

Study of single top quark production with the CMS detector

<u>Natalia Tsirova</u>

D.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University

for the CMS collaboration

QFTHEP 2013 25 June

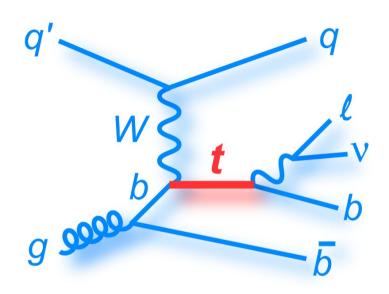
Outline

- Single top processes and motivation
- t-channel measurements
 - → Cross section
 - ➤ Charge asymmetry
- Associated tW production
- Summary

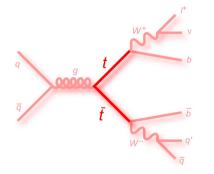
Single top

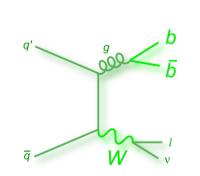
Single top quark production:

N. Kidonakis: PRD 83, 091503 (2011) PRD 81, 054028 (2010) PRD 82, 054018 (2010)	s-channel ^q ^{w+} ^g	t-channel q' y g g g b b	tW production b g bg bt
LHC @ 7 TeV	4.59 pb	64.57 pb	15.6 pb
LHC @ 8 TeV	5.6 pb	87.8 pb	22.4 pb


Single top features:

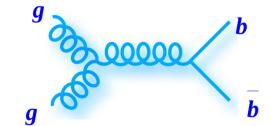
- Cross section proportional to $|V_{tb}|^2 =>$ allows direct measurement
- Wtb vertex enables tests of V–A structure
- Test of b-quark structure function
- Sensitive to new physics, e.g. anomalous couplings, 4th generation, W', H⁺


3


t-channel cross section (7 TeV)

JHEP12(2012)035

Main backgrounds:



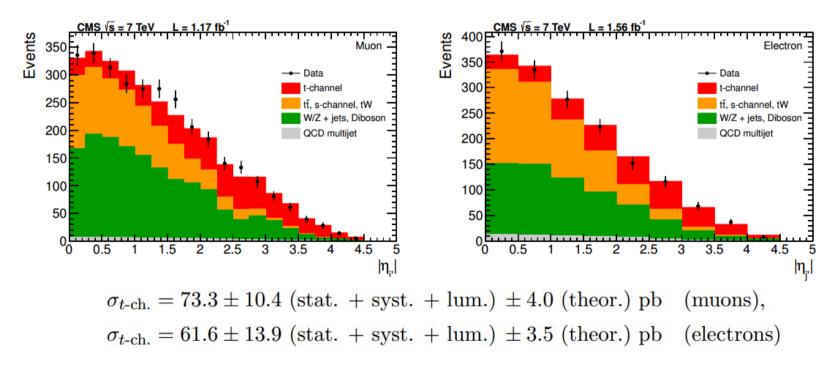
Data: 1.17 / 1.56 fb⁻¹ (muon / electron)

Event selection

- Single isolated lepton (muon or electron)
 - → $p_{\rm T}$ >20 GeV/c |η|<2.1 (muon)
 - → $p_{\rm T}$ >30 GeV/c |η|<2.5 (electron)
- One central **b**-jet from top decay
- Additional light-quark jet often in forward region
- Additional **b**-jet can be present (softer $p_{_{T}}$)
- Cut to reduce QCD multijet events:
 - ➤ MtW >40 GeV/c² (muon),
 - → MET>35 GeV (electron)

QCD

top pairW+jetsTwo approaches:template fit ($|\eta_j|$ analysis)multivariate analyses (BDT & NN)

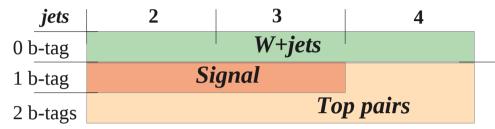

t-channel cross section (7 TeV)

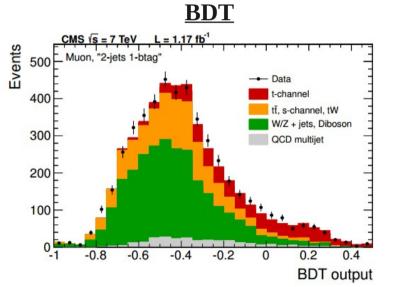
 $|\eta_{i'}|$ analysis: likelihood fit to $|\eta_{i'}|$ distribution (pseudorapidity of light jet)

• Specific signal region: 2 jets 1 b-tag category 130 GeV/c < TopMass < 220 GeV/c

• Data-driven W+jets modelling:

yield and $|\eta_{i'}|$ -template extracted from data from sideband region of TopMass

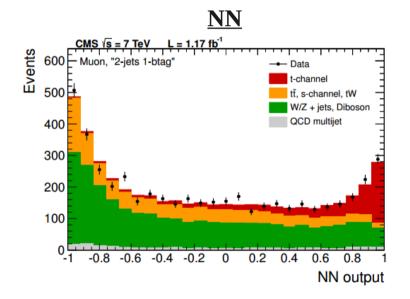

Combination:


 $\sigma_{t-ch.} = 70.0 \pm 6.0 \text{ (stat.)} \pm 6.5 \text{ (syst.)} \pm 3.6 \text{ (theor.)} \pm 1.5 \text{ (lum.) pb}$

t-channel cross section (7 TeV)

JHEP12(2012)035

Multivariate analyses: use multivariate methods (BDT, NN) to obtain a powerful discriminator between signal and background processes


The measured cross section:

 $\sigma_{t-ch.} = 66.6^{+7.0}_{-6.6} \text{ (stat. + syst. + lum.)}^{+6.4}_{-3.5} \text{ (theor.) pb} \quad (\text{muons}),$ $\sigma_{t-ch.} = 66.4^{+8.4}_{-7.9} \text{ (stat. + syst. + lum.)}^{+5.4}_{-5.4} \text{ (theor.) pb} \quad (\text{electrons})$ **Combination:**

 $\sigma_{t-\text{ch.}} = 66.6 \pm 4.0 \text{ (stat.)} \pm 3.3 \text{ (syst.)}_{-3.3}^{+3.9} \text{ (theor.)} \pm 1.5 \text{ (lum.) pb}$

Used to check of modeling of input variables

Used for cross section measurement

 $\begin{aligned} \sigma_{t\text{-ch.}} &= 69.7^{+7.2}_{-7.0} \text{ (stat. + syst. + lum.)} \pm 3.6 \text{ (theor.) pb} \quad (\text{muons}), \\ \sigma_{t\text{-ch.}} &= 65.1^{+9.2}_{-8.9} \text{ (stat. + syst. + lum.)} \pm 3.5 \text{ (theor.) pb} \quad (\text{electrons}) \end{aligned}$

 $\sigma_{t-\text{ch.}} = 68.1 \pm 4.1 \text{ (stat.)} \pm 3.4 \text{ (syst.)}^{+3.3}_{-4.3} \text{ (theor.)} \pm 1.5 \text{ (lum.) pb}$

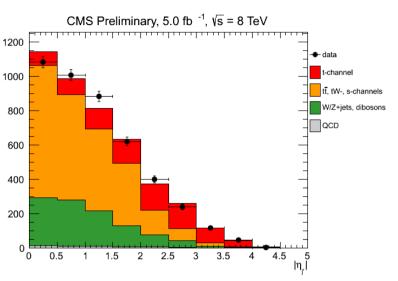
CMS PAS TOP-12-011

t-channel cross section (8 TeV)

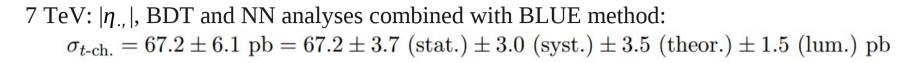
- **Data:** 5.0 fb⁻¹ (muon channel only)
- Signal region: 2 jets 1 b-tag category 130 GeV/c < TopMass < 220 GeV/c
- Jet $p_{\rm T}$ >60 GeV/c
- Cut to reduce QCD multijet events: MtW >50 GeV/c²
- Data-driven top pair modelling

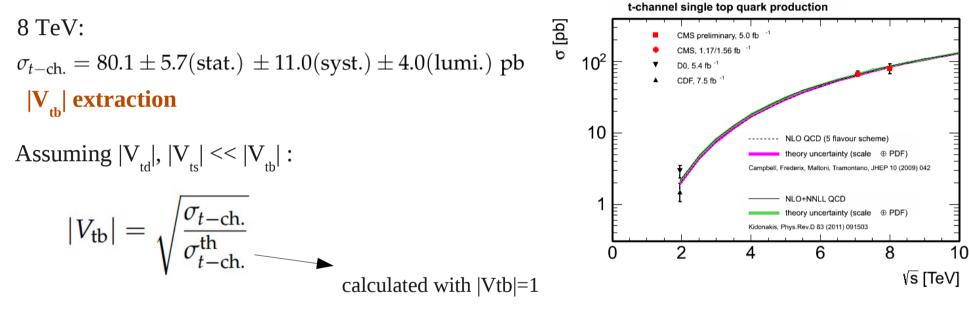
 $|\eta_{i'}|$ -template is obtained using the 3-jets 2-tags data sample

• Data-driven W+jets modelling:


as for 7 TeV from data from sideband region of TopMass

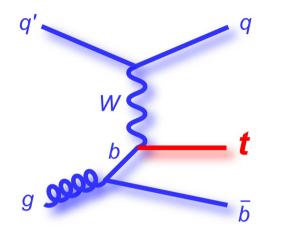
Likelihood fit to $|\eta_{i'}|$ distribution results in

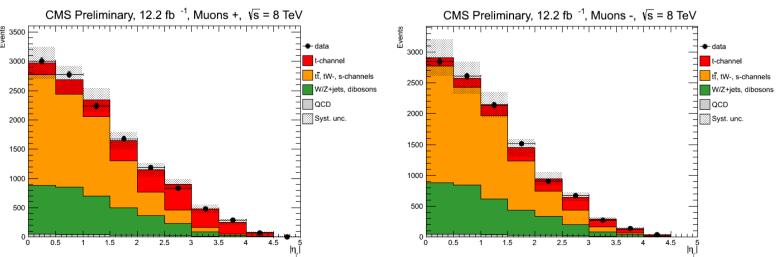

$$\sigma_{t-\mathrm{ch.}} = 80.1 \pm 5.7(\mathrm{stat.}) \pm 11.0(\mathrm{syst.}) \pm 4.0(\mathrm{lumi.}) ~\mathrm{pb}$$


Ratio cross section (8 TeV) / cross section (7 TeV):

 $R_{8 TeV/7 TeV} = 1.14 \pm 0.12 (\text{stat.}) \pm 0.14 (\text{syst.})$

t-channel cross-section




7 TeV: $|f_{L_V} V_{tb}| = 1.020 \pm 0.046$ (exp.) ± 0.017 (theor.) 8 TeV: $|f_{L_V} V_{tb}| = 0.96 \pm 0.08$ (exp.) ± 0.02 (theor.)

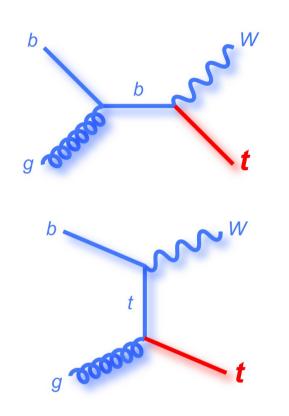
 $f_{_{LV}}$ is a left-handed vector coupling, $f_{_{LV}}=1$ in SM Constraining $|V_{_{tb}}|$ to the interval [0, 1] and setting $f_{_{LV}}=1$ yields: $0.92 < |V_{tb}| \le 1$ (7 Tev) and $0.81 < |V_{tb}| \le 1$ (8 TeV) @ 95% CL

Charge asymmetry (8 TeV)

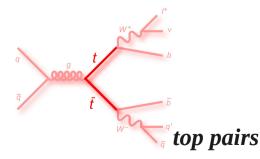
- The top quark inherits the sign of the charge from the light quark q'
- The cross section ratio depends on light quark PDF, sensitive to new physics (due to Wtb vertex presence)
- An effective handle to constrain different parton distribution function models
- $|\eta_{i'}|$ analysis: template fit to pseudorapidity of the light jet
 - **Data:** 12.2 fb⁻¹
 - the same event selection as for t-channel cross-section measurement
 - signal region: 2 jets 1 b-tag category 130 GeV/c < TopMass < 220 GeV/c


Charge asymmetry (8 TeV)

Measurements:


 $\sigma_{t-ch.,top} = 49.9 \pm 1.9(stat.) \pm 8.9(syst.) \, pb$ $\sigma_{t-ch.,anti-top} = 28.3 \pm 2.4(stat.) \pm 4.9(syst.) \, pb$ $R_{t-ch.} = 1.76 \pm 0.15(stat.) \pm 0.22(syst.)$

SM predictions (Kidonakis):

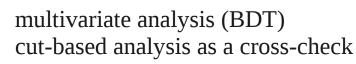

 $\sigma_{t-\text{ch.,top}}^{\text{th}} = 56.4^{+2.1}_{-0.3} \text{ (scale)}^{+1.1}_{-1.1} \text{ (PDF)pb}$ $\sigma_{t-\text{ch.,anti-top}}^{\text{th}} = 30.7^{+0.7}_{-0.7} \text{ (scale)}^{+0.9}_{-1.1} \text{ (PDF)pb}$ $R_{t-\text{ch.}} = \sigma_{t-\text{ch.,top}} / \sigma_{t-\text{ch.,anti-top}} = 1.84$

Phys. Rev. Lett. 110, 022003 (2013) Associated tW production (7 TeV)

Main backgrounds:

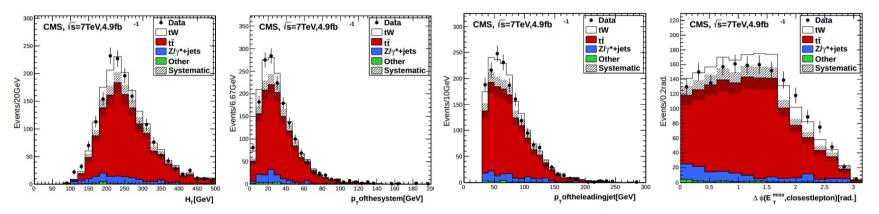
Two complementary approaches:

Data: 4.9 fb⁻¹

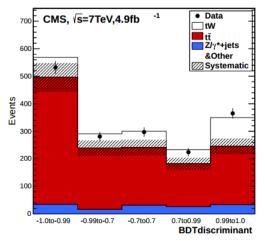

Event selection

- 2 leptons with opposite charge
 - → $p_{\rm T}$ >20 GeV/c |η|<2.4 (muon)
 - → p_{T} >20 GeV/c $|\eta|$ <2.5 (electron)
- One or two jets with $p_{_{\rm T}}$ >30 GeV/c and $|\eta|$ <2.4, at least one jet is b-tagged
- MET>30 GeV
- Additional cuts:
 - $\rightarrow m_{ll}^2 > 20 \text{ GeV/c}^2$

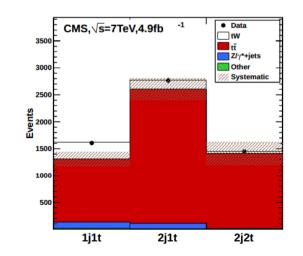
Z+jets


- → veto events with 81 GeV/ $c^2 < m_{_{II}} < 101$ GeV/ c^2
- $H_{_{\rm T}} > 60 \text{ GeV}$ (specific cut in cut-based analysis)

 $H_{\rm \scriptscriptstyle T}$: scalar sum of the $p_{\rm \scriptscriptstyle T}$ of the leptons, jets, and MET


Phys. Rev. Lett. 110, 022003 (2013) Associated tW production (7 TeV)

BDT analysis: combine 4 variables in a BDT to increase ttbar/tW separation power **Input variables**: $H_{_T}$, $p_{_T}$ of the system, $p_{_T}$ of jet, angle between MET and the closest lepton



3 categories considered: 1 jet 1 tag, 2 jets 1 tag, 2 jets 2 tags Simultaneous fit: three categories in the three final states (ee, eµ and µµ)

Binned likelihood fit to BDT output simultaneously in all channels (ee, eµ,µµ)

Cross-check with count-based analysis

Phys. Rev. Lett. 110, 022003 (2013) Associated tW production (7 TeV)

 $|\mathbf{V}_{tb}|$ extraction

Assuming $|V_{td}|$, $|V_{ts}| \ll |V_{tb}|$:

$$|V_{tb}| = \sqrt{\frac{\sigma_{tW}}{\sigma_{tW}^{th}}} = 1.01^{+0.16}_{-0.13} (exp.)^{+0.03}_{-0.04} (th.)$$
calculated with $|V_{tb}|=1$

Confidence interval assuming $|V_{tb}| \le 1$ and $f_{LV} = 1$:

 $0.79 < |V_{tb}| \le 1$ @ 90% C.L.

Summary

- The first measurements of single top production properties are published: t-channel and associated tW production cross sections, $|V_{tb}|$, charge asymmetry
- The next round of analyses are in progress: differential cross sections, top mass and rare s-channel production
- Searches for the deviation from SM prediction in single top are in progress