u> Vereshkov Grigory Southern Federal University, Russia

QFTHEP '11, Sochi 24th Sept.- 1st Oct.

Outline

1. Previous studies of elastic eN scattering

- 2. The united theory of leptonnucleon interactions
 - Neutrino Charged Currents
 - Neutrino Neutral Currents

Part I Elastic eN scattering (Previous studies)

Vector meson dominance for eN scattering

The idea was originally suggested by **Sakurai**(1969).

Photon hadronize to the set of $\omega_{(k)}$ or $\rho^{0}_{(k)}$ meson via quark loop.

Amplitudes for the hadronization should be introduced in the proper way:

either purely phenomenologically
 or using some regular method

The further development of the model of V.D. was conducted by

E.L. Lomon *"Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors"* Phys. Rev. C 64, 035204 (2001)

F. lachello *"Structure of the nucleon from electromagnetic form factors."* Eur.Phys.J.A19(2004)

G. Vereshkov O. Lalakulich "Logarithmic corrections and soft photon phenomenology in the multipole model of the nucleon form factors" Eur. Phys. J. A34 (2007)

and others

The cross section of the **elastic eN scattering** is parameterized by two functions $G_E(Q^2)$ and $G_M(Q^2)$ – electric and magnetic form factors correspondingly.

Results obtained by Vereshkov and Lalaculich using V.D. model:

Kanshin K., Vereshkov G. Southern Federal University, Russia

Page 6

Chiral symmetry and form factors of neutrino-nucleon interactions.

Part II The united theory of lepton-nucleon interactions

Physical principles

$$eN \rightarrow eN$$

 $\nu n \rightarrow \mu^- p^+$
 $n \rightarrow p^+ e^- \bar{\nu}$
 $\bar{\nu} p^+ \rightarrow \mu^+ n$
 $\nu N \rightarrow \nu N$

- Vector and **pseudovector** dominance model
- Hadronization of intermediate bosons to the set of mesons.
- Multi-gauge theory
- Chiral symmetry of strong interactions
- Parameters are the same for electron and neutrino processes

Additional form factors are taken into account because of axial couplings.

Parameters.

We inroduce Dirac terms as $g \sum_{k} w_k \bar{n} \gamma^{\mu} n \omega_{\mu}^{(k)}$, where $\begin{cases} g & \text{is coupling constant} \\ W_k & \text{weight of each particular generation} \end{cases}$ For the gauge invariance: $\sum_{k} w_k = 1$

Not only **Dirac** (γ^{μ}) but **Pauli** ($\sigma^{\mu\nu}$) terms should be introduced to the model with their own parameters $\mu_{\mathbf{k}}$ as well.

> There are two sets of parameters $\mathbf{w}_{\mathbf{k}}$ and $\mathbf{\mu}_{\mathbf{k}}$ for 1) scalar (ω ,f) mesons 2) vector(ρ ,a) mesons.

To describe *four meson fields* **four gauge groups** are necessary.

Objects of the theory and gauge groups.

$N = \binom{p}{n}$	$U_L^s(1)^{(k)} \times SU_L^s(2)^{(k)} \times U_R^s(1)^{(k)} \times SU_R^s(2)^{(k)} \times U^{EW}(1)$	
$\Psi = \binom{\nu_e}{e}$	$U^{EW}(1) \times SU^{EW}_L(2)$	
Higgs sector	1.	$SU_L^{EW}(2) \times U_L^s(1)^{(k)} \times SU_L^s(2)^{(k)}$
	2.	$\boldsymbol{U}^{EW}(1) imes \boldsymbol{U}^{s}_{R}(1)^{(k)} imes \boldsymbol{SU}^{s}_{R}(2)^{(k)}$
	3.	$U_L^s(1)^{(k)} \times SU_L^s(2)^{(k)} \times U_R^s(1)^{(k)} \times SU_R^s(2)^{(k)}$
	4.	$\boldsymbol{U}_L^s(1)^{(k)} \times \boldsymbol{U}_R^s(1)^{(k)}$
	5.	$U^{EW}(1) \times SU_L^{EW}(2)$

Charged currents

Mixing.

Higgs field $SU_L^{EW}(2) \times U_L^s(1)^{(k)} \times SU_L^s(2)^{(k)}$ and one from SM generate quadratic form via spontaneous symmetry breaking with non-zero vacuum expectation value.

It's diagonalization leads to small mixing between fields:

$$W^{\pm} \longleftrightarrow L_{(k)}^{\pm} = \frac{1}{\sqrt{2}} (\rho_{(k)}^{\pm} + a_{(k)}^{\pm})$$

In this way we receive effective lepton – meson vertex.

β-decay

Quasi elastic vN scattering

In this case the cross section is parameterized by *four* form factors:

- 1. Vector Dirac F₁(Q²)
- 2. Vector Pauli F₂(Q²)
- 3. Axial Dirac **G_A(Q²)**
- 4. Pseudoscalar G_{PS}(Q²)

First and second are not independent , they strongly related with $G_E(Q^2)$ and $G_M(Q^2)$ from eN scattering .

Contribution of **G**_{PS}(**Q**²) is proportional to lepton masses and **negligible**.

Thus, only $G_A(Q^2)$ should be determined from experimental data.

Quasi elastic vN scattering

$$F_{1}(Q^{2}) = \sum_{k} \frac{w_{k} m_{\rho}^{(k)2}}{m_{\rho}^{(k)2} + Q^{2}}; \quad F_{2}(Q^{2}) = \sum_{k} \frac{\mu_{k} m_{\rho}^{(k)2}}{m_{\rho}^{(k)2} + Q^{2}}; \quad G_{A}(Q^{2}) = \sum_{k} \frac{w_{k} m_{\rho}^{(k)2}}{m_{a}^{(k)2} + Q^{2}}; \\ \sum_{k} w_{k} m_{\rho}^{(k)2} = 0 \qquad \sum_{k} \mu_{k} m_{\rho}^{(k)2} = 0 \qquad \sum_{k} \mu_{k} m_{\rho}^{(k)4} = 0$$

In high Q² region QCD gains its power, that's why we should take into account QCD asymptotes, which were calculated in following papers:

S.J. Brodsky, G.R. Farrar, Phys.Rev. **D11**,1309 (1975) G.P. Lepage, S.J. Brodsky, Phys. Rev. **D22**,2157 (1980) A.V. Belitsky, X.d. Ji, F. Yuan, Phys Rev Lett. **91**, 092003 (2003) S.J. Brodsky, J.R. Hiller, D.S. Hwang, V.A. Karmanov, Phys. Rev., **D69**, 0760001 (2004)

In case of **three meson generations**, if all **sum rules** and **eN results** are mentioned there are **no free parameters** for G_A(Q²). The theory describes scattering on **free nucleons**. That is why only **deuterium** chamber experiments could be used. Results are following:

Neutral currents

Mixing

An additional mechanism is required to introduce effective $e-\omega$ vertex. It is U(1) mixing.

 $\boldsymbol{U}^{EW}(1) \rightarrow \boldsymbol{B}_{\mu} \qquad \boldsymbol{U}^{s}_{L}(1)^{(k)} + \boldsymbol{U}^{s}_{R}(1)^{(k)} \rightarrow \boldsymbol{\omega}_{\mu}$

Cross term in kinematic sector is not forbidden by symmetry principles:

$$-\frac{1}{4}B_{\mu\nu}B^{\mu\nu}+\varepsilon B_{\mu\nu}\omega^{\mu\nu}-\frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu}$$

Diagonalization of both kinematic and Higgs quadratic forms leads to mixing of **five fields**

Elastic vN scattering

The main goal is to reproduce data on elastic vN scattering. Only one deuterium chamber experiment is available – **BNL E-734**.

Current status:

- Mixing has been **done** successfully

-The full lagrangian of neutral current sector has been written. It **does not contain** undetermined parameters.

 Comparison with experimental data is not finished yet.

Conclusions.

- Gauge theory of lepton nucleon interactions has been investigated.
- It is based on **meson dominance** and **chiral symmetry** of strong interactions.
 - Asymptotic conditions, fit of eN data and β-decay data allow to **fix** all the parameters.

Kanshin K., Vereshkov G. Southern Federal University, Russia

Chiral symmetry and form factors of neutrino-nucleon interactions.