PHENIX Experiment Highlights

Alexandre Lebedev (Iowa State University) for the PHENIX Collaboration

The XXIV International Workshop on High Energy Physics and Quantum Field Theory
September 22 – September 29, 2019
Sochi, Russia
Huge amount of data collected by PHENIX

<table>
<thead>
<tr>
<th>√s [GeV]</th>
<th>p+p</th>
<th>p+Al</th>
<th>p+Au</th>
<th>d+Au</th>
<th>3He+Au</th>
<th>Cu+Cu</th>
<th>Cu+Au</th>
<th>Au+Au</th>
<th>U+U</th>
</tr>
</thead>
<tbody>
<tr>
<td>510</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>130</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>39</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>27</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>20</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>14.5</td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

PHENIX at RHIC: 16 years of running, 9 collision species, 9 collision energies 196 papers published, 12 in the past year (2018)
Talk Outline

Spin physics (polarized proton beams)
- $h^+ A_N$ results: Just submitted (arXiv:1903.07422)
- ηA_N results: New!

Small systems (p/d/3He + A)
- Small systems geometry scan: Now published (Nature Physics 15, 214-220 (2019))
- J/ψ in p+Al and p+Au and 3He+Au: New!
- ϕ meson nuclear modification factors: New!
- Drell-Yan measurement in p+p and p+Au: New!
- Direct photon measurements in p/d+Au: New!

Large systems (heavy ions)
- Single particle suppression: multiple species and collisions: New!
- Strangeness and nuclear modification factor: New!
- Flow of charm and bottom in Au+Au: New!
Proton spin is not just a sum of three valence quark spins

Jaffe-Manohar sum rule: \[S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z \]

PHENIX @ RHIC aims at both longitudinal spin structure and transverse spin phenomena
W^\pm longitudinal single-spin asymmetry A_L

$$A_L = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

$$A_L W^+ = \frac{-\Delta u(x_1) \bar{d}(x_2) + \Delta \bar{d}(x_1) u(x_2)}{u(x_1) \bar{d}(x_2) + \bar{d}(x_1) u(x_2)}$$

$$A_L W^- = \frac{-\Delta d(x_1) \bar{u}(x_2) + \Delta \bar{u}(x_1) d(x_2)}{d(x_1) \bar{u}(x_2) + \bar{u}(x_1) d(x_2)}$$

$$A_L W = \frac{1}{P} \frac{N_+ - RN_-}{N_+ + RN_-}$$

- P: avg. polarization of each beam
- N_+ ($N_-)$: yields in same (opposite) helicity
- $R = \frac{L^{++}}{L^{+-}}$: relative luminosity

A_L sensitive to light sea quarks.

Consistency between PHENIX, STAR, global fits
Transverse single-spin asymmetry A_N

$A_N = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{1}{p} \times \frac{N_L - N_R}{N_L + N_R}$, \hspace{1cm} $X_F = \frac{2p_z}{\sqrt{s}} \sim (x_1 - x_2)$

A_N expected to be small in conventional pQCD calculations
Transverse single-spin asymmetry for h^+ in $p+A$

arXiv:1903.07422 (submitted to PRL)

Clear and strong dependence on nuclear target size $A^{1/3}$ ($\alpha = 1.21$)

Very similar dependence on N_{coll} (centrality) ($\beta = 1.19$)

- PDF modification in nuclei (nuclear shadowing)
- Gluon saturation (CGC)
- Multiple scattering

A. Lebedev

PHENIX Experiment Highlights
J/ψ transverse single-spin asymmetry

Nuclear target dependence on J/ψ A_N

What's the origin of the asymmetry at low p_T in p+Au?

A. Lebedev

PHENIX Experiment Highlights 8
η transverse single-spin asymmetry

ηA_N is consistent with zero (but noticeable structure)
Dramatic improvement in statistical and systematic uncertainties over previous result
Spin Physics Summary

• W^\pm A_L now published

• h^+ A_N just submitted to PRL
 - Clear dependence of asymmetries on nuclear target, both $A^{1/3}$ and N_{coll}

• New results on η A_N
 - Dramatic improvement in statistical and systematic precision over previous results
 - Results consistent with zero with some noticeable structure

• J/ψ A_N now published
 - Illustrates importance of changing nuclear target in spin physics
 - Why is J/ψ A_N non-zero in p+Au?
Small Systems (p/d/\(^3\)He + A)
Intermission: some nuclear physics concepts

Nuclear Modification Factor R_{AA}

$$R_{AA} = \frac{dN_{AA}^{J/\psi}/dy}{N_{coll} \cdot dN_{pp}^{J/\psi}/dy}$$

Yield in nucleus-nucleus collisions divided by p+p yields and scaled by the appropriate number of binary collisions N_{coll}, which is calculated using Glauber model.

Centrality of collision is described by the number of participant nucleons N_{PART} or number of binary collisions N_{coll}.
Intermission: some nuclear physics concepts

Collective Flow

In general, azimuthal distribution of the final state particles can be decomposed into Fourier series

$$\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \langle p_T \rangle \cos (n (\phi - \psi_n))$$

Spatial asymmetry represented by eccentricity

$$\varepsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}$$

translates into momentum flow described by Fourier coefficients v_n
Longitudinal dynamics in small systems \((dN_{\text{ch}}/d\eta)\)

\(p+\text{Al}, \ p+\text{Au}, \ d+\text{Au}, \ \text{and} \ 3\text{He}+\text{Au}\)

Good agreement with Wounded Quark Model

and 3-D Hydrodynamics
Longitudinal dynamics in small systems (flow)

v_2 agrees with 3-D hydro for $p+Au$ and $d+Au$.

In 3He+Au, 3-D hydro overpredicts the forward rapidity.
Testing hydrodynamic models by controlling geometry

p+Au, d+Au and 3He+Au collisions have different elliptic and triangular eccentricities (ε_2 and ε_3)

PHENIX Experiment Highlights

v_2 and v_3 ordering

- v_2 and v_3 ordering matches ε_2 and ε_3 ordering in all systems
- Regardless of the mechanism, the correlation is geometrical
Theory comparison

v_2 and v_3 vs p_T described very well by hydro in all three systems.

\begin{center}
\includegraphics[width=\textwidth]{theory_comparison.png}
\end{center}

$\text{iEBE-VISHNU: C. Shen et al., Phys. Rev. C 95, 014906 (2017).}$

J/ψ in p+Al and p+Au

- Almost no modification in p+Al
- Significant suppression at low p_T in p+Au in both directions.
J/ψ in $^3\text{He}+\text{Au}$

No difference with increasing projectile size.
Despite mass difference and strangeness, in p+Au collisions φ shows similar modification to π⁰.
ϕ meson in $^3\text{He}+\text{Au}$

Again, ϕ shows similar modification to π^0
Drell-Yan in p+p from $\mu^-\mu^+$ angular correlations

Well described by PYTHIA and NLO

arXiv:1805.04075
arXiv:1805.02448
Drell-Yan in p+Au

Hint of modification of Drell-Yan in p+Au, although large uncertainties prevent a firm conclusion.
Direct Photon Yields in p+p and A+A

Common scaling independent of collision energy or centrality for Au+Au and Pb+Pb at different energies;

Very different from N_{coll}-scaled p+p
Direct Photons in p/d + Au

p+Au and d+Au data fill the gap smoothly between A+A and p+p collisions.

Thermal photons in p+Au?
Small systems summary

- Comprehensive set of measurements of longitudinal dynamics
 - Good support for wounded quark model and 3D hydro

- Geometry scan results published in Nature Physics
 - Only hydro can describe all the data

- J/ψ in p/d/3He + A
 - Modification depends on target size, but not projectile size

- Modification of ϕ meson is very similar to that of π^0 despite differences in mass and strangeness content

- First measurement of Drell-Yan in small systems at RHIC
 - Hint of enhancement but no firm conclusions

- Photon enhancement in small systems is an important additional evidence in support of QGP droplet formation in small systems
Heavy Ions
Summary of suppression in Au+Au

- Photons unmodified
- Baryons are not suppressed at intermediate p_T
- ϕ is an outlier at low p_T
Nuclear suppression in Cu+Au

Again ϕ is an outlier at low p_T, but ω and K_S follow π^0 and η trend at high p_T.

For $|y| < 0.35$, the R_{AA} values are shown, with $\sqrt{s_{NN}} = 200$ GeV. The graph highlights the PHENIX experiment's findings, with preliminary data published in arXiv:1805.04389.
Strangeness for different collision species

ω and φ mesons behave similarly in Cu+Cu, Cu+Au, and Au+Au when selecting for similar N_{part}.
Strangeness in U+U

Suppression similar for all species including strange mesons at high p_T
c → e and b → e in p+p and Au+Au

HF electron spectra, all centralities and using all available data
New p+p reference data; new publication with R_{AA} on the way!
Charm and Bottom Flow in Au+Au

First bottom flow measurement at RHIC
Charm flows less than light-flavor hadrons, a hint of bottom flow
Heavy Ion Physics Summary

• Single particle R_{AA} independent of collision species when selecting for similar N_{PART}

• Strangeness appears to be important at low p_T but not at high p_T

• Measurement of $c \rightarrow e$ and $b \rightarrow e$ spectra in $p+p$
 - Publication with new R_{AA} coming soon

• First measurement of bottom flow at RHIC
 - Refinements and publication forthcoming
Thank you!
Backup Slides
The PHENIX Experimental Setup

- **Central Arms** ($|\eta| < 0.35$, $\Delta \phi = \frac{\pi}{2} \times 2$)
 - VTX (Si pixel and strip, from 2011)
 - Tracking: DC, PC
 - pID: RICH, ToF
 - EMCal: PbGl, PbSc

- **Muon Arms** ($1.2 < |\eta| < 2.2$ (S) or 2.4 (N), $\Delta \phi = 2\pi$)
 - FVTX (Si strip, from 2012)
 - Tracking: MuTr (CS chambers)
 - pID: MuID (steel interleaved Iarocci tubes), RPCs

- **MPC/MPC-Ex** ($3.1 < |\eta| < 3.8$, $\Delta \phi = 2\pi$)
 - EMCal ($PbWO_4$) / Preshower by $W + $ Si minipads