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Introduction

Production of two high-pT jets

Motivation
Multiple jet production is the dominant high transverse-momentum (pT ) process at
LHC energies.

Azimuthal decorrelations between the two central jets with the largest transverse
momenta are sensitive to the dynamics of events with multiple jets.

Particularly, the measurements of decorrelations in the azimuthal angle between
the two most energetic jets, ∆ϕ, as a function of number of produced jets, give the
chance to separate directly leading order (LO) and next-to-leading orders (NLO)
contributions in the strong coupling constant αs .

A detailed understanding of events with large azimuthal decorrelations is
important to searches for new physical phenomena with dijet signatures, such as
supersymmetric extensions to the Standard Model.
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Introduction

Production of two high-pT jets

Experimental studies
ATLAS Collaboration:

√
S = 7 TeV,pT > 30 GeV, |yjj | < 1.1

G. Aad et al., Measurement of Dijet Azimuthal Decorrelations in pp Collisions at√
S = 7 TeV, Phys. Rev. Lett. 106, 172002 (2011).

CMS Collaboration:
√

S = 7 TeV,pT > 100 GeV, |yjj | < 0.8
V. Khachatryan at al., Dijet Azimuthal Decorrelations in pp Collisions at√

S = 7 TeV, Phys. Rev. Lett. 106, 122003 (2011).

Theoretical studies
pQCD calculations, next-to-leading order (NLO) in three-parton production: Z.
Nagy, Phys. Rev. D 68, 094002 (2003), Phys. Rev. Lett. 88, 122003 (2002).

Event generators: PYTHIA, HERWIG, SHERPA, MADGRAPH, ...
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Introduction

Particle production at large
√

S

Higher-order perturbative corrections:

Heavy final states (Higgs bosons, t t̄ , ...) produced by large-x ∼ 10−1 initial
partons← soft and collinear gluons

Light final states (small-pT quarkonia, single jets, prompt photons, ...) produced by
small-x ∼ 10−3 ← additional hard jets← higher-order corrections in αs ⇒
complicated task

To obtain the agreement with experimental data one needs to perform the pQCD
calculations in NLO order and higher⇒ much time and computational resources
are involved.

Even that not all the observables are successfully described in the framework of
collinear parton model (CPM), such as azimuthal angle distributions in pair
production of particles.

At small x there are 2 dominant types of particle production kinematics:
quasi-multi-Regge (QMRK) and multi-Regge (MRK). At such conditions imposed,
the logarithms lnn(1/x) can be resummed in all orders n by BFKL-approach (see talk
of V. A. Saleev) based on the property of gluon Reggeization.
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Introduction

TMD factorization

In the region of small x ∼ µ/
√

S and the case whether the initial state radiation is
highly separated in rapidity from the central region and can be factorized. In the
small-x regime, initial state partons carry the substantial transverse momentum
(virtuality) |qT | ∼ x

√
S, in contrast with the standard CPM where |qT | � x

√
S, and

can be neglected.

TMD factorization theorems were formulated for a number of semi-inclusive processes
including Drell-Yan processes and e+e− annihilation, where the sensitivity to the
partonic transverse momentum become important [Collins, Soper, Nadolsky, Yuan].

For particular properties in hadronic collisions, like heavy flavour or heavy boson
(including Higgs) production, TMD factorization was formulated in the high-energy
(small-x) limit. In this case the functions encoding the hadronic structure are called
unintegrated parton distribution functions (uPDFs).

The large variety of different TMD PDF and uPDF parametrizations were recently
collected into a single library, TMDlib [F. Hautmann et al., Eur. Phys. J. C74, 3220
(2014)].
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Introduction

kT -factorization approach

This is the standard setup of the kT -factorization [L. V. Gribov et. al. 1983; J. C. Collins
et. al. 1991; S. Catani et. al. 1991].
The standard kT -factorization prescription for gluons states the polarization vector of

initial-state gluon with 4-momentum k = (k0, kT, kz ): εµ(k) =
kµT
|kT|

.

The kT -factorization with Reggeized initial-state partons which interactions are
described by Fadin-Kuraev-Lipatov effective vertices we call Parton Reggeization
Approach (PRA).
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Introduction

The advantages of the Parton Reggeization Approach

1. The number of matrix elements obtained using the standard prescription of the
kt -factorization approach for off-shell gluon polarization vectors has the incorrect
parton model limits q1T , q2T → 0, unlike the ones calculated in the PRA.

Cqq̄
RR = εα(q1T )εβ(q2T )Mαβ(gg → qq̄)

Cgg,µν
RR 6= εα(q1T )εβ(q2T )Mµν

αβ(gg → gg), Cgq,µ
RQ 6= εα(q1T )Mµ

α(gq → gq)

2. The gauge invariance of the initial off-shell quarks is held only in the PRA.

Cqg, b, µ
QR, a (q1, q2, k1, k2) =

1
2

g2
s

q−2
2
√

t2
Ū(k1)

[
γ

(−)
σ (q1, k1 − q1)t−1 ×

×
(
γµνσ(k2,−q2)n+

ν + t2
n+
µn+

σ

k+
2

)[
T a,T b]− γ+(q̂1 − k̂2)−1γ

(−)
µ (q1,−k2)T aT b −

−γµ(q̂1 + q̂2)−1γ
(−)
σ (q1, q2)n+

σT bT a +
2q̂1n−µ

k−1

(
T aT b

k−2
−

T bT a

q−2

)]
,

3. In the framework of PRA the NLO calculations can be subsequently implemented.
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Ū(k1)

[
γ

(−)
σ (q1, k1 − q1)t−1 ×

×
(
γµνσ(k2,−q2)n+

ν + t2
n+
µn+

σ

k+
2

)[
T a,T b]− γ+(q̂1 − k̂2)−1γ

(−)
µ (q1,−k2)T aT b −

−γµ(q̂1 + q̂2)−1γ
(−)
σ (q1, q2)n+

σT bT a +
2q̂1n−µ

k−1

(
T aT b

k−2
−

T bT a

q−2

)]
,

3. In the framework of PRA the NLO calculations can be subsequently implemented.



Introduction

The advantages of the Parton Reggeization Approach

1. The number of matrix elements obtained using the standard prescription of the
kt -factorization approach for off-shell gluon polarization vectors has the incorrect
parton model limits q1T , q2T → 0, unlike the ones calculated in the PRA.

Cqq̄
RR = εα(q1T )εβ(q2T )Mαβ(gg → qq̄)

Cgg,µν
RR 6= εα(q1T )εβ(q2T )Mµν

αβ(gg → gg), Cgq,µ
RQ 6= εα(q1T )Mµ

α(gq → gq)

2. The gauge invariance of the initial off-shell quarks is held only in the PRA.

Cqg, b, µ
QR, a (q1, q2, k1, k2) =

1
2

g2
s

q−2
2
√

t2
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Introduction

Unintegrated parton distribution functions

Normalization condition should be satisfied:

xF p,p̄
g (x , µ2) =

∫ µ2

Φp,p̄
g (x , |qT|2, µ2)d |qT|2,

where F (x , µ2) - collinear PDF.
There are different sets of transverse-momentum-dependent PDFs:

Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [J. Blümlein, preprint DESY
95–121 (1995) , arXiv:hep-ph/9506403]

Kimber-Martin-Ryskin (KMR) approach [M. A. Kimber, A. D. Martin, M. G. Ryskin,
G. Watt, 2001–2004].

Ciafaloni-Catani-Fiorani-Marchesini (CCFM) approach [M. Ciafaloni, S. Catani, F.
Fiorani, G. Marchesini (1988-1990)]

KMR PDFs are based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equations with contribution of the large logarithms log( µ2

Λ2
QCD

) and include additionally

(model dependent) BFKL corrections due to large logarithms log( S
µ2 ) ' log( 1

x ). The
KMR procedure (realized as the open code in C++) is constructed in the way which
takes into account the gluon Reggeization and so far it is clear to use it together with
Reggeon effective vertices.
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UPDF sets

The KMR prescription to obtain unintegrated PDF from collinear one is based on
the mechanism of last step parton kT−dependent radiation and the assumption of
strong angular ordering:

Φg(x , k2
T , µ

2) = Tg(kT , µ)
αs(k2

T )

2π

1−∆∫
x

dz

k2
T∫ dq2

T

q2
T
×

×
[
Pgg(z)fg

(x
z
, q2

T

)
+ Pgq(z)fq

(x
z
, q2

T

)]
.

Where Pgg(z), Pgq(z)- DGLAP splitting functions, Tg(kT , µ)- Sudakov formfactor.
Blümlein distribution: the qT -dependent gluon distribution is calculated numerically
accounting for the resummation of small x effects due to the BFKL equation. It is
represented by a convolution of a gluon density in the collinear limit g(x , µ2) and a
universal function G(x , q2

T , µ
2) for which an analytic expression is derived:

Φ(x , q2
T , µ

2) = G(x , q2
T , µ

2)⊗ g(x , µ2)

The TMDlib [F. Hautmann et al., Eur. Phys. J. C74, 3220 (2014)] includes about
20 parametrizations, mostly based on CCFM evolution equations, both for quarks
and gluons. They depend on two light-cone momentum fractions x+ and x−
carried by the parton.
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Hard scattering matrix elements

kT -factorization approach (KFA)
polarization vector of initial-state gluon with 4-momentum k = (k0, kT, kz ):

εµ(k) =
kµT
|kT|
⇒ no gauge-invariance in the case of gluons in final state; no generally

accepted prescription for the treatment of off-shell initial-state quarks.

Parton Reggeization Approach (PRA)
KFA with Reggeized initial-state partons



Introduction

Hard scattering matrix elements

kT -factorization approach (KFA)
polarization vector of initial-state gluon with 4-momentum k = (k0, kT, kz ):

εµ(k) =
kµT
|kT|
⇒ no gauge-invariance in the case of gluons in final state; no generally

accepted prescription for the treatment of off-shell initial-state quarks.

Parton Reggeization Approach (PRA)
KFA with Reggeized initial-state partons



Parton Reggeization Approach

Parton Reggeization Approach

The Regge limit of QCD: the center-of-mass energy is large
√

S →∞ and the
momentum transfer

√
−t is fixed

We propose the c.m. energy of LHC
√

S = 7 TeV to be large enough, and the
finiteness of t is controlled by fixed pT of final jets.

The most appropriate approach for the description of scattering amplitudes is given by
the theory of complex angular momenta (Gribov-Regge theory)

The Regge kinematics is a particular case of multi-Regge kinematics (MRK).
MRK is the kinematics where all particles have limited (not growing with s) transverse
momenta and are combined into jets with limited invariant mass of each jet and large
(growing with s) invariant masses of any pair of the jets. The MRK gives dominant
contributions to cross sections of QCD processes at high energy.
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momenta and are combined into jets with limited invariant mass of each jet and large
(growing with s) invariant masses of any pair of the jets. The MRK gives dominant
contributions to cross sections of QCD processes at high energy.



Parton Reggeization Approach

Parton Reggeization Approach: multi-Regge kinematics

pi = βi P1 + αi P2 + piT

S = (P1 + P2)2

Sαiβi = p2
i − p2

iT

1/S ∼ βn+1 � βn � ...� β0 ∼ 1

1/S ∼ α0 � α1 � ...� αn+1 ∼ 1

Si = (pi−1 + pi )
2 = Sβi−1αi

Si � |p2
iT | ∼ |ti | = |q2

i |

Despite of a great number of contributing Feynman diagrams it turns out that at the
Born level in the MRK amplitudes acquire a simple factorized form. In the leading
logarithmic approximation (LLA) the n-gluon production amplitude in this kinematics
has the multi-Regge form

ALLA
2+n = Atree

2+n

n+1∏
i=1

sω(ti )
i

Radiative corrections to these amplitudes do not destroy this form, and their energy
dependence is given by Regge factors sω(ti )

i . This phenomenon is called gluon
Reggeization.
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Parton Reggeization Approach

Particle Reggeization

The gluons in each crossing channel ti are Reggeized if one takes into account the
radiative corrections to the Born production amplitude Atree

2+n.

The production amplitude in the tree approximation has the factorised form:

Atree
2+n = 2SgsT c1

AA′ΓA′A
1
t1

gsT d1
c2c1

Γ1
21

1
t2
. . . gsT dn

cn+1cn Γn
n+1,n

1
tn+1

gsT cn+1
B′B ΓB′B ,

Γr
r+1,r – Reggeon-Reggeon-particle (RRP) vertex,

ΓAA′ – Reggeon-particle-particle (RPP) vertex.

The effect of particle Reggeization was discovered in QED in 1964: M. Gell-Mann,
M. L. Goldberger, F. E. Low, E. Marx, and F. Zachariasen, Phys.Rev. 133, B161-B174
(1964).

The gluon Reggeization in QCD:
E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 44, 443 (1976)
I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

The quark Reggeization in QCD:
V. S. Fadin and V. E. Sherman, JETP Lett. 23, 599 (1976)
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Parton Reggeization Approach

Parton Reggeization Approach: effective vertices

There are two ways to derive effective vertices:

From the analyticity and unitarity constraints for multiparticle production
amplitudes. These methods were developed in the works of Lipatov, Fadin,
Kuraev and co-authors.

From the Lagrangian of non-Abelian gauge invariant effective theory, which
includes fields of Reggeized particles, firstly written down in L. N. Lipatov, Nucl.
Phys. B452, 369 (1995).

The set of Feynman rules for Reggeized particles interactions was derived and
presented in the works:
E. N. Antonov, L. N. Lipatov, E. A. Kuraev, and I. O. Cherednikov, Nucl. Phys. B721,
111 (2005)
L. N. Lipatov and M. I. Vyazovsky, Nucl. Phys. B597, 399 (2001).
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Parton Reggeization Approach

Parton Reggeization Approach: the factorization hypothesis

In the leading order of PRA the hypothesis of factorization of the effects of long and
short distances is proved:

dσ(p + p →H+ X ,S) =

∫
dx1

x1

∫
d |q1T |2

∫
dϕ1

2π
Φ(x1, |q1T |2, µ2)

×
∫

dx2

x2

∫
d |q2T |2

∫
dϕ2

2π
Φ(x2, |q2T |2, µ2)

×d σ̂(R + R →H+ X ,q1T ,q2T , ŝ),



Dijet production

Dijet production in QMRK

The production of gluon pairs with close rapidities in the central region whereas the
protons remnants have large modula of rapidities satisfies the conditions of
quasi-multi-Regge kinematics (QMRK). MRK is a particular case of QMRK.

Figure 1 : QMRK: y1 � yg1 ' yg2 � y2



Dijet production

Dijet production: the hard subprocesses

The full number of hard subprocesses in QMRK contributing to dijet production:

R + R → g + g,

R + R → q + q̄,

Q + R → q + g,

Q + Q → q + q,

Q + Q′ → q + q′,

Q + Q̄ → q + q̄,

Q + Q̄ → q′ + q̄′,

Q + Q̄ → g + g.

At the LHC the dominant partonic subprocess is:

R(q1) +R(q2)→ g(k1) + g(k2)

qµi = xi P
µ
i + qµiT (i = 1, 2) – four-momenta of the Reggeized gluons;

Pµ1,2 = (
√

S/2)(1, 0, 0,±1) – four-momenta of the incoming protons;
qµiT = (0,qiT , 0), ti = −q2

iT = q2
iT .

k1,2 – four-momenta of the final gluons, k2
1 = k2

2 = 0.
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Dijet production

Dijet production: the hard subprocesses

The effective RRgg vertex

Cgg, cd, µν
RR,ab (q1, q2, k1, k2) = g2

s
q+

1 q−2
4
√

t1t2
×

×
(

T1s−1Γ(+−)σ (q1, q2)γµνσ(−k1,−k2) +

+T3t−1Γσµ−(q1, k1 − q1)Γσν+(k2 − q2, q2)−
−T2u−1Γσν−(q1, k2 − q1)Γσµ+(k1 − q2, q2)−
−T1

(
n−µ n+

ν − n−ν n+
µ

)
− T2

(
2gµν − n−µ n+

ν

)
− T3

(
−2gµν + n−ν n+

µ

)
+

+∆µν+(q1, q2, k1, k2) + ∆µν−(q1, q2, k1, k2)

)

T1 = fcdr fabr , T2 = fdar fcbr , T3 = facr fdbr , T1 + T2 + T3 = 0

∆µν+(q1, q2, k1, k2) = 2t2n+
µn+

ν

(
T3

k+
2 q+

1
−

T2

k+
1 q+

1

)
,

∆µν−(q1, q2, k1, k2) = 2t1n−µ n−ν

(
T3

k−1 q−2
−

T2

k−2 q−2

)
The light-cone vectors n+ = 2P2/

√
S and n− = 2P1/

√
S,

k± = k · n± for any four-vector kµ.
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Dijet production

The matrix element of subprocess RR → gg

The general form of the squared amplitudes for all subprocesses

|M|2 = π2α2
SA

4∑
n=0

WnSn,

For the subprocess RR→ gg:

A =
18

a1a2b1b2s2t2u2t1t2
,

W0 = x1x2s2tut1t2
(
x1x2(tu + t1t2) + (a1b2 + a2b1)tu

)
,

W1 = x1x2st1t2

[
t2u
(

a1b2(a2b2 + a1x2)(t1 + t2)− a2b1(a1b1t1 + a2b2t2) +

+
(
x2(a2

1b2 + a2
2b1) + a1a2(b1 − b2)2)u + x1x2a1b2t

)]
+

+

[
a1 ↔ a2, b1 ↔ b2, t ↔ u

]
,

W2 = a1a2b1b2tu
(

x2
1 x2

2
[
2(t1 + t2)

(
t2u + t1t2(s + u − t)

)
+

+ tu
(
(t1 − t2)2 + t(u + 2t)

)]
+

+ x1x2tt1t2
(
4(x1b1 + x2a2)(s + u)− (a1b1 + a2b2)u

)
+

+ tu
(
x2

1 b2(2x2t − b1t1)t1 + x2
2 a1(2x1t − a2t2)t2

))
+

+

(
a1 ↔ a2, b1 ↔ b2, t ↔ u

)
,



Dijet production

The matrix element of subprocess RR → gg

W3 = x1x2a1a2b1b2

[
t2u
(

2a1b2
(
x1x2(t1 + t2)(2t − u − s)− (x1b2t1 + x2a1t2)(u + s)

)
+

+
[
x1t1

(
2(a1b2

2 + a2b2
1) + 3x1b1b2

)
+ x2t2

(
2(a2

1b2 + a2
2b1
)

+ 3a1a2x2)
]
u +

+ 4x1x2t
(
(a1b2 + a2b1)u + a1b2t

))]
+

[
a1 ↔ a2, b1 ↔ b2, t ↔ u

]
,

W4 = x2
1 x2

2 a1a2b1b2

[
t
(

a1a2b1b2u(t1 + t2)(t − u − s) + (a1b2 + a2b1)2tu2 −

− 2a1b2t(s + u)(2a2b1u − a1b2s)

)]
+

[
a1 ↔ a2, b1 ↔ b2, t ↔ u

]
.

The invariant variables: s = (q1 + q2)2, t = (q1 − k1)2, u = (q1 − k2)2,
a1 = 2k1 · P2/S, a2 = 2k2 · P2/S, b1 = 2k1 · P1/S, b2 = 2k2 · P1/S.

The amplitudes and squared matrix elements for the full set of 2→ 2 subprocesses
with Reggeons in the initial state which give contribution to dijet production are
presented in the work M.A. Nefedov, V.A. Saleev, A. V Shipilova. Dijet azimuthal
decorrelations at the LHC in the parton Reggeization approach. Phys. Rev. D87 (2013)
094030. The all squared matrix elements are checked to give the correct expressions
in the Parton Model limit.
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Dijet production

Dijet production: cross section.

Exploiting the hypothesis of high-energy factorization, we express the hadronic cross
sections dσ as convolutions of partonic cross sections d σ̂ with unintegrated PDFs Φh

g
of Reggeized gluons in the hadrons h.

dσ(pp → ggX)

dk1T dy1dk2T dy2d∆ϕ
=

k1T k2T

16π3

∫
dt1

∫
dφ1Φp

g(x1, t1, µ2)Φp
g(x2, t2, µ2)

×
|M(RR → gg)|2

(x1x2S)2
,

where k1,2T and y1,2 are final gluon transverse momenta and rapidities, respectively,
and ∆ϕ is an azimuthal angle enclosed between the vectors ~k1T and ~k2T ,

x1 = (k0
1 + k0

2 + kz
1 + kz

2 )/
√

S, x2 = (k0
1 + k0

2 − kz
1 − kz

2 )/
√

S,

k0
1,2 = k1,2T cosh(y1,2), kz

1,2 = k1,2T sinh(y1,2).



Dijet production

Dijet production at the LHC: comparison with experiment.

Figure 2 : The azimuthal dijet decorrelations at
√

S = 7 TeV, |yjj | < 1.1



Dijet production

Dijet production at the LHC: comparison with experiment.

Figure 3 : The azimuthal dijet decorrelations at
√

S = 7 TeV, |yjj | < 1.1



Dijet production

Dijet production at the LHC: comparison with experiment.

Figure 4 : The azimuthal dijet decorrelations at
√

S = 7 TeV, |yjj | < 1.1



Dijet production

Dijet production at the LHC: comparison with experiment.

Figure 5 : The azimuthal dijet decorrelations at
√

S = 7 TeV, |yjj | < 1.1



Dijet production

Dijet production at the LHC: comparison with experiment.

Figure 6 : The azimuthal dijet decorrelations at
√

S = 7 TeV, |yjj | < 1.1

The next step of the analysis can be an inclusion of a 2→ 3 process RR→ ggg to
the calculations. That would lead to a more complete and precise description of the
data which contain more than 2 jets in the final state.
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Dijet production at the LHC: comparison with experiment.



bb̄-pair production

bb̄-pair production at the LHC: comparison with experiment.

Figure 7 : The invariant mass spectra of bb̄-pairs produced at
√

S = 7 TeV, |yb,b̄| < 1.12



bb̄-pair production

bb̄-pair production at the LHC: comparison with experiment.

Figure 8 : The normalized azimuthal angle spectra of bb̄-pairs produced at
√

S = 7 TeV,
|yb,b̄| < 1.12



bb̄-pair production

bb̄-pair production at the LHC: comparison with experiment.

Figure 9 : The bb̄-dijet cross-section as a function of χ for b-jets with pT > 40 GeV, |y| < 2.1 and
|yboost | = 1

2 |y1 + y2| < 1.1, for dijet invariant mass range 110 < Mjj < 370 GeV.



bb̄-pair production

bb̄-pair production at the LHC: comparison with experiment.

Figure 10 : The bb̄-dijet cross-section as a function of χ for b-jets with pT > 40 GeV, |y| < 2.1
and |yboost | = 1

2 |y1 + y2| < 1.1, for dijet invariant mass range 370 < Mjj < 850 GeV.



bb̄-pair production

bb̄-pair production at Tevatron: comparison with experiment.

Figure 11 : The bb̄-dijet cross-section as a function of the invariant mass of b-jets at
√

S = 1.96
TeV, |ηb,b̄| < 1.2.

The contributions: R+R→ b + b̄ (dash), Qq + Q̄q → b + b̄ (dash-dot), sum of them
both (solid).
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bb̄-pair production at Tevatron: comparison with experiment.

Figure 12 : The bb̄-dijet cross-section as a function of the azimuthal angle between b-jets at√
S = 1.96 TeV, |ηb,b̄| < 1.2.

The contributions: R+R→ b + b̄ (dash), Qq + Q̄q → b + b̄ (dash-dot), sum of them
both (solid).
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bb̄-pair production at Tevatron: comparison with experiment.

Figure 13 : The bb̄-dijet cross-section as a function of the leading jet transverse energy for b-jets at√
S = 1.96 TeV, |ηb,b̄| < 1.2.

The contributions: R+R→ b + b̄ (dash), Qq + Q̄q → b + b̄ (dash-dot), sum of them
both (solid).



Recent results: DD̄ and DD production

DD̄ and DD production

Experimental data: R. Aaij et. al., LHCb Collaboration, JHEP 1206, 141.

DD production: D0D0, D0D+, D+D+, D0Ds

DD̄ production: D0D̄0, D0D−, D+D−

Theoretical investigations:

A. Szczurek et. al., arXiv:1505.04067, 2015. Study in terms of double parton scattering

Parton subprocesses in PRA:

R + R → c + c̄ ⇒ DD̄-pair production
R + R → g + g ⇒ both DD̄ and DD-pair production



Recent results: DD̄ and DD production

DD̄-pair production.



Recent results: DD̄ and DD production

DD̄-pair production.



Recent results: DD̄ and DD production

DD̄-pair production.



Summary and Conclusions

Summary

The good description of dijet azimuthal decorrelations is achieved just in the LO
parton Reggeization approach, without any ad-hoc adjustments or input
parameters, whereas in the collinear parton model, such a degree of agreement
calls for NLO and NNLO corrections and complementary initial-state radiation
effects and ad-hoc nonperturbative transverse momenta of partons.

In the case of bb̄-pair production we find a good agreement with experimental
data on azimuthal angle correlations at the whole range of angles instead of CPM.
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The advantages of the Parton Reggeization Approach

1. The gauge invariance of the initial off-shell quarks is held only in the Parton
Reggeization Approach.

Cqg, b, µ
QR, a (q1, q2, k1, k2) =

1
2

g2
s

q−2
2
√

t2
Ū(k1)

[
γ

(−)
σ (q1, k1 − q1)t−1 ×

×
(
γµνσ(k2,−q2)n+

ν + t2
n+
µn+

σ

k+
2

)[
T a,T b]− γ+(q̂1 − k̂2)−1γ

(−)
µ (q1,−k2)T aT b −

−γµ(q̂1 + q̂2)−1γ
(−)
σ (q1, q2)n+

σT bT a +
2q̂1n−µ

k−1

(
T aT b

k−2
−

T bT a

q−2

)]
,

2. The number of matrix elements obtained using the prescription of the kt -factorization

approach for off-shell gluon polarization vectors εµ(qT ) = qTµ/
√
~q2

T has the incorrect
parton model limits q1T , q2T → 0, unlike the ones calculated in the Parton
Reggeization Approach.

Cµ,gRR = εα(q1T )εβ(q2T )gαβµ(q1, q2, q1 + q2), Cqq̄
RR = εα(q1T )εβ(q2T )Mαβ(gg → qq̄)

Cgg,µν
RR 6= εα(q1T )εβ(q2T )Mµν

αβ(gg → gg), Cgq,µ
RQ 6= εα(q1T )Mµ

α(gq → gq)

3. In the framework of Parton Reggeization Approach the NLO calculations can be
correctly implemented.
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Thank you for attention!
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