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Optimization of the input space for the 
deep learning data analysis

 Previous method to optimize the input space for 
the Neural Networks in HEP analysis

 Extension and general recipe to optimize the 
input space for the deep learning analysis in HEP 



Mathematical basis of NNs

 13th Hilbert problem  (1900)
whether its solution, x, considered as a function of the three 
variables can be expressed as the composition of a finite number of 
two-variable functions 

 Kolmogorov–Arnold representation theorem 
(or superposition theorem) (1957)
if F is a multivariate continuous function, then F can be written as a 
finite composition of continuous functions of a single variable and 
the binary operation of addition

https://en.wikipedia.org/wiki/Hilbert%27s_thirteenth_problem
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Arnold_representation_theorem


How it looks like in practice 

1 hidden layer
5 neurons

2 hidden layers
5 neurons

3 hidden layers
5 neurons

1 hidden layer
100 neurons
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Method of “optimal observables”

● Provides general recipe how to choose most sensitive high-level 
variables to separate signal and background
➔ It is based on the analysis of Feynman diagrams (FD) contributing to signal and 

background processes
➔ Distinguish three classes of sensitive variables for the signal and each of 

kinematically different backgrounds: Singular variables (denominators of FD), 
Angular variables (numerators of FD) and Threshold variables (Energy 
thresholds of the processes)  

➔ Set of variables can be extended with other type of information, like detector 
relative variables (jet width, b-tagging discriminant)

Described in different examples for the top and Higgs searches
➔ E.Boos, L.Dudko, T.Ohl Eur.Phys.J. C11 (1999) 473-484
➔ E.Boos, L.Dudko  Nucl.Instrum.Meth. A502 (2003) 486-488
● E.Boos, V.Bunichev, L.Dudko, A.Markina, M.Perfilov Phys.Atom.Nucl. 71 (2008) 388-

393
● Applied in different experimental analysis in D0 and CMS

➔ Phys.Lett. B517 (2001) 282-294 and other D0 publications
➔ JHEP02(2017)028 , ... 



Three Classes of Variables
1) “Singular” Sensitive Variables
    (denominator of Feynman diagrams)
   Most of the rates of signal and background processes come from 

the integration over the phase space region close to the 
singularities. If some of the singular variables are different or the 
positions of the singularities are different the corresponding 
distributions will differ most strongly

s-channel singularities t-channel singularities



Three Classes of Variables
2) “Angular” variables, Spin effects
   (numerator of Feynman diagrams)

e.g.

3) “Threshold” variables
   e.g. s_hat and Ht variables relate to the fact 

that various signal and background 
processes may have very different energy 
thresholds



Novel approach with deep learning neural 
networks (DNN)

 Starting from: Hinton, G. E., Osindero, S., & Teh, Y. 
W. (2006). «A fast learning algorithm for deep belief nets.» 
Neural computation, 18(7), 1527-1554

 The main advantage of Deep NNs (many layers, neurons) is 
the possibility to analyze raw, not preprocessed, information. 

 One of the first examples in HEP, DNN increases possible 
significance from 3.1σ up to 5.0σ in comparison with NN 
with high level variables: 

Nature Commun. 5 (2014) 4308



Lets try to add low-level (raw) variables
1. at the beginning, needs to compare BNN and DNN performance on the same set of high level 
variables. T-channel single top production as a signal and pair ttbar production as a background.
The efficiency is almost the same (FBM package for BNN and Tensorflow for DNN): 

2. The low level information about hard processes at colliders, is four-momenta of the final particles.
The DNN efficiency with four-momenta is significantly worse than with optimized high-level 
variables:



Need to understand what is the general low-level 
information for the hard processes on colliders

3. From the kinematic properties we know there are 3n-4 independent 
components, for the  processes 2→n particles.  
4. The matrix elements can be parametrized in terms of scalar products 
of four-momenta or in terms of Mandelstam variables s,t,u;  
e.g. for the W’ production [hep-ph/0610080]:



Lets check the scalar products 

5. Use scalar products of four-momenta of all final particles. The 
efficiency is much worse than for high-level variables. The reason is 
the absence of four-momenta of the initial quarks.  

6. In the massless case we can use the following representation in terms of the final particles 
[Phys.Atom.Nucl. 71 (2008) 388-393] 



Put all together
7. We can combine the scalar products and four-momenta. The performance is almost the 
Same as for the very optimized, from physics point of view, set of high level variables. 

8. Lets try to add everything (four-momenta, scalar products, high-level variables).  
The performance is maximal, most of the sensitive information is there and DNN algorithms
train well very high dimensional NN
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Summary
  We propose the general recipe to optimize the input space for the 
DNN implementation to analyze hard processes on colliders

 The general approach has almost the same performance as the 
very optimized set of high-level variables

 The recipe is simple, need to use the following classes: 

     - scalar products of four-momenta of all final particles or/and    
Mandelstam variables

     - four-momenta of the final particles

     - some of the high-level variables to compensate the absence of 
four-momenta of the initial quarks.

 There are possibility and ideas to optimize the other steps of DNN 
analysis for the HEP tasks
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