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Introduction: Photon Polarization Operator

Photon polarization operator is the typical example
of the two-point correlation function

Lagrangian density of fermion-photon interaction in QED

LQED(x) = eQf

[
f̄ (x)γµf (x)

]
Aµ(x)

Matrix element of the γ → γ transition

iMγ→γ = Πµν(q) εµ(q) ε∗ν(q),

Here, Πµν(q) is the two-point correlator of two vector currents

In an external �eld, the �eld modi�cation of the fermion
propagator should be taken into account



Introduction: Axion Self-Energy

[Skobelev V. V., Phys. At. Nucl. 61 (1998); Borisov A. V. & Sizin P. E.,

JETP 86 (1999); Vassilevskaya L. A. et al., Phys. At. Nucl. 64 (2001)]

Other example is the axion self-energy

Lagrangian density of fermion-axion interaction

Laf (x) =
gaf
2mf

[
f̄ (x)γµγ5f (x)

]
∂µ a(x)

gaf = Cfmf /fa � dimensionless Yukawa constant
Cf � dimensionless factor specifying the axion model

Matrix element of a→ a transition determines the
electromagnetic correction to axion mass squared m2

a

Ma→a = −δm2

a

Here, δm2
a is the two-point correlator of two axial-vectors



Introduction: General Case of Two-Point Correlator

[Borovkov M.Yu. et al., Phys. At. Nucl. 62 (1999)]

Lagrangian density of local fermion interaction

Lint(x) =
[
f̄ (x)ΓAf (x)

]
JA(x)

JA � generalized current (photon, neutrino current, etc.)

ΓA � any of γ-matrices from the set
{1, γ5, γµ, γµγ5, σµν = [γµ, γν ] /2}
Two-point correlation function of general form

ΠAB =

∫
d4X e−i(qX ) Sp {SF(−X ) ΓA SF(X ) ΓB}

SF(X ) � Lorentz-invariant part of the exact propagator

Correlations of scalar, pseudoscalar, vector and axial-vector
currents were studied

Consider correlations of a tensor current with the other ones



Propagator in Constant Homogenious Magnetic Field

Dirac equation in an external electromagnetic �eld[
i ∂̂ − e Qf Â(r, t)−mf

]
Ψ(r, t) = 0

Qf and mf are the relative charge and mass of the fermion
∂̂ = ∂µ γ

µ, Â = Aµ γ
µ

Pure constant homogeneous magnetic �eld: B = (0, 0,B)

Four-potential (in Lorentz-covariant form):
Aµ(x) = −Fµνxν

Fµν � strength tensor of external electromagnetic �eld

Equation for fermion propagator in the magnetic �eld[
i ∂̂ − e Qf Â(x)−mf

]
GF(x , y) = δ(4)(x − y)

Use the Fock-Schwinger method for its solution



Basic Tensors in Presence of Magnetic Field

Minkowski space �lled with external magnetic �eld is divided
into two subspace:

Euclidean with metric tensor Λµν = (ϕϕ)µν
orthogonal plane to the �eld direction
Pseudo-Euclidean with metric tensor Λ̃µν = (ϕ̃ϕ̃)µν
Metric tensor of Minkowski space gµν = Λ̃µν − Λµν

Dimensionless tensor of the external magnetic �eld and its dual

ϕαβ =
Fαβ
B

, ϕ̃αβ =
1

2
εαβρσϕ

ρσ

Arbitrary four-vector aµ = (a0, a1, a2, a3) can be decomposed
into the two orthogonal components

aµ = Λ̃µνa
ν − Λµνa

ν = a‖µ − a⊥µ

For the scalar product of two four-vectors one has

(ab) = (ab)‖ − (ab)⊥

(ab)‖ = (aΛ̃b) = aµΛ̃µνb
ν , (ab)⊥ = (aΛb) = aµΛµνb

ν



Propagator in the Fock-Schwinger Representation

General representation of the propagator [Itzikson & Zuber]

GF(x , y) = eiΩ(x ,y) SF(x − y)

Lorentz non-invariant phase factor

Ω(x , y) = −eQf

∫ x

y

dξµ
[
Aµ(ξ) +

1

2
Fµν(ξ − y)ν

]
In two-point correlation function phase factors canceled

Ω(x , y) + Ω(y , x) = 0

Lorentz-invariant part of the fermion propagator (β = eB|Qf |)

SF(X ) = − iβ

2(4π)2

∞∫
0

ds

s2

{
(X Λ̃γ) cot(βs) − i(X ϕ̃γ)γ5 −

− βs

sin2(βs)
(XΛγ) + mf s [2 cot(βs) + (γϕγ)]

}
×

× exp

(
−i

[
m2

f s +
1

4s
(X Λ̃X ) − β cot(βs)

4
(XΛX )

])
,



Orthogonal Basis Motivated by Magnetic Field

Correlators having rank non-equal to zero, should be
decomposed in some orthogonal set of vectors

In magnetic �eld, such a basis naturally exists

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ

b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ

Arbitrary vector aµ can be presented as

aµ =
4∑

i=1

ai
b

(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ

Arbitrary tensor Tµν can be similarly decomposed

Tµν =
4∑

i ,j=1

Tij
b

(i)
µ b

(j)
ν

(b(i)b(i)) (b(j)b(j))
, Tij = Tµνb(i)

µ b(j)
ν



Examples of Correlators

Axion self-energy

Ma→a(q2, q2⊥, β) =
∑
f

g2

af β

8π2

∞∫
0

dt

sin(βt)

1∫
0

du
[
q2‖ cos(βt) − q2⊥ cos(βtu)

]
×

× exp

{
−i

[
m2

f t −
q2‖
4

t (1− u2) + q2⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}

Two proper times variables s1 and s2 replaced
by t = s1 + s2 and u = (s1 − s2)/t

Field-induced contribution to the a→ a transition

∆M(q2, q2⊥, β) = Ma→a(q2, q2⊥, β)−Ma→a(q2, 0, 0),

This quantity is free from UV divergences



Correlator of Pseudoscalar and Tensor Currents

Correlator of pseudoscalar and tensor currents is rank-2 tensor

From six non-trivial coe�cients in the basis decomposition,
three ones only are independent

Π
(PT )
12

(q2, q2⊥, β) =
β

8π2
q2‖ q

2

⊥

∞∫
0

dt

1∫
0

du
sin(βtu)

sin(βt)
[u cot(βtu) − cot(βt)]×

× exp

{
−i

[
m2

f t −
q2‖
4

t (1− u2) + q2⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}

Coe�cient Π
(PT )
21

di�ers by the sign from Π
(PT )
12

due to the
tensor anti-symmetry

Four other coe�cients Π
(PT )
23

= −Π
(PT )
32

and Π
(PT )
24

= −Π
(PT )
42

are also calculated

Correlators of other currents with the tensor one are also
obtained



Applications of Correlators

Polarization operator is related with correlator of two vector
currents

Models beyond the Standard Model can e�ectively produce the
Pauli Lagrangian density

LAMM(x) = −µf
4

[
f̄ (x)σµν f (x)

]
Fµν(x)

After combining with the QED Lagrangian, it contributes to
the photon polarization operator

Contribution linear in the fermion AMM is related with
correlator of vector and tensor currents

Its in�uence on photon requires detail discussion

Strong-�eld limit is also important as expressions are simpli�ed
drastically

Good check of correctness of correlators obtained within
strong-magnetic-�eld formalism by Skobelev



Three-Point Correlators

Technique we are developed can be extended for calculation of
three-point correlators

We have such an experience when calculated axion-two-photon
vertex in crossed and magnetic �eld con�gurations

The ones obtained later are di�ers from ours but a reason
remains unclear

Some other three-point vertecies are also of special importance



Conclusions

Two-point correlators in presence of constant homogeneous
external magnetic �eld are considered

This analysis extended the previous one by inclusion of tensor
currents into consideration

With new correlators, modi�cations to photon polarization
operator induced by Pauli Lagrangian can be studied

Computer technique developed for two-point correlators is
planned to be applied for three-point ones


