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On the basis of quasipotential approach in quantum electrodynamics we calculate vacuum polarization and

quadrupole corrections in first and second orders of perturbation theory in hyperfine structure of P-states in

muonic deuterium. All corrections are presented in integral form and evaluated analytically and numerically. The

obtained results can be used for the improvement of the transition frequencies between levels 2P and 2S.

In last years a significant theoretical interest in the investigation of fine and hyperfine energy structure of
simple atoms is related with light muonic atoms: muonic hydrogen, muonic deuterium and ions of muonic
helium. This is conditioned due to essential progress achieved by experimental collaboration CREMA
(Charge Radius Experiment with Muonic Atoms) in studies of such simple atoms [1, 2]. The measurement
of the transition frequency 2S f=1

1/2 − 2P f=2
3/2 leads to a new more precise value of the proton charge radius.

For the first time the hyperfine splitting (HFS) of 2S state in muonic hydrogen was measured. Analogous
measurements in muonic deuterium are also carried out and planned for the publication. It is important
to point out that the CREMA experiments set a task to improve by an order of the magnitude numerical
values of charge radii of simplest nuclei (proton, deuteron, helion and α-particle) [3]. Successful realization
of such program is based on precise theoretical calculations of different corrections to the energy intervals
of fine and hyperfine structure of muonic atoms.

Let us consider the HFS of P-states in muonic deuterium. Our approach is based on quasipotential method
in QED [4–7], in which two-particle bound state is described by the Schroedinger equation. Main contribu-
tion to hyperfine splitting in muonic deuterium is given by hyperfine part of the Breit Hamiltoian [8, 9]:

∆Vh f s
B (r) =

Zα(1 + κd)

2m1m2r3

[
1 +

m1κd
m2(1 + κd)

]
(L · s2)−

Zα(1 + κd)(1 + aµ)

2m1m2r3

[
(s1 · s2)− 3(s1 · n)(s2 · n)

]
, (1)

where m1, m2 are muon and deuteron masses respectively, κd, aµ are anomalous magnetic moments of
deuteron and muon, L, s1 are orbital momentum and spin of muon, s2 is the deuteron spin, n = r/r. This
operator doesn’t commute with the operator of total angular momentum of muon J = L + s1, which leads
to non-zero off-diagonal matrix elements. The Coulomb wave function for 2P-state has the following form:

Ψ2P(r) =
1

2
√

6
W

5
2 re−

Wr
2 Y1m(θ, ϕ), W = µZα. (2)

Averaging (1) over wave function (2) we obtain the contribution of order α4 to HFS of P-states:

Eh f s
B =

α4µ3(1 + κd)

48m1m2

[
T1 +

m1κd
m2(1 + κd)

T1 − (1 + aµ)T2

]
, (3)
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where we introduce the following designations:

T1 = (L · s2), T2 =

[
(s1 · s2)− 3(s1 · n)(s2 · n)

]
, T3 =

[
(s1 · s2)− (s1 · n)(s2 · n)

]
. (4)

The angle averaging of (4) in the case of diagonal matrix elements can be performed with the help of the
following relations [10]:

s1 → J
(s1 · J)

J2 , L → J
(L · J)

J2 , (s1 · J) =
1
2

[
j(j + 1)− l(l + 1) +

3
4

]
, (L · J) =

1
2

[
j(j + 1) + l(l + 1)− 3

4

]
,

⟨
δi j − 3ninj

⟩
= −1

5
(4δij − 3LiLj − 3LjLi). (5)

In the case of off-diagonal matrix elements an averaging of (4) can be expressed in terms of 6j-symbols:

T1 = 2T2 = −2T3 = (−1)−J−F−I+L+3/2+J′
√
(2J′ + 1)(2J + 1)

√
(2I + 1)(I + 1)I(2L + 1)(L + 1)L× (6)

×
{

j I F
I j′ 1

}{
l j′ 1

2
j l 1

}
=

{
−

√
2

3 , F = 1/2,

−
√

5
3 , F = 3/2.

Relativistic correction to the hyperfine structure of 2P-state is also known in analytical form:

Eh f s
rel (2P1/2) =

α6(1 + κd)µ
3

48m1m2

m3
1

µ3
47
9

× 1
2
[F(F + 1)− J(J + 1)− I(I + 1)], (7)

Eh f s
rel (2P3/2) =

α6(1 + κd)µ
3

48m1m2

m3
1

µ3
7
45

× 1
2
[F(F + 1)− J(J + 1)− I(I + 1)], (8)

Eh f s,o f f−diag
rel,F=1/2 = −α6(1 + κd)µ

3

48m1m2

m3
1

µ3
3
√

2
32

, Eh f s,o f f−diag
rel,F=3/2 = −α6(1 + κd)µ

3

48m1m2

m3
1

µ3
3
√

5
32

. (9)

For one-loop vacuum polarization (VP) correction to (1) we obtain the following potential [10]:

∆Vh f s
1γ,VP(r) =

Zα(1 + κd)

2m1m2r3
α

3π

∞∫
1

ρ(ξ)dξe−2meξr
{(

1 +
m1κd

m2(1 + κd)

)
(L · s2)(1 + 2meξr)−

−(1 + aµ)

(
4m2

e ξ2r2[(s1 · s2)− (s1 · n)(s2 · n)] + (1 + 2meξr)[(s1 · s2)− 3(s1 · n)(s2 · n)]
)}

. (10)

The contribution of (10) to hyperfine splitting is given by integral expression:

Eh f s
1γ,VP(r) =

α4µ3(1 + κd)

24m1m2r3
α

6π

∞∫
1

ρ(ξ)dξ

∞∫
0

xdxe−x[1+ 2meξ
W ]

[(
1 +

m1κd
m2(1 + κd)

)
×

×T1(1 +
2meξ

W
x)− (1 + aµ)

(
4m2

e ξ2x2

W2 T3 + (1 +
2meξ

W
x)T2

)]
. (11)

The integration in (11) is performed analytically over x and numerically over ξ. Numerical results are
presented in Table 1. For two-loop VP contribution with two sequential loops we obtain the following
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Table 1: Numerical values of corrections to 2P-state hyperfine structure

Correction 2P2
1/2, 2P4

1/2, 2P2
3/2, 2P4

3/2, 2P6
3/2, 2PF=1/2

1/2→3/2, 2PF=3/2
1/2→3/2,

µeV µeV µeV µeV µeV µeV µeV
α4 -1380.3359 690.1679 8162.2889 8583.2316 9284.8027 -126.0372 -199.2824

rel α6 -0.1676 0.0838 -0.0125 -0.0050 0.0075 -0.0043 -0.0067
VP α5 -1.0706 0.5353 -0.2802 -0.1121 0.1681 -0.1437 -0.2271
VP α6 -0.0011 0.0005 -0.0014 -0.0006 0.0008 0.00005 0.0001

quad α4 0 0 434.2329 -347.3863 86.8466 614.0980 -194.1948
quad VP α5 0 0 0.3561 -0.2849 0.0713 0.1589 -0.0502

∑ -1381.5710 690.7855 8596.5838 8235.4421 9371.88950 488.0717 -393.7611

potential [8, 10]:

∆Vh f s
1γ,VPVP(r) =

Zα(1 + κd)

2m1m2r3

(
α

3π

)2 ∞∫
1

ρ(ξ)dξ

∞∫
1

ρ(η)dη
1

ξ2 − η2

[(
1 +

m1κd
m2(1 + κd)

)
(L · s2)[ξ

2(1 + 2meξr)×

×e−2meξr − η2(1 + 2meηr)e−2meηr]− (1 + aµ)

(
4m2

e r2[ξ4e−2meξr − η4e−2meηr][(s1 · s2)− (12)

−(s1 · n)(s2 · n)] + [ξ2(1 + 2meξr)e−2meξr − η2(1 + 2meηr)e−2meηr]× [(s1 · s2)− 3(s1 · n)(s2 · n)]
)]

.

For two-loop VP contribution with one nested loop in coordinate representation we get the following po-
tential [8, 10]:

∆Vh f s
2−loop(r) =

Zα(1 + κd)

2m1m2r3
2
3

(
α

π

)2 1∫
0

f (v)dv
1 − v2 e

− 2mer√
1−v2

[(
1 +

m1κd
m2(1 + κd)

)[
1 +

2mer√
1 − v2

]
(L · s2)− (13)

−(1 + aµ)

(
4m2

e r2

1 − v2 [(s1 · s2)− (s1 · n)(s2 · n)] +
(

1 +
2mer√
1 − v2

)
[(s1 · s2)− 3(s1 · n)(s2 · n)]

)]
.

After averaging (12) and (13) we obtain numerical values of corresponding corrections to the HFS that are
included in Table 1. Muonic VP correction of order α6 can de derived by means of simple replacement me
to m1 in (11). Main contribution of vacuum polarization to the HFS in second order PT (SOPT) has the
following general form [8, 10]:

∆Eh f s
SOPT VP 1 = 2 < ψ|∆VC

VP · G̃ · ∆Vh f s
B |ψ >, (14)

where ∆VC
VP(r) is the Coulomb potential that was modified by the vacuum polarization. The Coulomb

Green’s function with two non-zero arguments for 2P-state was obtained in [11] in the form:

G2P(r, r′) = −µ2(Zα)

36z2z′2

(
3

4π
nn′

)
e−(z+z′)/2g(z, z′), (15)

g(z, z′) = 24z3
< + 36z3

<z> + 36z3
<z2

> + 24z3
> + 36z<z3

> + 36z2
<z3

> + 49z3
<z3

> − 3z4
<z3

>−
−12ez<(2 + z< + z2

<)z
3
> − 3z3

<z4
> + 12z3

<z3
>[−2C + Ei(z<)− lnz< − lnz>],
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where C = 0.5772... is the Euler constant, z = Wr, z< = min(z, z′), z> = max(z, z′). After substitution of
(1) and (15) into (14) we get analytical expression for the correction:

Eh f s,VP
SOPT =

α4µ3(1 + κd)

24m1m2

α

54π

∞∫
1

ρ(ξ)dξ

∞∫
0

dx
∞∫

0

e−x′

x′2
dx′e−x(1+ 2meξ

W )

[
T1 +

m1κd
m2(1 + κd)

T1 − (1 + aµ)T2

]
. (16)

The integration is performed analytically over x, x′ and numerically over ξ. For two-loop contributions in
second order PT we use the potential (10) and the modifications of the Coulomb potential [8, 10]:

∆VC
VP−VP(r) =

(
α

3π

) ∞∫
1

ρ(ξ)dξ

∞∫
1

ρ(η)dη

(
−Zα

r

)
1

ξ2 − η2 (ξ
2e−2meξr − η2e−2meηr), (17)

∆VC
2−loopVP(r) = −2Zα3

3π2r

1∫
0

f (v)dv
(1 − v2)

e
− 2mer√

1−v2 . (18)

The contribution of the VP of order α6 to the HFS of P-states in muonic deuterium also exists in third order
PT. This correction has the following general structure:

∆Eh f s
TOPT =

⟨
ψn

∣∣∣ ∆VC
VP · G̃ · Vh f s · G̃ · ∆VC

VP

∣∣∣ ψn

⟩
+ 2

⟨
ψn

∣∣∣ ∆VC
VP · G̃ · VC

VP · G̃ · ∆Vh f s
∣∣∣ ψn

⟩
− (19)

−
⟨

ψn

∣∣∣ ∆Vh f s
∣∣∣ ψn

⟩ ⟨
ψn

∣∣∣ ∆VC
VP · G̃ · G̃ · ∆VC

VP

∣∣∣ ψn

⟩
− 2

⟨
ψn

∣∣∣ ∆VC
VP

∣∣∣ ψn

⟩ ⟨
ψn

∣∣∣ ∆VC
VP · G̃ · G̃ · ∆Vh f s

∣∣∣ ψn

⟩
.

Numerous matrix elements are calculated by means of (15) similar to previous contributions.

The deuteron has a non-zero quadrupole moment which leads to additional quadrupole interaction correc-
tion to hyperfine structure of P-states. The quadrupole interaction can be written in the following form [12]:

Hquad
µd = ∑

q
(−1)qT2

q (d) · T2
−q(µ), (20)

where T2(d), T2(µ) are irreducible tensor operators of rank 2 that describe quadrupole moment of nucleus
and muon respectively. The nucleus irreducible tensor operator has the form:

T2
q (d) =

√
4π

5

∫
ρ(r)r2Y2

q (θ, ϕ)d3r (21)

The quadrupole moment of the nucleus is equal to

Q = 2
⟨

I I
∣∣∣ T2

0 (d)
∣∣∣ I I

⟩
= 2 ⟨I ∥ T(d) ∥ I⟩

(
I 2 I
−I 0 I

)
. (22)

The muon irreducible tensor operator is determined by the expression

qij =
∂2V

∂xi∂xj
, T2

0 (µ) = qzz, T2
1 (µ) = −qxz − iqyz, T2

2 (µ) =
1
2
(qxx − qyy) + qxy, (23)

T2
−m(µ) = (−1)mT2

m(µ)
∗, T2

q (µ) = − e
r3 Y2

q (θ, ϕ).
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To obtain the quadrupole interaction contribution we have to calculate diagonal and off-diagonal matrix
elements of (20). In general form for both diagonal and off-diagonal matrix elements of (20) we obtain the
following expression [12]:⟨

j′ IF
∣∣∣ (T2(d) · T2(µ))

∣∣∣ jIF
⟩
= (−1)I+J′−FW(jI j′ I; F2)

⟨
j′
∥∥ T(µ)

∥∥ j
⟩
⟨I ∥ T(d) ∥ I⟩ , (24)

⟨I ∥ T(d) ∥ I⟩ = Q
2

[(
I 2 I
−I 0 I

)]−1

, (25)

⟨
j′
∥∥ T(µ)

∥∥ j
⟩
= −

√
2J + 1

√
2J′ + 1(−1)J′+1/2

(
J′ 2 J
1
2 0 − 1

2

)
<

α

r3 >, (26)

Using (20), (25) and (26) we finally get:⟨
j′ IF

∣∣∣ Hquad
µd

∣∣∣ jIF
⟩
= (−1)J′+1/2−F−J

{
J I F
I J′ 2

}
Q
2

[(
I 2 I
−I 0 I

)]−1

× (27)

×
√

2J + 1
√

2J′ + 1
(

J′ 2 J
1
2 0 − 1

2

)
<

α

r3 > .

For diagonal matrix elements we get following analytical expressions:

Equad
µd (j = 1/2) = 0, Equad

µd (j = 3/2) =
α4µ3Q

48
(δF,1/2 − 4/5δF,3/2 + 1/5δF,5/2), (28)

where the value of deuteron quadrupole moment is equal to Q = 0.285783(30) f m2 [13]. Off-diagonal
matrix elements have the form:

Equad
µd (j = 3/2, j′ = 1/2) =

α4µ3Q
48

(
√

2δF,1/2 − 1/
√

5δF,3/2). (29)

For the calculation of vacuum polarization correction to quadrupole contribution we use the modification
of the muon quadrupole moment tensor:

qVP
ij =

∞∫
1

dξρ(ξ)

{
(1 + 2meξr)e−2meξr(3ninj − δij)

r3 +
4m2

e ξ2e−2meξr(3ninj − δij)

3r
+

4m2
e ξ2e−2meξr

3r
δij

}
. (30)

The reduced matrix element in (24) can be written as:⟨
j′
∥∥ T(µ)

∥∥ j
⟩
= (−1)J−2−S+L

√
(2L + 1)(2J′ + 1)(2J + 1)W(ll jj′; 2s) ⟨l ∥ T(µ) ∥ l⟩ , ⟨l ∥ T(µ) ∥ l⟩ = (31)

=
√

2l + 1(Cl2l
0q0)

−1
⟨

lm
∣∣∣ T(µ)2

q

∣∣∣ lm
⟩

,
⟨

lm
∣∣∣ T(µ)2

q

∣∣∣ lm
⟩
=

∞∫
0

r2dr
∫

dΩΨ∗
2p(r)Y

∗
lmT(µ)2

qΨ(r)2pYlmR(r).

Averaging of third term in (30) which is proportional to δij gives zero. Thus we have to calculate the sum
of two integrals over r and Ω:

⟨l ∥ T(µ) ∥ l⟩ =
√

2l + 1(Cl2l
000)

−1
[

R1(r)
∫

Y∗
lm

1
2
(3cos2θ − 1)YlmdΩ + R2(r)

∫
Y∗

lm
1
2
(cos2θ − 1

3
)YlmdΩ

]
,

(32)

R1 =

∞∫
0

r2dr
∞∫

1

dξρ(ξ)
(1 + 2meξr)e−2meξr

r3 |Ψ(r)2p|2, R2 =

∞∫
0

r2dr
∞∫

1

dξρ(ξ)
4m2

e ξ2e−2meξr

r
|Ψ(r)2p|2
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Integration in (32) can be performed analytically. Numerical results are presented in Table 1. To evaluate
quadrupole correction in second order PT we use the same approach as for VP correction. We use (14) and
the following potentials:

VC
VP(r) =

α

3π

∞∫
1

ρ(ξ)dξ

(
−Zα

r

)
e−2meξr, Vh f s

Q (r) =
αQ
2r3 ×

[
(s2 · s2)− 3(s2 · n)(s2 · n)

]
. (33)

The quadrupole corrections to diagonal and off-diagonal matrix elements in second order PT (numerical
coefficient is in µeV) are equal respectively:

Eh f s
SOPT VP Q(j = 3/2) = 0.112326(δF,1/2 − 4/5δF,3/2 + 1/5δF,5/2), (34)

Eh f s
SOPT VP Q(j = 3/2, j′ = 1/2) = 0.112326(

√
2δF,1/2 − 1/

√
5δF,3/2). (35)

We present corrections in integral form and evaluate them numerically. After diagonalization of the re-
sults from the matrix in Table 1 we obtain final values of 2P-state hyperfine structure in muonic deuterium:
EF=1/2

1/2 = −1405.3877 µeV, EF=3/2
1/2 = 670.2905 µeV, EF=1/2

3/2 = 8620.4005 µeV, EF=3/2
3/2 = 8255.9371 µeV,

EF=5/2
3/2 = 9371.8895 µeV. The detailed calculation of 2P-state HFS in muonic deuterium was performed

in [14], where first order PT vacuum polarization corrections were included. Vacuum polarization correc-
tions in [14] were evaluated approximately thus they differ from our values (11) by ∼ 30%. Other differ-
ences are connected with second order PT α5 and α6 corrections. Obtained results can be used for improved
estimates of transition frequencies between 2P and 2S states regarding to CREMA experiments.
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