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The article deals with the two-dimensional and three-dimensional Ising models with the long-range spin interac-

tions. The intensity of the interaction between the spins is considered decreasing with distance r in accordance

with the power law r−d−σ with dimensionality d and parameter σ. The research was conducted by the Monte

Carlo method with Metropolis algorithm using parallel computing techniques. On the basis of numerical simu-

lation the dependence of the phase transition temperature upon the parameter σ is found. The phase transition

temperature is shown to decrease with increasing σ.

1 Introduction

The magnetic properties of a substance and the problem of phase transitions between paramagnetic and fer-
romagnetic states has been studied up to the present day. In 1924 E. Ising proposed a model of the magnetic
as a system of the spins interacting by pairs and described magnetic properties of the system for the one-
dimensional chain. He proved the absence of a phase transition in this case [1]. In 1944 the two-dimensional
Ising model was examined by L. Onsager [2] who proved the phase transition existence and calculated
its temperature. In 1952 C. N. Yang found the spontaneous magnetization in the two-dimensional Ising
model [3]. However, attempts to explore three-dimensional Ising model, as well as a two-dimensional
model in an external magnetic field by analytical methods were unsuccessful, leading to the development
of numerical methods for its study.

Computer modeling has allowed to study the critical behavior of systems of any complexity and with
different external conditions [4]. For example, studies have been carried out of two-dimensional and three-
dimensional Ising models with different configurations of lattices (triangular, simple cubic, hexagonal, pen-
tagonal) with the presence of defects [5, 6].

In papers [7, 8] phase diagrams of equilibrium between the paramagnetic and ferromagnetic states of the
Ising model on a simple cubic lattice taking into account the interaction of both the first and second nearest
neighbors were constructed numerically. In paper [9] the exchange interaction in a variety of configurations
of two-dimensional lattices were considered including second neighbor spins, and long-range interactions
added has been proved to increase the phase transition temperature.

In [10] we considered the Ising models with different values of the interaction between the spins and ana-
lyzed the dependence of the phase transition temperature of the coupling constants, while linearly decreas-
ing the distance between the spins.

In paper [11] we considered the Ising models with different interaction radii of the spins in the presence
and absence of an external magnetic field with a nonlinearly decreasing interaction constant. It has been
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shown that the phase transition temperature increase is a process having saturation at the large interaction
radii between spins.

To allow for long-range interactions in the Ising model M. Fisher offered to consider the intensity of the
interaction between the spins decreasing with distance according to the power law [12]:

J ∝ r−d−σ, (1)

where d is the lattice dimensionality, σ is the phenomenological parameter, r is the distance between spins.

Parameter σ influences the values of the critical exponents of the phase transition in the Ising model signif-
icantly. For example, it has been shown [13, 14] critical exponents are approaching the values predicted by
the renormalization-group analysis for the two-dimensional Ising model with the nearest-neighbour spin
interaction with increasing parameter σ.

Paper [15] is devoted to the two-dimensional and three-dimensional Ising models with long-range inter-
actions having the magnitude of the interaction varying according to the law (1). A function was found
approximating the dependence of the phase transition temperature on the parameter σ.

In this paper we defined phase transition temperature between the paramagnetic and ferromagnetic states
in two-dimensional and three-dimensional Ising models with long-range interactions for different values of
σ basing on the Monte Carlo method. The form has been proposed of an analytic function that approximates
the relationship between the phase transition temperature and the parameter σ.

2 The Ising model with long-range interactions

Consider the Ising model, which is described by a simple square or cubic lattices (all edges have the same
length which is equal to unity) with periodic boundary conditions. Spins are taking one of two possible
values: +1 or -1 and situated in each lattice site. To describe the position of each spin we introduce a
rectangular coordinate system, the axis x, y, z are parallel to the sides of the lattice.

For a two-dimensional model, the position of the spins is determined by two integers (i, j), which are 1, 2,
3, etc. The hamiltonian of the spin with coordinates (i, j) is given by:

H(Sij) =
i+N

∑
l=i−N

j+N

∑
m=j−N

J0

r2+σ

lm

Sij Slm (2)

where rlm =
√
(i− l)2 + (j−m)2 is the distance between spins Sij and Slm , J0 is the interaction constant,

Sij = ±1 for all i, j.

The summation in the expression (2) is carried out over all the points (l, m), which are in a circle of radius
R with the center at the spin with the coordinates (i, j), where

r =
√
(l − i)2 + (m− j)2 ≤ R = N.

While the self-interaction of spin is excluded, i.e. equalities l = i, m = j can not be satisfied simultaneously.

The intensity of the interaction between the spins of Sij and Slm Jl m decreases with distance rlm according to
the power law:

Jl m =
J0

r2+σ

lm
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Similarly, the position of the spin in the three-dimensional model is determined by three integers i, j, s. The
hamiltonian of the spin Sijs with coordinates (i, j, s), i, j, s = 1, 2, 3... takes the form

H(Sijs) =
i+N

∑
l=i−N

j+N

∑
m=j−N

s+N

∑
n=s−N

J0

r3+σ

lmn

Sijs Slmn (3)

where rlmn =
√
(i− l)2 + (j−m)2 + (s− n)2 is the distance between spins Sijs and Slmn .

As well as in the case of a two-dimensional model of the summation is carried out over all the points
(l, m, n), located in the a sphere of radius R, where√

(l − i)2 + (m− j)2 + (n− s)2 ≤ R = N,

and the equalities l = i, m = j, n = s can not be satisfied simultaneously. The intensity of the interaction
between the spins of Sijs and Slmn Jlmn decreases with distance rlmn according to the law:

Jl mn =
J0

r3+σ

lmn

.

Summation in expressions (2), (3) is done over all l, m, n with the periodic boundary conditions.

The average value of the magnetic moment per one spin for the two-dimensional and three-dimensional
lattices respectively is found by the formulas:

〈M〉 = 1
L2

L

∑
i,j=1

Sij Z
−1

exp
(
− 1

kT
H(Sij)

)
(4)

〈M〉 = 1
L3

L

∑
i,j,s=1

Sijs Z
−1

exp
(
− 1

kT
H(Sijs)

)
(5)

where

Z = exp
(
− 1

kT
H(+1)

)
+ exp

(
− 1

kT
H(−1)

)
(6)

is the normalization constant, k is the Boltzmann constant, T is the absolute temperature of the system, L is
the linear size of the lattice, that is the number of intervals between spins along each axis of x, y, z.

In the proposed model the values of the phenomenological parameters J0 , L, N, σ are given. We call the
introduced radius R the radius of the spin interaction area.

3 Ising models numerical simulations

It is very difficult to calculate the < M > and its dependence upon the temperature T in the proposed
models by the analytical methods with formulas (4) - (6). To solve this problem it is proposed to use the
Monte Carlo method of numerical simulation.
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For the numerical study of the Ising model by the formulas (2) - (6) it is necessary in these expressions to go
over to dimensionless quantities. For this purpose we measure the distance between the spins in terms of
the distance between neighboring spins along the axis of coordinates, the energy of interaction between the
spins of J - in terms of the energy of interaction between the nearest spins J0 , the value kT is equated to a
dimensionless parameter T assumed as the reduced temperature. We choose the parameter N determining
the interaction area radius between the spins to be 10.

To calculate the average value of the magnetic moment with the formulas (4) - (6) by the Monte Carlo
method with a small error it is necessary to consider a large number of lattice sites and carry out a large
number of statistical tests. However, in this model the method becomes resource consuming, since the
calculation time exponentially increases with the number of nodes and the number of tests. Therefore,
to study the model the Monte Carlo algorithm was developed, using parallel computing techniques. The
lattice was divided into subregions, each subregion was processed separately by its own processor. This
approach is based on the additive property of the magnetic moments of the lattice spins.

Figure 1 shows plots of the average magnetic moment < M(T) > on the temperature for different values
of σ for two-dimensional (a) and three-dimensional (b) Ising model. Plot < M(T) > experiences a jump at
the phase transition temperature Tc. From the analysis of the graphs we can conclude that the value of Tc
decreases with increasing value of the parameter σ.

Note that the accuracy of the phase transition temperature Tc of the plots in Fig. 1 - 2 is too low. The
accuracy of determining the temperature Tc is significantly affected by the effect of the finite size of the
system [16], [17].

For a more precise determination of the phase transition temperature, we used a fourth-order cumulants
method proposed by K. Binder and it has proved very effective [18], [19], [20], [21]. It is the construction of
the temperature dependence of the cumulants UN(T)

UL(T) = 1− < M
4
(T) >

3 < M2(T) >2 , (7)

for the various linear sizes of the lattice L. Tc is picked from a common crossing point of the plots of these
dependencies.

On the basis of numerical simulation were obtained graphs of the temperature dependence of the Binder
cumulant equation (7). Calculations were performed for two-dimensional lattices of 100× 100 and 60× 60
and three-dimensional lattices of size 90× 90× 90 and 72× 72× 72. The values of the parameter σ were
taken from 0 to 10.

Figure 1: < M > dependence from T for different σ values:
(a) two-dimensional Ising model; (b) three-dimensional Ising model
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The values of the critical temperatures for different values of σ for two-dimensional and three-dimensional
models are presented in figures 2-3 by points. The graphs show that the critical temperature in the two-
dimensional and three-dimensional cases decrease with increasing values of the parameter σ exponentially.

Figure 2: Tc(σ) dependence for the two-dimensional Ising model

Figure 3: Tc(σ) dependence for the three-dimensional Ising model

The dependence of Tc(σ) upon the parameter σ was obtained in analytical form, basing upon the results of
numerical modeling of the least squares. These functions have the form:

Tc(σ) = 2.233 + 8.672 exp(−0.73σ) (8)

for two-dimensional model and

Tc(σ) = 4.511 + 15.863 exp(−0.7σ) (9)

for three-dimensional model. Their plots are presented in figures 2-3 by the full line.
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The proposed formulas (8), (9) can be written as a single equation

Tc(σ) = A + B exp(−cσ), (10)

where A = 2.233, B = 8.672, c = 0.73 for two-dimensional model and A = 4.511, B = 15.863, c = 0.7 for
three-dimensional model.

Note, that in the proposed model the relative change in the intensity of the interaction J(R) between the
spins located at the distance R, and spins at a distance R = 1 is represented by the expression

δ =
J(R)

J0

=
1

R(d+σ)
, (11)

that is, for small σ the interaction constant J(R) between the spins for the particular value R has a bigger
value than that for large σ.

Basing on (11) we construct the dependence σ from R and δ as the function σ(R, δ)

σ = −
(

d +
ln δ

ln R

)
. (12)

Formula (12) defines σ value, where J(R) = δJ0 with the chosen values of R and δ.

We assume that with δ = 10−d (where d is the dimension of the lattice) the intensity of the interaction
between the spins is taken into account before the distance between the spins becomes Rk, where J(Rk) =
10−d J0 . It is possible to assume J(Rk + 1) = 0. In the proposed model, this condition will be satisfied, if in
accordance with the expression (12) we take σ as σk

σk = −
(

d +
−d ln 10

ln Rk

)
, (13)

with k = 2, 3, ..., 10.

Thus, formula (13) associates the parameter σk and a selected radius of the spin interaction area Rk. Substi-
tuting the expression for σk defined by the equation (13) into the expression (10), we obtain a formula that
determines the dependence of the phase transition temperature Tc upon the radius of the spin interaction
area Rk, i.e. Tc(Rk), for both two-dimensional and three-dimensional models

Tc(Rk) = A + B exp
[
−cd

(
ln 10
ln Rk

− 1
)]

, (14)

where A, B, c are coefficients specified in accordance with the expressions (8), (9) for a two-dimensional or
three-dimensional models.

The logarithm of the critical temperature ln Tc from the radii of the interaction Rk according to the equation
(14) are represented by points in fig. 4.

The plot in the figure, represented by a point, for clarity, can be approximated by a continuous line, which
is defined by the equation derived on the basis of (14) provided that Rk replaced by R receives continuous
values.

ln Tc(R) = ln
[

A + B exp
[
−cd

(
ln 10
ln R

− 1
)]]

, (15)

The plots presented in fig. 4 show that the critical temperature increases with radius Rk of the spin interac-
tion area, approaching a limit value for large Rk.

Note, that these plots are in qualitative agreement with the plots obtained earlier in [11], in which we
investigated the Ising model with another form of interaction between the spins.
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Figure 4: The logarithmic dependence of the critical temperature ln Tc from the interaction radius area Rk:
(a) two-dimensional Ising model; (b) three-dimensional Ising model

4 Conclusions

Monte Carlo calculations of the phase transition temperature in two-dimensional and three-dimensional
Ising models with long-range interactions have shown that temperature increases with the increase of the
radius of the lattice spins interaction. In the proposed model in which the interaction is inversely propor-
tional to the distance between the spins raised to a certain power, the temperature depends strongly on the
exponent and increases with σ decreasing. These results, obtained on the particular Ising model, are the
basis for the description of phase transitions in more complex models.
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