Invisible Higgs in weak bosons associative production with heavy quarks at LHC

Sergei Demidov

in collaboration with E. Boos (SINP MSU) and D. Gorbunov (INR RAS)

9 September, 2010

E. Boos, D. Gorbunov, S. Demidov (INR RA

Invisible Higgs

9 September, 2010 1 / 15

Standard Model. Problems.

Experimental problems

- Neutrino oscillations
- Evidence for dark matter
- Dark energy
- Theoretical problems
 - Naturalness large loop corrections to m_H
 - Gauge hierarchy problem m_{EW} < M_{Pl}
 - Baryon asymmetry, strong CP problem, fermion mass hierarchy
 - Nature of electroweak symmetry breaking

Standard Model is incomplete!

SM extensions with invisible Higgs boson

Singlet scalar field (e.g. Burgess, Pospelov, ter Veldhuis, 2001):

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{m_0^2}{2} S^2 - \lambda S^2 H^{\dagger} H + \dots$$

Decay $H \rightarrow SS$ is allowed if $m_S \equiv \sqrt{m_0^2 + \lambda v_{EW}^2} < \frac{1}{2}m_H$

$$\Gamma(H \to SS) = \frac{\lambda^2 v_{EW}^2}{8\pi m_H} \sqrt{1 - \frac{4m_S^2}{m_H^2}}$$

Other possibilities:

Higgs decay into other new scalars, neutralinos, gravitinos ...

Combined LEP bound on invisible Higgs: $m_H > 114.4$ GeV at 95% C.L.

Invisible Higgs: strategies at LHC

The main idea: missing p_T signature. Main channels for LHC:

- Vector boson fusion $pp \rightarrow qqH$ (Eboli, Zeppenfeld, 2000)
- $pp \rightarrow t\bar{t}H$ (Gunion, 1994)
- Associated production $pp \rightarrow ZH$ or WH (Godbole at al. 2003)

Questions:

- Why does missing p_T come from Higgs boson?
- Only m_H can be measured. Can we say something about Γ_H ?

pp ightarrow q ar q VV

- Higgs boson is needed to restore unitarity in processes with massive gauge bosons and its contribution should change the cross sections of those processes.
- We consider pp → qq̄VV via qq̄ → VV scattering where q is heavy (t or b) quarks.
- Higgs mass range m_H < 2M_V, virtual Higgs, probing the Higgs width Γ_H.

Assumptions and calculational framework

- Higgs boson production rate is as in Standard Model
- Partonic analysis in LO using CompHEP 4.5 (Boos at al., 2009)
- Only the main subprocess $gg \rightarrow t\bar{t}ZZ$
- No phase space cuts, $\sqrt{s} = 14$ TeV, CTEQ5L1
- Amplitudes with and without virtual Higgs boson were taken into account.

Invariant mass m_{ZZ} distribution and total cross section

The shape of m_{ZZ} invariant mass distribution is very sensitive to m_H

Invariant mass m_{ZZ} distribution for different masses

The shape of invariant mass m_{ZZ} distribution is very sensitive to Γ_H only when $m_H \sim 2m_Z$

Invariant mass m_{WW} distribution and total cross section

Clear dependence on m_H and rather weak dependence on Γ_H

 $pp \rightarrow t\bar{t}ZZ$: dependence on the renormalization scale Q^2

- Yukawa of *b*-quark is small contributions with Higgs boson are suppressed
- Modification L = Y_bHbb → AY_bHbb, A = 50 (branching ratio H → bb is also changed compared to SM case, new Higgs boson width Γ₀)
- For process $pp \rightarrow b\bar{b}W^+W^-$ we introduce cuts $m_t - 10\Gamma_t < m_{bW^+}, m_{\bar{b}W^-} < m_t + 10\Gamma_t$, to exclude large part of cross section with *t* and/or \bar{t} production

$pp \rightarrow b\bar{b}ZZ$: results I

The shape is very sensitive to both m_H and Γ_H

$pp \rightarrow b\bar{b}ZZ$: results II

The cross section of $pp \rightarrow b\bar{b}ZZ$ is quite large. Interesting for LHC!!!

The similar results for $pp \rightarrow b\bar{b}W^+W^-$

E. Boos, D. Gorbunov, S. Demidov (INR RA

Invisible Higgs

Conclusions

- Channels $pp \rightarrow t\bar{t}ZZ$ and $pp \rightarrow t\bar{t}W^+W^-$ can in principle be used for measuring mass and width of invisibly decaying Higgs boson with mass around 120 180 GeV.
- Channels pp → bbZZ and pp → bbW⁺W⁻ can be used for measuring mass and width of invisibly decaying Higgs boson in models with enchanced Yukawa of b-quarks.
- More involved analysis is needed (irreducible background, detector response, NLO corrections).

Thank you!

Conclusions

$pp \rightarrow b\bar{b}W^+W^-$: results

