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Our input data: numerous analytical results for 5-loop

correlators and RG-functions

obtained during 18 years (2000 — 2017) by Kalsruhe-Moscow group

composed of

Pavel Baikov, Johann Kühn (KIT) and K.Ch.

Important: essentially all our main results were confirmed by independent

calculations during 2017-2018



2

=

Massless Propagators (aka p-integrals) & Physics

• 2-points correlators at large energies (massless + O(m2n
q /Q2n) corrections)

related via the optical theorem to

R(s) = σtot(e
+e−→hadrons)

σ(e+e−→µ+µ−)

semi-leptonic τ -decays

Γ(Z → hadrons),

Γ(H → hadrons), . . .

• coefficient functions in OPE (DIS, SVZ sum rules,. . . )

• beta-functions and anomalous dimensions

• massless gluon, quark, etc. QCD propagators (useful for lattice)



OUR TOOLS

• CAS “FORM”, /Vermaseren /(1991—. . . )/

• R∗-operation, V. Smirnov, K.Ch., /(1984—. . . )/, expresses

(L+1)-loop RG functions via L-loop p-integrals

• very useful and important: NEW representation of Feynman
Integrals which led to a new method of reduction → 1/D
expansion /Baikov, (2000—. . . )/

Interesting fact:

By now the representation is universally named as “the Baikov’s one” in

literature

For experts: no IBP reduction was employed



New Representation of FI’s /due to Baikov/:

Feynman parameters:
1

m2 − p2
≈

∫

d α eiα(m
2−p2)

New parameters:
1

m2 − p2
≈

∫
d x

x
δ(x− (m2 − p2))

Now for a given topology one can make loop integrations once and forever with the

result:

F (n) ∼

∫

. . .

∫
dx1 . . .dxN

xn1
1 . . . x

nN
N

[P (x)]
(D−h−1)/2

,

where P (x) is a polynomial on x1, . . . , xN (and masses and external momenta)

New representation obviously meets the same set IBP’id as the original integral but it

has much



Our results were published, particularly, in 9 Physical Review Letters:



QCD β-function in FIVE loops: result

µ2 ∂

∂µ2
as = β(as) as, as ≡

αs

π
, β(as) =

∑

i≥1

βi a
i
s
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n4
f term is in FULL AGREEMENT with the 20 years old result by John Gracey (in the

framework of the conformal bootstrap method of A. Vasiliev, Yu. Pis’mak and J. Honkonen

(1981))

n3
f term is in FULL AGREEMENT with a result by Th. Luthe, A. Maier, P. Marquard and

Y. Schröder (made within the “massive way”)



QCD β-function in FIVE loops: Zeta’s

In general any 5-loop beta in any theory will have the following “transcendental

structure” (an obvious outcome of our knowledge of the corresponding masters)

1 and 2 loops: rational

3 loops: rationals + ζ3

4 loops: rationals + ζ3 + ζ4 + ζ5

5 loops: rationals + ζ3 + ζ4 + ζ5 + ζ6 + ζ23 +ζ7
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QCD β-function in FIVE loops: Zeta’s

In reality, the QCD β-function displays a delayed appearance of zeta’s (well-known at

3 and 4 loops) which happens also in 5 loops.

1 and 2 loops: rational

3 loops: rationals +
✚
✚
✚❩

❩
❩
ζ3

4 loops: rationals + ζ3 + ✘✘✘✘✘✘✘❳❳❳❳❳❳❳ζ4 + ζ5

5 loops: rationals + ζ3 + ζ4 + ζ5 ✭✭✭✭✭✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤❤❤❤❤❤
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+
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all possible irrationalities do appear in separate diagrams

contributing to the β at 5 loops (about two and half million

(2.5 · 106))



A related puzzle

The seminal calculation /Gorishnii, Kataev, Larin/ of the O(α3
s) Adler function

demonstrated for the first time a mysterious complete cancellation of all contributions

proportional to ζ4 (abounding in separate diagrams) while odd zetas ζ3 and ζ5 survive!

The result is π-free ( ζ4 =
π4

90 and ζ6 =
π6

945)
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,

the authors wrote: “We would like to stress the cancellations of ζ4 in the final

results for R(s). It is very interesting to find the origin of the cancellation of

ζ4 in the physical quantity.”

The situation got even more interesting about 20 years later: the O(αs
4)

contributions to the Adler function and to the coefficient function (CF) of
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Transcedentals: odd zetas: ζ3, ζ5, ζ7 BUT NOT even one ζ4 or ζ6 (both appear

eventually in every separate input diagram /from about 20 thousand!/ )



Very recently there has happened a breakthrough⋆ in our understanding of the

transcendental structure of all RG-functions, including βQCD, as well as the Adler

function and similar objects like CBjp. As a result, we do understand now and can even

predict the exact form of π-dependent terms in RG-functions in terms of π-independent

ones:

4-loops:

βζ4
4 = β1 β

ζ3
3 (= 0 for QCD as βζ3

3 ≡ 0)

5-loops (the relation below is, in fact, sitting /in a disguised form!/ in an important

paper

Jamin and Miravitllas, Absence of even-integer ζ-function values in Euclidean physical

quantities in QCD, 1711.00787

which has triggered our work on the π-dependence of RG-functions)

βζ4
5 =

9

8
β1 β

ζ3
4

where (F ζi = limζi→0
∂

∂ζi
F ):

the above formulas are exact and valid in any 1-charge model!



The factorization in the second formula is not trivial at all:
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A word about notations and conventions (goodbye β0 and γ0)

we use

1. γ(a) =
∑

i≥1

γi a
i, a =

αs

4π

2. β(a) =
∑

i≥1

βi a
i

3. Landau gauge for QCD (for simplicity, could be relaxed)

4. G-scheme instead of MS one: all ADs and betas are not different from

their MS versions but the simplest 1-loop p-integral is tuned to be maximally

simple:
1

i(2π)D

∫
dDl

(−l2)(−(q − l)2)
=

1

(4π)2 (−q2)ǫ
1

ǫ

for finite renormalized quantities:
(

ln
µ2

Q2

)

G
→

(

ln
µ2

Q2

)

MS
+ 2



π-structure of p-integrals

We will call a (bare) L-loop p-integral F (Q2, ǫ) π-safe if the π-dependence of its pole

in ǫ and constant part can be completely absorbed into the properly defined “hatted”

odd zetas.

The first observation of a non-trivial class of π-safe p-integrals — all 3-loop ones —

was made in /Broadhurst (1999)/ An extension of the observation on the class of all

4-loop p-integrals was performed in /Baikov, K.Ch. (2010)/ Here it was shown that,

given an arbitrary 4-loop p-integral, its pole in ǫ and constant part depend on even

zetas only via the following combinations:

ζ̂3 := ζ3 +
3ǫ

2
ζ4 −

5ǫ3

2
ζ6, ζ̂5 := ζ5 +

5ǫ

2
ζ6 and ζ̂7 := ζ7.

Exact meaning: for any 4-loop p-integral F4:

F4(ζ3, ζ4, ζ5, ζ6, ζ7) = F4(ζ̂3, 0, ζ̂5, 0, ζ̂7) +O(ǫ) ⋆

A generalization of the ⋆ for L=5 has been recently constructed in

/Georgoudis, Goncalves, Panzer, Pereira, [1802.00803]/ (and confirmed independently by us)



Remainder on connection between L-loop p-integrals

and (L+1) loop Z-factors

(a Minimal scheme is assumed!)

The connection is given by the following (35 years old!) Theorem

(V. Smirnov, K. Ch, /1983/)

Theorem Any (L+1)-loop UV counterterm for any Feynman integral may be

expressed in terms of pole and finite parts of some appropriately constructed L-

loop p-integrals.

Corollary Any (L+1)-loop anomalous dimension or a beta-function in any theory

may be expressed in terms of pole and finite parts of some appropriately constructed

L-loop p-integrals.



Ĝ-scheme

Let us define the Ĝ-scheme by pretending that hatted zetas do not depend on ǫ. This means that all

p-integrals are assumed to be expressed in term of the hatted zetas and that the extraction of the pole

part of a p-integral is defined as:

K̂
(
P(ǫ)

∏

j

ζ̂j
)

:=

(
∑

i<0

Pi ǫ
j

)
∏

j

ζ̂j,

with P(ǫ) =
∑

i ǫ
iPi being a polynomial in ǫ with rational coefficients. The corresponding coupling

constant will be denoted as â.

The Ĝ-scheme has some remarkable features. Indeed, one can see just from its definition that the

corresponding “hatted” Green function, ADs and Z-factors can be obtained from the normal (that is

computed with the G-scheme) by very simple rules.

• As a first step we make a formal replacement of the coupling constant a by â in every G-renormalized

Green function, AD and Z-factor we want to transform to the Ĝ-scheme.

• Renormalized Green function F̂ (â) is obtained from F (â) by setting to zero all even zetas in the

latter (both are assumed as taken at ǫ = 0).

• The same rule works for ADs and β-functions.

• If Z is a (G-scheme) renormalization constant then one should not only nullify all even zetas in

Z(â) but also replace every odd zeta term in it with its “hatted” counterpart.



Ĝ-scheme: useful properties and benefits

1. All 2-point (masless, but not necessarily SI) correlators (at

least to 5 loops), β-functions and ADs (at least to 6 loops) are

π-free in Ĝ-scheme

2. As Ĝ-scheme is related in a unique way to the normal G-

scheme we arrive to conclusion that π-dependent terms in G-(and

MS too!) (renormalized) correlators, and RG-functions should be

restorable from the π-free contributions and the structures of the

hatted representations of π-free generators



Ĝ-scheme: constraints on even zetas

Suppose we know a result for an AD γ̂ := (γ)
Ĝ−scheme as well as the precise way

how hatted zetas are related to the normal ones. The infromation should be enough

to construct the result in normal, say, MS-scheme Thus, all terms proportional to

even zetas in γ should be possible to recover. To do this let us consider the relation

between â and a:

â = a


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i



 ,

As the bare charge must not depend on the choice of the renormalization scheme the

coefficients ci are fixed by requiring that
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The corresponding RCs Za and Ẑa read:
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Equation for ci can be now easily solved with the result

c1 = c2 = 0,
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As the coefficients ci have to be finite at ǫ → 0 we arrive at the exact connection

βζ4
4 = β1 β

ζ3
3

Repeating the same reasoning for L=5 and 6 (and similar one for the case of an AD)

we arrive at a host of new exact identities for even zetas terms



Model independent predictions for β and γ for any 1-charge theory
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The above constraints have been sucessfully checked on the following examples:

L=4 and 5: numerous QCD RG functions (including gauge-dependent ones taken in

the Landau gauge) recently computed in

/K.Ch, Falcioni, Herzog and J Vermaseren [1709.08541] .

L=4,5 and 6: β-function and ADs of O(n) φ4 model recently computed in

Batkovich, K. Ch. and Kompaniets, [1601.01960] (γ2 only)

Schnetz, [1606.08598] (β, γ2, γm)

Kompaniets and Panzer, [1705.06483] (β, γ2, γm)



Predictions for 6-loop QCD RG functions:

β6
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boxed terms are in FULL AGREEMENT with the well-known results by

/Gracey (1996)/ and /Ciuchini, Derkachov, Gracey and Manashov (1999-2000)/

all other terms are new



New developments: 6 (and 7 loops)



PROBLEM:

direct way: finding and evaluation of master p-integrals was fully
implemented only for L=4, and (semi)-fully at L=5. The case
with L > 5 is excuded for the moment due to their overwhelming
complexity!

Hopeless? NO!



A lot of information can be get from 1LR diagrams like

1 + a ǫ

1 + b ǫ

∼ G(α, β) = Γ(α+β−2+ǫ)
Γ(α)Γ(β)

Γ(2−α−ǫ) Γ(2−β−ǫ)
Γ(4−α−β−2ǫ)

ǫG(1, 1+ǫ) =
1

2
+
1

2
ǫ+

3

2
ǫ2+

(
9

2
− 3ζ3

)

ǫ3+

(

−3ζ3 +
27

2
−

π4

20

)

ǫ4+

(

−9ζ3 − 21ζ(5) +
81

2
−

π4

20

)

+
(

−27ζ3 + 9ζ23 − 21ζ(5) +
243

2
+−

3π4

20
−

π6

21

)

ǫ6

+
(

−81ζ3 +
3π4ζ3
10

+ 9ζ23 − 63ζ(5)− 147ζ(7) +
729

2
−

9π4

20
−

π6

21

)

ǫ7 +O(ǫ8)



Summary of 1LR case:

Hatted repesentations of all normal (that is SZV) odd zetas can be found

from just expanding deeply in ǫ G(1, 1 + ǫ) for arbitrary large number of loops

(was proved in general by Kotikov and

Thus, if we just assume that the L = 4 case is described completely by SVZ’s
(which is true!) then the corresponding hatted representation

ζ̂3 := ζ3 +
3ǫ

2
ζ4 −

5ǫ3

2
ζ6, ζ̂5 := ζ5 +

5ǫ

2
ζ6 and ζ̂7 := ζ7.

can be derived just from the properties of G(1, 1 + a ǫ)!

But no MZV’s ever appear! (because they are absent in the normal Γ-function

expanded around integer values of its argument)



Next step: consider 3-loop case: then MZV’s do show up in corresponding two

1LI masters:

but the resulting 2 eqs. for every π dependent term do fix the hatted form

the only MZV, namely ζ(5, 3) appearing at 5-loops (or, equivalently, ϕ) in

full agreement to the result of /Georgoudis, Goncalves, Panzer, Pereira,

[1802.00803]/ as it should be (as we take into account is a small, essentially

trivial, subset of around 150 higly nontrivial 5-loop masters considered there).

Lesson: higher orders in ǫ of 3-loop masters do “know” everything about

π-structure of 4- and 5-loop masters!

What about 4-loop case? Luckily, many orders in ǫ are known from

R. N. Lee, A. V. Smirnov and V. A. Smirnov, Master Integrals for Four-Loop

Massless Propagators up to Transcendentality Weight Twelve, Nucl.

Phys. B856 (2012) 95–110,



Hatted form for the 6-loop case /transcendental level ≤ 11/

ζ̂3 := ζ3 +
3ǫ

2
ζ4

︸ ︷︷ ︸
L=3

−
5ǫ3

2
ζ6

︸ ︷︷ ︸

δ(L=4)

+
21ǫ5

2
ζ8

︸ ︷︷ ︸

δ(L=5)

−
153ǫ7

2
ζ10

︸ ︷︷ ︸

δ(L=6)

, (3)

ζ̂5 := ζ5 +
5ǫ

2
ζ6

︸ ︷︷ ︸

(L=4)

−
35ǫ3

4
ζ8

︸ ︷︷ ︸

δ(L=5)

+63ǫ5ζ10︸ ︷︷ ︸

δ(L=6)

, (4)

ζ̂7 := ζ7
︸ ︷︷ ︸

L=4

+
7ǫ

2
ζ8

︸ ︷︷ ︸

δ(L=5)

−21ǫ3ζ10︸ ︷︷ ︸

δ(L=6)

, (5)

ϕ̂ := ϕ − 3ǫ ζ4 ζ5 +
5ǫ

2
ζ3 ζ6

︸ ︷︷ ︸
L=5

−
24 ǫ2

47
ζ10 + ǫ3 (−

35

4
ζ3ζ8 + 5ζ5ζ6)

︸ ︷︷ ︸

δ(L=6)

, (6)

ζ̂9 := ζ9
︸ ︷︷ ︸

L=5

+
9

2
ǫ ζ10

︸ ︷︷ ︸

δ(L=6)

, (7)



ζ̂7,3 := ζ7,3 −
793
94 ζ10 + 3ǫ(−7ζ4ζ7 − 5ζ5ζ6)

︸ ︷︷ ︸
L=6

, (8)

ζ̂11 := ζ11
︸ ︷︷ ︸

L=6

, (9)

ζ̂5,3,3 := ζ5,3,3 + 45ζ2ζ9 + 3ζ4ζ7 −
5
2ζ5ζ6

︸ ︷︷ ︸
L=6

. (10)

The boxed terms are in agreement with the results of F. Brown, D. Broadhurst,

D. Kreimer, E, Panzer, O. Schnetz . . .

Now we can upgrade our formulas for π-dependent terms in AD’s

and β-functions at the next 7-loop level!



βζ4
7 =

3

8
βζ3
4 β

(1)
3 +

9

10
β2β

ζ3
5 −

1

2
βζ3
3 β

(1)
4 +

5

4
β1β

ζ3
6 ,

βζ6
7 =

5

8
βζ5
4 β

(1)
3 +

3

2
β2β

ζ5
5 +

25

12
β1β

ζ5
6 − 2β2

1β
ζ3
3 β2 −

5

4
β3
1β

ζ3
4 ,

βζ3ζ4
7 =

9

5
β2β

ζ23
5 −

1

8
βζ3
3 βζ3

4 +
5

2
β1β

ζ23
6 ,

βζ8
7 =

21

10
β2β

ζ7
5 +

35

12
β1β

ζ7
6 −

7

24
β1(β

ζ3
3 )2 +

7

4
β2
1β

ζ23
5 −

35

8
β3
1β

ζ5
4 ,



βζ3ζ6
7 =

5

8
βζ3
3 βζ5

4 +
25

12
β1β

ζ3ζ5
6 +

25

12
β1β

φ
6 ,

βζ4ζ5
7 = −

1

2
βζ3
3 βζ5

4 +
5

4
β1β

ζ3ζ5
6 −

5

2
β1β

φ
6 ,

βζ10
7 =

15

4
β1β

ζ9
6 ,

β
ζ4ζ

2
3

7 =
15

4
β1β

ζ33
6 ,

βζ4ζ7
7 = βζ5ζ6

7 = βζ3ζ8
7 = 0.



Tests of pur predictions for AD’s at L=7 loop: I

We have checked that the π-dependent contributions to the terms of order

n6
fα

7
s in the the QCD β-function as well as to the terms of order n6

fα
7
s and of

order n5
fα

7
s contributing to the quark mass AD, all computed in

J. Gracey, The QCD Beta function at O(1/Nf), Phys.Lett. B373 (1996) 178–184,

[hep-ph/9602214].

M. Ciuchini, S. E. Derkachov, J. Gracey and A. Manashov, Quark mass

anomalous dimension at O(1/N(f)**2) in QCD, Phys.Lett. B458 (1999) 117–126,

[hep-ph/9903410].

M. Ciuchini, S. E. Derkachov, J. Gracey and A. Manashov, Computation of quark mass

anomalous dimension at O(1 / N**2(f)) in quantum chromodynamics, Nucl.Phys.

B579 (2000) 56–100, [hep-ph/9912221].

are in agreement with our predictions



Tests of pur predictions for AD’s at L=7 loop, cont-ed

Significantly more complicated test is provided by the recent calculation of the

full 7-loop RG functions in the ϕ4-model

O. Schnetz, Numbers and Functions in Quantum Field Theory, Phys.

Rev. D97 (2018) 085018, [1606.08598]

We have reproduced successfully all π-dependent constants appearing in the

β-function and anomalous dimensions γm and γ2 of the O(n) ϕ4 at 7 loops



Oliver Schnetz, PRD 97 (2018): 7! loop result for φ4 RG functions:

β =

(
195654269

23040
+

15676169

720
ζ(3) −

316009

3840
π

418326039

480
ζ(5) −

129631

5040
π

6

+
516957

20
ζ(3)

2
−

4453

60
π

4
ζ(3) +

1536173

20
ζ(7) −

20425591

1260000
π

8

+116973ζ(3)ζ(5) +
947214

25
ζ(5, 3) −

1010

63
π

6
ζ(3) +

613

5
π

4
ζ(5) + 4176ζ(3)

3

+
547118

3
ζ(9) −

45106

43659
π

10
− 48π

4
ζ(3)

2
+

84231

2
ζ(3)ζ(7) −

273030

7
ζ(5)

2

+
8460

7
ζ(7, 3) −

174

25
π

8
ζ(3) +

6227

35
π

6
ζ(5) −

56043

25
π

4
ζ(7)

− 504387π
2
ζ(9) + 46845ζ(3)

2
ζ(5) + 27216ζ(3)ζ(5, 3) −

336258

5
ζ(5, 3, 3)

+
52756839

10
ζ(11) + 24P7,11

)
g
8
+ . . .

All π-dependent terms follow from β/.π → 0 : first (partial) check of both

the 7-loop β for the φ4-model and on the hatted representation of P6. The

same is true for γm, γ2 and the 6-loop self-energy



Conclusions

• all π-dependent terms in a generic (L+1)-loop MS− (or, equivalently, G-)

anomalous dimension γ are completely fixed by π-independent contributions

to γ (and corresponding β) with loop number L or less provided the (all)

L-loop p-master integrals are π-safe

• The π-safeness holds for L=4 and L=5 and, probably, for L=6. It is known

that for L=7 the property (partially) stops to be valid⋆ and, thus, our

predictions should be modified (at astronomically large for QCD level of

L=8 RG functions)

• All available results at 5 (QCD), and 6 and 7 loops (large nf QCD and the

φ4-model) do meet all our constraints

⋆ communicated to us by Oliver Schnetz

(the problem is an appearence of the ζ12 as indepenent term of some 7-loop finite p-integral, see works

by (F.Brown, O.Schnetz, E.Panzer . . . on Feynman periods)


