25-Jun-2013

Rare decays at LHCb

Nigel Watson / Univ. Birmingham on behalf of the LHCb Collaboration

The XXI International Workshop High Energy Physics and Quantum Field Theory June 23 – June 30, 2013 Saint Petersburg Area, Russia

Outline

- Motivation
- FCNC in b and c decays
- Rare τ decays

Rare and very rare decays

- Classification
- Global summary plot of BRs/searches, e.g. HFAG arXiv:1207.1158
- Very rare → Indrek Sepp, parallel session A, this afternoon
 Includes first observation of B_s→µ⁺µ⁻

- Single-arm spectrometer, fully instrumented in the forward region (2< η <5)
- Excellent vertex resolution from Si strip detectors around IP (VELO)
- Particle identification from RICH detectors, calorimeter and muon systems
- Primary physics programme is stress testing the Standard Model
 - Precise measurements
 - Indirect searches for physics beyond SM in decays of b, c hadrons and τ decays
- Rare b decays a very exciting area for LHCb
- $\Delta B = \Delta S = 1$ transitions are FCNC processes, highly suppressed in SM
 - → highly sensitive area for new physics to manifest itself (we hope!)

SM

Rare decays

- Using heavy flavour measurements, two routes to finding physics beyond the SM
- CP violation
 - Clearly must exist
- Rare decays
 - FCNC
 - Only via loop, box diagrams as forbidden at tree level
 - Br typically ~10⁻⁶ or less
- New physics participant may enter in loops as virtual particles
- Indirect probe accesses higher energy scale than direct searches
 - Convenient detection mechanism
 - Not so straightforward to identify the origin modelling

- FCNC themselves are highly attractive for experiments
 - Wide variety of angular observables accessible in 4 particle final states
 - Experimental signatures
 - Clean
 - Low backgrounds
- New physics may manifest itself in
 - Rate
 - Angular distributions
 - Asymmetries
- Predictions well-established
 - Varying degrees of theoretical uncertainty
 - Hadronic form factors

Rare decays: recent results

- All published or submitted to journal/arxiv (most recent: 11th June)
 - Use 1/fb of LHCb data sample (~1/3 of our total from Run I)
- $b \rightarrow s\ell^+\ell^- B^0 \rightarrow K^* \mu\mu$: "flagship analysis" use this channel to illustrate angular analysis, amplitudes
 - $B^0 \rightarrow K^* \mu\mu$: angular analysis and differential branching fractions
 - arXiv:1304.6325 23 Apr 2013 First multidimensional angular analysis
 - $B^0 \rightarrow K^* \mu \mu$: CP asymmetry
 - PRL110 (2013) 031801
 - $B_s \rightarrow \phi \mu \mu$: Angular analysis and differential branching fraction
 - <u>arXiv:1305.2168</u> 1 May 2013 First angular analysis
 - $B^0 \rightarrow K^*$ ee: Differential in q² branching fraction
 - <u>JHEP 05 (2013) 159</u> 2 May 2013 First evidence n low q2 region
 - $\Lambda_b \rightarrow \Lambda \mu \mu$: Differential in q² branching fraction
 - <u>arXiv:1306.2577</u> 11 Jun 2013 First at LHC, baryons
- Search for $D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$ and $D^+_{(s)} \rightarrow \pi^- \mu^+ \mu^+$ decays
 - <u>arXiv:1304.6365</u> 25 Apr 2013 **Factor ~50 improvement in limit**
- Searches for LFV and baryon number violation in τ decays
 - <u>arXiv:1304.4518</u>, to appear in <u>Phys. Lett. B 724 (2013) xx</u> 21 May 2013 Last week

Rare decays: recent results

- Slightly less recent, but have to draw line...
- Search for the decay $B^{0}{}_{s} \rightarrow D^{*\mp}\pi^{\pm}$
 - LHCB-PAPER-2012-056 13 Mar 2013
- First observation of the decay $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
 - JHEP 12 (2012) 125 16 Dec. 2012
- Search for the rare decay $K^0_{S} \rightarrow \mu^+ \mu^-$
 - JHEP 01 (2013) 090 19 Sep. 2012 Limit is a factor ~30 below the previous measurement.
- Older $b \rightarrow s\ell^+\ell^-$
 - $B^0 \rightarrow K^* \mu \mu$ isospin asymmetry: <u>JHEP07(2012)133</u>, ...

- background from B⁰ mass upper sideband
- Choice of the input variables to avoid biases in $q^2 = m^2(\mu\mu)$, angles, mass
- Loose selection in B⁰ candidate vertex fit, flight dist., invariant mass, impact params., p_T, polar angle
- Final selection from BDT using decay time, flight direction, track/vertex quality, PID of daughters, p_T
- Measure differential BF in each a^2 bin. relative to $B^0 \rightarrow K^{*0} J/\psi$

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = \frac{1}{q_{\max}^2 - q_{\min}^2} \frac{N_{\mathrm{sig}}}{N_{K^{*0}J/\psi}} \frac{\varepsilon_{K^{*0}J/\psi}}{\varepsilon_{K^{*0}\mu^+\mu^-}} \times \mathcal{B}(B^0 \to K^{*0}J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

- Relative efficiencies from MC (event weights, avoids assumption of $K^*\mu^+\mu^-$ angular distribution

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$ branching fraction

- 4 particle final state
- 3 decay angles

 θ_K and θ_ℓ definitions for the B^0 decay

ϕ definition for the B^0 decay

 μ^+

- Branching fraction measured differential in q² and 3 decay angles
- Limited statistics: $\phi + \pi$ if $\phi < 0$
- Parametric in 4 angular observables
 F_L, A_{FB}, S₃, A₉, from CP asymmetries and averages of decay amplitudes
- Theoretical uncertainties smaller in angular analysis (hadronic form factors)

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\hat{\phi}} \quad \boldsymbol{\propto}$$

The first simultaneous fit to all angles

$$\begin{bmatrix} F_{\rm L} \cos^2 \theta_K + \frac{3}{4} (1 - F_{\rm L}) (1 - \cos^2 \theta_K) & - \\ F_{\rm L} \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) & + \\ \frac{1}{4} (1 - F_{\rm L}) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) & + \\ S_3 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} & + \\ \frac{4}{3} A_{\rm FB} (1 - \cos^2 \theta_K) \cos \theta_\ell & + \\ A_9 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \end{bmatrix}$$

All experiments consistent with SM CDF: Phys. Rev. Lett. 108 081807 Babar: Phys. Rev. D. 73. 092001 Belle: Phys. Rev. Lett. 103 (2009) 171801 ATLAS: ATLAS-CONF-2013-038 CMS: CMS-PAS-BPH-11-009

SM predictions

Bobeth,Hiller,van Dyk,Wacker, <u>JHEP 01 (2012) 107</u> Beneke,Feldmann,Seidel,<u>Eur.Phys.J.C41(2005) 173</u> Ali,Kramer,Zhu, <u>Eur.Phys.J.C47(2006) 625</u>

- A_T^{Re} and A_T^2

- theoretically cleaner
- $S_3 = \frac{1}{2} (1-F_L) A_T^2$

•
$$A_{FB} = 3/4 (1-F_L) A_T^{Re}$$

$B^0 \rightarrow K^* \mu^+ \mu^- CP$ asymmetry

$$\mathcal{A}_{CP} = \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-) - \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \mu^+ \mu^-) + \Gamma(B^0 \to K^{*0} \mu^+ \mu^-)} \overset{\text{S}}{\prec} \begin{array}{c} 0.2 \\ 0.1 \end{array}$$
LHC

- ~900 signal decays
- Systematics from non-cancelling sources of asymmetry accounted for:
 - Kinematics of signal/normalisation modes
 - Detection of μ^+, μ^-
 - Mass fit model
- A_{CP} measured in simultaneous fit in 6 q² bins, to 8 invariant mass distributions:
- $B^0 \to K^{*0} \mu^+ \mu^-, B^0 \to J/\psi K^{*0}$
- B^0, \bar{B}^0
- Two magnet polarities

• Most precise to date

 $\mathcal{A}_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.072 \pm 0.040 \pm 0.005.$

- Consistent with Belle, BaBar ☺
- SM: \mathcal{A}_{CP} up to to 10⁻³) \otimes
- NP models, e.g. up to 0.15

[Alok,Datta,Dighe,Duraisamy,Ghosh,London,JHEP11(2011)122]

$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$ branching fraction

- Selection ~ $B_s^0 \to K^{*0} \mu \mu$, BDT combining kinematic, PID, topological variables
 - Signal proxy $B_s^0 \to J/\psi \phi (J/\psi \to \mu^+ \mu^-)$ background $B_s^0 \to \phi \mu^+ \mu^-$ (mass sidebands)
 - Extended maximum liklihood fit
 - signal: double Gaussian function, parameters from proxy decays
 - Background: exponential
- Measure differential BF in 6 q² bin, relative to $\mathcal{B}(B_s^0 \to J/\psi \phi)$

$$\frac{\mathrm{d}\mathcal{B}(B^0_s \to \phi\mu^+\mu^-)}{\mathrm{d}q^2} = \frac{1}{q^2_{\mathrm{max}} - q^2_{\mathrm{min}}} \frac{N_{\mathrm{sig}}}{N_{J/\psi\phi}} \frac{\epsilon_{J/\psi\phi}}{\epsilon_{\phi\mu^+\mu^-}} \mathcal{B}(B^0_s \to J/\psi\phi) \mathcal{B}(J/\psi \to \mu^+\mu^-)$$

- Relative efficiencies from MC (in each q² bin)
- Most precise measurement of this BR to date

$B^{0} \rightarrow \phi \mu^{+} \mu^{-}$ branching fraction

- Sum over 6 bins, converted to absolute BF
- Using LHCb $\mathcal{B}(B^0_s \to J/\psi \phi) = (10.50 \pm 1.05) \times 10^{-4}$
 - Phys. Rev. D87 (2013) 072004
- Measured

- $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (7.07 \, {}^{+0.64}_{-0.59} \pm 0.17 \, \pm 0.71) \times 10^{-7}$

- SM prediction (14.5-19.2) x 10⁻⁷
 - Uncertainties from form factors ~20-30%

Geng&Liu, J.Phys.G29(2003)1103 Erkol&Turan, Eur.Phys.J.C25(2002)575 U. Yilmaz, Eur.Phys.J.C58(2008)555 Chang&Gao, Nucl.Phys.B845(2011)

$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$ branching fraction

- Sum over 6 bins, converted to absolute BF
- Using LHCb $\mathcal{B}(B^0_s \to J/\psi \phi) = (10.50 \pm 1.05) \times 10^{-4}$
 - Phys. Rev. D87 (2013) 072004
- Measured

- $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = (7.07 \, {}^{+0.64}_{-0.59} \pm 0.17 \, \pm 0.71) \times 10^{-7}$

- SM prediction (14.5-19.2) x 10⁻⁷
 - Uncertainties from form factors ~20-30%

Geng&Liu, J.Phys.G29(2003)1103 Erkol&Turan, Eur.Phys.J.C25(2002)575 U. Yilmaz, Eur.Phys.J.C58(2008)555 Chang&Gao, Nucl.Phys.B845(2011)

$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$ angular analysis

- Parametrise angular distributions in terms of 4 observables: F_L, A₆, S₃, A₉
- Simulation used to correct for angular acceptance
 - Dominates systematics

- Integrate over 2 angles
 - 2d max. liklihood fits in each angle and B⁰_s mass
 - No A_{FB} as not flavour tagged
 - Repeated in 6 q² bins

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_K} = \frac{3}{4}(1-F_{\mathrm{L}})(1-\cos^2\theta_K) + \frac{3}{2}F_{\mathrm{L}}\cos^2\theta_K$$
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2 \mathrm{d}\cos\theta_\ell} = \frac{3}{8}(1-F_{\mathrm{L}})(1+\cos^2\theta_\ell) + \frac{3}{4}F_{\mathrm{L}}(1-\cos^2\theta_\ell) + \frac{3}{4}A_6\cos\theta_\ell$$
$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2 \mathrm{d}\Phi} = \frac{1}{2\pi} + \frac{1}{2\pi}S_3\cos 2\Phi + \frac{1}{2\pi}A_9\sin 2\Phi$$

$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$: Angular analysis

$B^0 \rightarrow K^*e^+e^-$ branching fraction

- Low q² region more sensitive to photon polarisation
 - Extend reach using electrons
 - Not previously observed at low q²
- Use q² region 30-1000 MeV/c²
- Experimentally hard below 30 MeV/c²
 - Multiple scattering, decay plane definition degraded
 - Background from increases rapidly $B^0 \rightarrow K^{*0}\gamma$
- Account for bremmstrahlung upstream of magnet to avoid biases
- Many sources of background identified
 - Dominated by $B \rightarrow K^* \eta \ (\eta \rightarrow \gamma e^+ e^-)$
 - Not peaking in signal region
- Use BDT to enhance selection

 Partially reconstructed backgrounds well-modelled

$B^{0} \rightarrow K^{*}e^{+}e^{-}$ branching fraction

- Normalised to $B^0 \rightarrow J/\psi \, (e^+e^-) K^{*0}$
- Signal resolution, and background type/rate depend on hardware trigger
- 2 mutually exclusive trigger selections
- Measurement limited by sample size
- 4.6σ significance from background

- Agrees with SM ${\cal B}$ prediction $\,\,$ $\,\,$ $\,\,$ $\,\,$
 - $-(2.43^{+0.66}_{-0.47}) \times 10^{-7}$

[Jager & Camalich, JHEP 05 (2013) 043]

[Y. Grossman & Pirjol, JHEP 06 (2000) 029]

$B^{0} \rightarrow K^{*}e^{+}e^{-}$ branching fraction

- Normalised to $B^0 \rightarrow J/\psi (e^+e^-) K^{*0}$
- Signal resolution, and background type/rate depend on hardware trigger
- 2 mutually exclusive trigger selections
- Measurement limited by sample size
- 4.6σ significance from background

- Agrees with SM ${\cal B}$ prediction $\,\,$ $\,\,$ $\,\,$ $\,\,$ $\,\,$
 - $(2.43^{+0.66}_{-0.47}) \times 10^{-7}$

[Jager & Camalich, JHEP 05 (2013) 043]

[Y. Grossman & Pirjol, JHEP 06 (2000) 029]

$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$ branching fraction

- First measurement at LHC
- Extends the b \rightarrow s FCNC study into baryonic sector
- Non-zero initial spin gives access to helicity structure not available in mesonic state
- Theory less-well developed than in meson case
 - Less experimental data
- Selection
 - Final state has long lived $\Lambda,$ so consider behaviour of decay products within/beyond acceptance of our vertex detector
 - ANN selection, kinematic and topological observables
 - Distinctive kinematics allow us to not require PID except μ (gains efficiency)
- Measured relative to $\Lambda_b^0 \to J/\psi \Lambda$ ($J/\psi \to \mu^+\mu^-$)
 - Signal for training from MC
 - Training background from upper mass sideband of Λ_b^0 mass spectrum

300

250

200

150

100

50

0

Candidates per 5 MeV/c²

28

- Backgrounds
 - $B^0 \to J/\psi K_{\rm s}^0 \ (K_{\rm s}^0 \to \pi^+\pi^-)$

 $M(\Lambda\mu^+\mu^-)$ [GeV/c²]

- Broad shape, peaks below Λ_b^0
- Account for in fit (shape from MC)
- For normalisation mode

 $\Lambda_h^0 \to J/\psi$.

 Double Gaussian, common mean, relative fractions from MC, otherwise free Backgrounds

5.4

- $B^0 \rightarrow K^0_{\rm s} \mu^+ \mu^-$ with $\pi \rightarrow$ p mis-id

5.6

5.7

 $M(\Lambda\mu^+\mu^-)$ [GeV/c²]

5.8

- Estimate rate negligible

5.5

- For signal mode
 - Double Gaussian, parameters from normalisation mode data

arXiv:1306.2577

30

• Significance from fits

SM: Detmold, Lin, Meinel, Wingate, Phys.Rev.D87(2013)074502

 $\mathcal{B}(\Lambda_b^0 \to \Lambda \mu^+ \mu^-) = (0.96 \pm 0.16 \,(\text{stat}) \pm 0.13 \,(\text{syst}) \pm 0.21 \,(\text{norm})) \times 10^{-6} \, q^2 \,[\text{GeV}^2/c^4]$

- Consistent with 1st observation of this mode by CDF
- Significant signal so far observed for $q^2 \, > \, m_{J\!/\!\psi}^2 \,$
- Upper limits set in lowest 3 q² bins

- Consistent with SM
- Clearly statistics limited
 - but we have 2x already under study
- New theoretical activity welcome ☺
- Full angular analysis coming...

Rare charm searches for $D^+_{(s)} \rightarrow \pi^{\pm} \mu^{+} \mu^{\mp}$

 W^+

- FCNC $c \rightarrow u \mu^+ \mu^-$ decays
- Large GIM suppressions
- SM B(c→u μ⁺μ⁻)~(1-3)x10⁻⁹
- More suppressed than b case as no t quarks $D^+ \left\{ \begin{array}{c} c \\ \overline{d} \end{array} \right\}$
- Can be enhanced by non-SM contributions
 - Weak annihilation
 - LNV decay forbidden in SM as required exotic e.g. Majorana v

Rare charm searches for $D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$

- D⁺_(s) reconstructed from 3 good tracks, vertex quality, D⁺_(s) flight direction, ...
- BDT classifies candidates as signal/background using topological and kinematic observables
 - Training Signal is MC $D^+ \rightarrow \pi^+ \mu^+ \mu^-$
 - Background $D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$ mass sidebands
 - Independent 2010 data, 36/pb, not use elsewhere in analysis
- Dominant background is $D^+_{(s)} \rightarrow \pi^+ \pi^+ \pi^-$
 - Peaking background extracted from fit with looser PID and alternative mass hypothesis
- Normalisation channel $D^{+}_{(s)} \rightarrow \phi (\mu^{+}\mu^{-})$ pi
 - Also used as proxy for pid study, optimmise significance by fitting...
- Analysis carried out in
 - 5 bins of $m(\mu^+\mu^-)$ bins for FCNC
 - 4 bins of $m(\mu^+\pi^-)$ for LNV) search separate above/below resonance regions

Rare charm searches for D⁺(s)

1850

Candidates / (5 MeV/ c^2)

30

20

10

Limits for rare charm D⁺(s) $\rightarrow \pi^+ U^+ U^-_{[arXiv:1304.6365]}$ 10^{4} LHCb INIe V/C signal LHCb 10^{3} Peaking ρ/ω High-m($\mu^+\mu^-$) Low-m($\mu^+\mu^-$) η Φ 10^{2} background andidates 10

200

400

600

800

1000

1200

400

1600

 $m(\mu^+\mu^-)$ [MeV/ c^2]

1800

Look for new physics away from known resonance regions

1950

2000 $m(\pi^{+}\mu^{+}\mu^{-})$ [MeV/c²]

low and high mass regions

1900

- No excess signal observed
- Limits set at 90 (95) %CL (extrapolate to total *B* using phase space model)

 $\rightarrow \pi^+ \mu^+ \mu^-) < 7.3 \, (8.3) \times 10^{-8}$ $\mathcal{B}(D_s^+ \to \pi^+ \mu^+ \mu^-) < 4.1 \, (4.8) \times 10^{-7}$

~50x stronger than previous

LFV and baryon number in τ decays

- Charged Lepton Flavour Violation and Baryon Number Violation would be clear signals of BSM physics
- $\boldsymbol{\tau}$ are an ideal place for these studies
 - Large cross-section, inclusive ~ $80\mu b$ at LHC
- SM predictions for LFV, \mathcal{B} <10⁻⁴⁰
 - We use $\tau^- \to \mu^- \mu^+ \mu^-$
 - Current best limit (Belle) $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 2.1 \times 10^{-8}$ @ 90%CL
- BNV
 - Studied in modes $\tau^- \to \bar{p} \mu^+ \mu^-\,$ and $\,\tau^- \to p \mu^- \mu^-$
 - $|\Delta(B-L)| = 0$ in most models (angular momentum)
 - LFV follows
 - These modes never previously studied
- Calibration and normalisation mode $D_s^- \to \phi \pi^- \ (\phi \to \mu^+ \mu^-)$
- Discuss LFV in $\tau^- \to \mu^- \mu^+ \mu^-$ then BNV in $\tau^- \to \bar{p} \mu^+ \mu^-$

LFV in $\tau \rightarrow \mu\mu\mu$ decays

Selection

- Loose cut-based selection
- Blinded mass windows $\sim 3\sigma_m$ around m_τ
- Separate signal from background using 2 liklihoods & invariant mass
 - M_{3body}
 - 3 body decay topology
 - M_{PID}
 - Muon identification for 3 candidates

- Decay vertex displaced from primary vertex
 - 3 good quality tracks, $p_T > 0.3 GeV/c$
 - Pointing of 3-track momentum consistent with flight direction (low Q-values)
- Decay time ~heavy meson or $\boldsymbol{\tau}$
- Invariant mass = $m_{\tau} \pm 20 \text{ MeV/c}^2$

- m_τ

LFV in $\tau \rightarrow \mu\mu\mu$ decays: M_{3body} and M_{PID}

- Topology: vertex separation and pointing
- Kinematics: p_T of τ
- Trained using MC for signal and background
 - Fractions of heavy quark backgrounds scaled to $~D_s^- \! \to \phi(\mu^+\mu^-)\pi^-~$ data
 - Calibrated with data
 - Binning iterated to optimise

- Quantify each of 3 particles compatibility with m (RICH, CALO, MUON)
- Lowest value of 3 particles
- Calibrated using $J/\psi \rightarrow \mu^+\mu^-$ data
- Lowest M_{3body} and M_{PID} bins
 - Do not improve expected sensitivity
 - →removed

LFV in $\tau \rightarrow \mu\mu\mu$ decays: invariant mass

[arXiy:1304.4518, to appear in Phys. Lett. B 724 (2013) xx]

- Fit also gives yield of normalisation mode
- Additional mass cuts to eliminate specific backgrounds

Signal

- Shape from 2 Gaussian fit (common mean) to $D_s^- \rightarrow \phi(\mu^+\mu^-)\pi^-$ data
- Narrower Gaussian accounts for ~70% of yield
- Widths from signal MC scaled by data/MC for $D_s^- \rightarrow \phi(\mu^+\mu^-)\pi^-$

LFV in $\tau \rightarrow \mu\mu\mu$ decays: backgrounds

- m(µ⁻µ⁺µ⁻) [MeV/c²]
 Dominant background is combinatorial in final selection
 - Linear functions
- Peaking backgrounds
 - 3 real muons $D_s^- \rightarrow \eta(\mu^+\mu^-\gamma)\mu^-\bar{\nu}_\mu$
 - Irreducible contribution
 - Reject if any μμ mass<450MeV/c2
 - Fit remaining ~20% of this as linear

- *m*(µ⁻µ⁺µ⁻) [MeV/c²]
 Fit to data sidebands to estimate background in signal box
- Strong peaking background from 3 particles mis-identified as muons (lowest M_{PID} bin)

LFV in $\tau \rightarrow \mu\mu\mu$ decays: backgrounds Showing highest M.: [arXiv:1304.4518, to appear in Phys. Lett. B 724 (2013) xx]

1.3 MeV/*c*²

Candidates

1820

1840

1860

- m(µ⁻µ⁺µ⁻) [MeV/c²]
 Dominant background is combinatorial in final selection
 - Linear functions
- Peaking backgrounds
 - 3 real muons $D_s^- \rightarrow \eta(\mu^+\mu^-\gamma)\mu^-\bar{\nu}_\mu$
 - Irreducible contribution
 - Reject if any μμ mass<450MeV/c2
 - Fit remaining ~20% of this as linear

Fit to data sidebands to estimate background in signal box

1900

1880

Showing

highest M_{3body}

lowest M_{PID} bin

1920

1940

- Strong peaking background from 3 particles mis-identified as muons (lowest M_{PID} bin)
- Refit with $K^-\pi^+\pi^+$ hypothesis
- Justifies exclusion of lowest M_{PID} bin

LFV in $\tau \rightarrow \mu\mu\mu$ decays: backgrounds

 $\begin{aligned} \mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) \\ = & \left[\mathcal{B}(D_s^- \to \phi(\mu^+ \mu^-) \pi^-) \times \frac{f_\tau^{D_s}}{\mathcal{B}(D_s^- \to \tau^- \bar{\nu}_\tau)} \right] \times \frac{\epsilon_{\text{cal}}^{\text{REC\&SEL}} \times \frac{\epsilon_{\text{cal}}^{\text{TRIG}}}{\epsilon_{\text{sig}}^{\text{REC\&SEL}}} \times \frac{\delta_{\text{cal}}^{\text{TRIG}}}{\epsilon_{\text{sig}}^{\text{TRIG}}} \right] \\ = & \alpha \times N_{\text{sig}} \,, \end{aligned}$

 $= \alpha \times N_{\rm sig}$,

44

Normalisation for $\tau \rightarrow \mu\mu\mu$, $p\mu^+\mu^-$ decays

		$\tau^- \to \mu^- \mu^+ \mu^-$	$\tau^- \to \bar{p}\mu^+\mu^-$	$\tau^- \to p \mu^- \mu^-$		
	${\cal B}(D^s\to\phi(\mu^+\mu^-)\pi^-)$	$(1.33 \pm 0.12) \times 10^{-5}$				
	$f_{ au}^{D_s}$	0.78 ± 0.05 0.0561 ± 0.0024				
	$\mathcal{B}(D_s^- \to \tau^- \bar{\nu}_\tau)$					
	$\epsilon_{\rm cal}^{\rm REC\&SEL}/\epsilon_{\rm sig}^{\rm REC\&SEL}$	1.49 ± 0.12	1.35 ± 0.12	1.36 ± 0.12		
	$\epsilon_{\rm cal}^{\rm TRIG}/\epsilon_{\rm sig}^{\rm TRIG}$	0.753 ± 0.037	1.68 ± 0.10	2.03 ± 0.13		
	$\epsilon_{\rm cal}^{\rm PID}/\epsilon_{\rm sig}^{\rm PID}$	n/a	1.43 ± 0.07	1.42 ± 0.08		
	$N_{\rm cal}$	48076 ± 840	8 1 4 5	± 180		
	α	$(4.34 \pm 0.65) \times 10^{-9}$	$(7.4 \pm 1.2) \times 10^{-8}$	$(9.0 \pm 1.5) \times 10^{-8}$		
B	$(\tau^- \to \mu^- \mu^+ \mu^-)$					
	$= \mathcal{B}(D_s^- \to \phi(\mu^+ \mu))$	$\frac{EL}{EL} imes rac{\epsilon_{cal}^{TRIG}}{\epsilon_{sig}^{TRIG}} imes rac{N_{sig}}{N_{cal}}$				

Limits							
$\mathcal{M}_{ ext{PID}}$	$\mathcal{M}_{ m 3body}$	Expected	Observed				
	-0.48 - 0.05	345.0 ± 6.7	409	- O 0.9 E Expected under			
	0.05 - 0.35	83.8 ± 3.3	68	0.8 background only			
0.43-0.6	0.35 - 0.65	30.2 ± 2.0	35				
	0.65 - 0.74	4.3 ± 0.8	2	Observed under			
	0.74 - 1.0	1.4 ± 0.4	1	background only			
	-0.48 - 0.05	73.1 ± 3.1	64	by nothesis			
	0.05 - 0.35	18.3 ± 1.5	15				
0.6 - 0.65	0.35 - 0.65	8.6 ± 1.1	7	0.3			
	0.65 - 0.74	0.4 ± 0.1	0	0.2			
	0.74 - 1.0	0.6 ± 0.2	2	0.1			
	-0.48 - 0.05	45.4 ± 2.4	51				
	0.05 - 0.35	11.7 ± 1.2	6	6 8 10 12			
0.65 - 0.725	0.35 - 0.65	5.3 ± 0.8	3	$[\underline{arXiv:1304.4518}, BR(\tau \to \mu^+ \mu^- \mu^-)] \times 10$			
	0.65 - 0.74	0.8 ± 0.2	1	to appear in <u>Phys. Lett. B 724 (2013) xx</u>]			
	0.74 - 1.0	0.4 ± 0.1	0	No exercise signal region set			
	-0.48 - 0.05	44.5 ± 2.4	62	• NO excess in signal region, set			
	0.05 - 0.35	10.6 ± 1.2	13	90 (95)% CL			
0.725 - 0.86	0.35 - 0.65	7.3 ± 1.0	7				
	0.65 - 0.74	1.0 ± 0.2	2	$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 80 \ (9.8) \times 10^{-8}$			
	0.74 - 1.0	0.4 ± 0.1	0	$\boldsymbol{\omega}(\boldsymbol{\gamma} \ \boldsymbol{\mu} \ \boldsymbol{\mu} \ \boldsymbol{\mu} \ \boldsymbol{\mu}) < 0.0 (0.0) \times 10$			
	-0.48 - 0.05	5.9 ± 0.9	7				
	0.05 - 0.35	0.7 ± 0.2	1	 Phase space decay model 			
0.86 - 1.0	0.35 - 0.65	1.0 ± 0.2	1	Oeren etible with tighter Delle l'wit			
	0.65 - 0.74	0.5 ± 0.0	0	 Compatible with tighter Belle limit 			
	0.74 - 1.0	0.4 ± 0.1	0	 1st limit set at hadron collider 			

Conclusions

- Rare decays are one of the best ways to search for physics beyond the Standard Model
- LHC provides the enabling b production rates
- LHCb are exploiting these to stress-test the SM and relatives

- Several of measurements presented are world's best ⁽²⁾
- The SM is (so far) consistent with the data $\overline{\ensuremath{\mathfrak{S}}}$
- In all cases we have 2x more data already under study
- Still chance for discovery (discoveries?)

Conclusions

- Rare decays are one of the best ways to search for physics beyond the Standard Model
- LHC provides the enabling b production rates
- LHCb are exploiting these to stress-test the SM and relatives

*** END OF RUN 1 *** No beam for a while. Access required time estimate: ~2 years

Phone:77600

AFS: 50ns_1374_1368_0_1262_144bpi12inj

Comments (04–Apr–2013 18:48:13)

Still chan
 More data coming soon

QFTHE

49

best 🙂

r study

Conclusions

- Rare decays are one of the best ways to search for physics beyond the Standard Model
- LHC provides the enabling b production rates
- LHCb are exploiting these to stress-test the SM and relatives

- Several of measurements presented are world's best ⁽²⁾
- The SM is (so far) consistent with the data $\overline{\ensuremath{\mathfrak{S}}}$
- In all cases we have 2x more data already under study
- Still chance for discovery (discoveries?)

Backup

[arXiv:1304.6365]

CĽ **LHCb** 0.8 0.6 0.4 0.2 6 $B(D^+ \to \pi^+ \mu^+ \mu^-) [10^{-8}]$

Figure 5: Observed (solid curve) and expected (dashed curve) CL_s values as a function of $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$. The green (yellow) shaded area contains the $\pm 1\sigma$ ($\pm 2\sigma$) interval of possible results compatible with the expected value if only background is observed. The upper limits at the 90% (95%) CL are indicated by the dashed (solid) line.

20

(d)

0.1E

0 -0.1E

-0.2

-0.3E -0.4 E -0.5^E

5

53

B⁰ $\rightarrow \phi \mu^+ \mu^-$ branching fraction

Search for decay $B^0_s \rightarrow D^{*\mp} \pi^{\pm}$

• Not covered today

First observation of the decay $B + \rightarrow \pi + \mu + \mu -$

• Not covered today

Search for the rare decay $D^0 \rightarrow \mu^+ \mu^-$

• Not covered today, see Indrek

$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 6.2 \ (7.6) \times 10^{-9}$ at 90% (95%) confidence level

