Review of Belle Results

Pavel Krokovny, Budker Institute of Nuclear Physics Novosibirsk, Russia

- Introduction
- OUT measurements
 - **@** φ₁(β)
 - $\bigcirc \phi_2(\alpha)$
 - 🥝 φ₃ (γ)
 - **⊘** |**V**_{xb}|
- Q Summary

KEKB and Belle

3.5 GeV e^+ & 8 GeV e^- beams 3 km circ, 22 mrad crossing angle $L= 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ $\int L dt = 1.04 \text{ ab}^{-1}$

Unitarity triangle

 $sin2\phi_1$ is measured with a good accuracy at B-factories. Measurement of all the angles needed to test SM.

CPV in Mixing

$$\begin{aligned} \mathcal{A}_{f_{CP}}(t) &= \frac{\Gamma(\overline{B^0} \to f_{CP}) - \Gamma(B^0 \to f_{CP})}{\Gamma(\overline{B^0} \to f_{CP}) + \Gamma(B^0 \to f_{CP})} & \mathbf{S}_{f_{CP}} &= \frac{2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2} \\ &= -\eta_{CP} [\mathbf{S}_{f_{CP}} \sin(\Delta m \ t) - \mathbf{C}_{f_{CP}} \cos(\Delta m \ t)] & \mathbf{C}_{f_{CP}} &= \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2} \end{aligned}$$

$$\lambda_{f_{CP}} = -e^{-i2\beta} \frac{A(\overline{B}^0 \to f_{CP})}{A(B^0 \to f_{CP})}$$

Difference in decay rate for B^0 and \overline{B}^0 \rightarrow CP Violation

 $\Gamma(B \to f) \neq \Gamma(\overline{B} \to \overline{f}) \text{ for } \varphi_{wk} \neq 0 \text{ and } \delta_{st} \neq 0$

$$A_{CP} = \frac{G(f) - G(\overline{f})}{G(f) + G(\overline{f})} = \frac{2|A_1||A_2|\sin(j_{wk})\sin(d_{st})}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos(j_{wk})\cos(d_{st})}$$

One rate asymmetry is not sufficient to extract physical parameters:

• measure A and \overline{A} , but need A_1 , A_2 , ϕ_{wk} , δ_{st}

Kinematics and event shape

In $\Upsilon(4S)$ decays, pairs of *B* mesons are produced near threshold. $E_B = E_{\rm CM}/2$, small CM momentum (300 MeV/*c*).

Selection variables:

- CM energy difference $\Delta E = \sum E_i - E_{\rm CM}/2$
- *B*-meson beam-constrained mass $M_{
 m bc} = \sqrt{(E_{
 m CM}/2)^2 - (\sum p_i)^2}$
- Event shape variables:

 $e^+e^- \rightarrow u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$:

Selection of $B \rightarrow (c\underline{c})K^0$

CP = -1 modes:			
Mode	Signal yield		
$B ightarrow J/\psi K^0_S$, $J/\psi ightarrow I^+I^-$	12681 ± 114		
$B ightarrow \psi(2S) K^0_S, \ \psi(2S) ightarrow I^+ I^-$	$\textbf{908} \pm \textbf{31}$		
$\psi(2S) ightarrow J/\psi \pi^+\pi^-$	1072 ± 33		
$B ightarrow \chi_{c1} K^0_S$, $\chi_{c1} ightarrow J/\psi \gamma$	943 ± 33		

 $CP = +1 \mod 2$: $B \rightarrow J/\psi K_L^0$ Signal yield: 10041 ± 154

Missing information about K_L^0 momentum: K_L^0 cluster reconstructed in ECL or KLM, match it with the K_L^0 direction from kinematical constraints.

PRL 108, 171802 (2012)

CP asymmetry in $B \rightarrow (cc)K^0$

 $S = 0.671 \pm 0.029 \quad S = 0.641 \pm 0.047 \quad S = 0.739 \pm 0.079 \quad S = 0.636 \pm 0.117$ $A = -0.014 \pm 0.021 \quad A = 0.019 \pm 0.026 \quad A = 0.103 \pm 0.055 \quad A = -0.023 \pm 0.083$ $PRL \ 108, \ 171802 \ (2012)$

$\square Measurement of sin2\phi_1 (sin2\beta)$

Combination of four modes:

 $S = 0.668 \pm 0.023 \pm 0.013 \text{ (syst)}$ $A = 0.007 \pm 0.016 \pm 0.013 \text{ (syst)}$

PRL 108, 171802 (2012)

Systematic errors:

	ΔS	ΔA	
Vertexing	+0.008 -0.009	±0.008	
Flavor tagging	$+0.004 \\ -0.003$	± 0.003	
Resolution function	± 0.007	± 0.001	
Physics parameters	± 0.001	< 0.001	
Fit bias	± 0.004	± 0.005	
$J/\psi K_S^0$ signal fraction	±0.002	± 0.001	
$J/\psi K_L^0$ signal fraction	± 0.004	$+0.000 \\ -0.002$	
$\psi(2S)K_S^0$ signal fraction	< 0.001	< 0.001	
$\chi_{c1}K_S^0$ signal fraction	< 0.001	< 0.001	
Background Δt	± 0.001	< 0.001	
Tag-side interference	± 0.001	±0.008	
Total	± 0.013	± 0.013	
Significant improvement in sys. error			

CPV in double charm

Final Belle data sample of $772 \times 10^6 \ B\bar{B}$ pairs

CPV in double charm

$sin2\phi_1^{eff}$ from Penguin Decays

- no weak phase in $b \rightarrow (q\underline{q})$ s penguin decays
 - expect to measure S = sin($2\phi_1$) [just as in B $\rightarrow \psi$ K_S]
 - contributions from suppressed diagrams expected to be small $(\Delta sin(2\phi_1) = sin(2\phi_1^{eff}) sin(2\phi_1) \sim 0.01-0.1)$
- if new physics introduces weak phase in decay, we could measure something different than $sin(2\phi_1)$

B->K_SK⁺K⁻ time-dependent Dalitz analysis

Contours give -2 Δ (in L) = $\Delta \chi^0$ = 1, corresponding to 80.7% CL for 2 dol

No significant deviations from the value in the b \rightarrow ccs modes: $sin2\phi_1 = 0.679 \pm 0.020$

Determination of $\phi_2(\alpha)$

Time-dependent CP asymmetry: $A(\Delta t) = S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t)$

Without penguin:Including penguin:C = 0 $S = \sin(2\varphi_2)$ $C \neq 0$ $S = \sqrt{1 - C^2} \sin(2\varphi_2^{\text{eff}}) \neq \sin(2\varphi)$

Use isospin relations to estimate the penguin contribution: Gronau-London, PRL, 65, 3381 (1990) Lipkin *et al.*, PRD 44, 1454 (1991)

$$A^{+0} = 1/\sqrt{2} \cdot A^{-+} + A^{00}$$

Neglecting EWP, $h^+ h^0$ (I=2)=pure tree $A^{+0} = A^{-0}$

TCPV in B $\rightarrow \pi\pi$

PRD 87, 031103(R) (2013).

Isospin analysis

Exploit isospin correlated decays e.g. $B^0 \rightarrow \pi^+\pi^-$, $B^+ \rightarrow \pi^+\pi^0$ and $B^0 \rightarrow \pi^0\pi^0$

for all final states

- 3 π final state I = 0, 1 or 2
- $I \neq 1$ because of Bose-statistics $\rightarrow I = 0, 2$

for $\pi^+\pi^0$ final states

•
$$I_3 = +1 \rightarrow I = 1, 2$$

- In the penguin the gluon carries I = 0 therefore I = 0,1 (excluded by I₃ and Bose stat.)
- ightarrow no penguin in A_{+0}

To eliminate the penguin contributions we use the isospin relations:

(M. Gronau and D. London, PRL 65, 3381 (1990))

$$A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}, \ A^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00}.$$

Quantities needed:

- $\mathcal{B}(\mathsf{B}^0 \to \pi^+\pi^-)$
- $\mathcal{B}(\mathsf{B}^+ \to \pi^+ \pi^0)$
- $\mathcal{B}(\mathsf{B}^0 \to \pi^0 \pi^0)$
- $\mathcal{A}_{CP}(\mathsf{B}^0 \to \pi^+\pi^-)$
- $\mathcal{A}_{CP}(\mathsf{B}^0 \to \pi^0 \pi^0)$
- $\mathcal{S}_{CP}(\mathsf{B}^0 \to \pi^+\pi^-)$

four-fold ambiguity

$\phi_2(\alpha)$ result from isospin analysis

Isospin analysis Belle only data

 $B^{0} \rightarrow \pi^{+}\pi^{-}(772 \cdot 10^{6}B\overline{B})$ $B^{0} \rightarrow \pi^{+}\pi^{0}(772 \cdot 10^{6}B\overline{B})$ $B^{0} \rightarrow \pi^{0}\pi^{0}(253 \cdot 10^{6}B\overline{B})$

8 fold solution large penguin contribution

Isospin analysis

$$B^{0} \rightarrow \rho^{+} \rho^{-} (W.A.)$$
$$B^{0} \rightarrow \rho^{+} \rho^{0} (W.A.)$$
$$B^{0} \rightarrow \rho^{0} \rho^{0} (772 \cdot 10^{6} \text{BB})$$

A_{CP}, S_{CP} from BaBar B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 76, 052007 (2007) small penguin

Deacy $B^0 \rightarrow a_1(1260)\pi$ Determination of the effective angle ϕ_2^{eff} 4 fold solution

ч

 $\varphi_2 = (46.4 \pm 0.2(\text{stat}) \pm 3.4(\text{syst}))^{-1}$ $\phi_2^{\text{eff}} = (107.3 \pm 6.6(\text{stat}) \pm 4.8(\text{syst}))^{\circ}$

 $φ_2(\alpha)$ results: ππ, ρπ, ρρ

Determination of $\phi_3(\gamma)$

Possible D^0 / D^0 final states: CP eigenstates ($\pi\pi$, KK) Flavor eigenstates ($K\pi$) Three-body decays ($K_S\pi\pi$)

Gronau & London, PLB 253, 483 (1991) Gronau & Wyler, PLB 265, 172 (1991) Atwood, Dunietz, & Soni, PRL 78, 3257 (1997), Atwood, Dunietz, & Soni, PRD 63, 036005 (2001) Giri, Grossman, Soffer, & Zupan, PRD 68, 054018 (2003) Bondar, PRD 70, 072003 (2004)

Atwood-Dunietz-Soni method

D. Atwood, I. Dunietz and A. Soni, PRL **78**, 3357 (1997); PRD **63**, 036005 (2001)

Enhancement of CP-violation due to use of Cabibbo-suppressed D decays

ADS method (Belle)

Belle collaboration, 772M BB pairs PRL 106, 231803 (2011)

 $B^- \rightarrow [K^+\pi^-]_D K^-$ (suppressed) and $B^- \rightarrow [K^-\pi^+]_D K^-$ (favored) modes are selected.

 $\mathcal{R}_{DK} = [1.63^{+0.44}_{-0.41}(\text{stat})^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2}$ $\mathcal{R}_{D\pi} = [3.28^{+0.38}_{-0.36}(\text{stat})^{+0.12}_{-0.18}(\text{syst})] \times 10^{-3}$

 $\mathcal{A}_{DK} = -0.39^{+0.26}_{-0.28}(\text{stat})^{+0.04}_{-0.03}(\text{syst}),$ $\mathcal{A}_{D\pi} = -0.04 \pm 0.11(\text{stat})^{+0.02}_{-0.01}(\text{syst})$

ADS using $B \rightarrow D^*K$

study both modes: $D^* \rightarrow D \pi^0$, $D \gamma$: [see ''On φ_3 Measurements Using B \rightarrow D^{*}K⁻ Decays'', arXiv:hep-ph/0409281]

Signal seen with a significance of 3.5σ for $D^* \rightarrow D\gamma$ mode

Ratio to favored mode: $R_{D\pi^{\bullet}} = (1.0^{+0.8}_{-0.7}(stat)^{+0.1}_{-0.2}(syst)) \times 10^{-2}$

 $R_{Dy} = (3.6^{+1.4}_{-1.2}(stat) \pm 0.2(syst)) \times 10^{-2}$

asymmetry:

$$A_{D\pi^{\bullet}} = 0.4 + 1.1_{-0.7} (stat) + 0.2_{-0.1} (syst)$$
$$A_{D\gamma} = -0.51 + 0.33_{-0.29} (stat) \pm 0.08 (syst)$$

Comparison of results

$$\mathbf{R}_{ADS}(\mathbf{D}\mathbf{K}) = \mathbf{r}_{B}^{2} + \mathbf{r}_{D}^{2} + 2\mathbf{r}_{B}\mathbf{r}_{D}\cos(\delta_{B} + \delta_{D})\cos\gamma$$
$$\mathbf{A}_{ADS}(\mathbf{D}\mathbf{K}) = 2\mathbf{r}_{B}\mathbf{r}_{D}\sin(\delta_{B} + \delta_{D})\sin\gamma/\mathbf{R}_{ADS}(\mathbf{D}\mathbf{K})$$

$$\begin{aligned} \mathbf{R}_{ADS}(\mathbf{D}_{\pi^{\circ}}^{*}\mathbf{K}) &= \mathbf{r}_{B}^{*2} + \mathbf{r}_{D}^{2} + 2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\cos\left(\delta_{B}^{*} + \delta_{D}\right)\cos\gamma\\ \mathbf{A}_{ADS}(\mathbf{D}_{\pi^{\circ}}^{*}\mathbf{K}) &= 2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\sin\left(\delta_{B}^{*} + \delta_{D}\right)\sin\gamma/\mathbf{R}_{ADS}(\mathbf{D}_{\pi^{\circ}}^{*}\mathbf{K}) \end{aligned}$$

$$\begin{aligned} \mathbf{R}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) &= \mathbf{r}_{B}^{*2} + \mathbf{r}_{D}^{2} - 2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\mathbf{\cos}\left(\delta_{B}^{*} + \delta_{D}\right)\mathbf{\cos}\gamma\\ \mathbf{A}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) &= -2\mathbf{r}_{B}^{*}\mathbf{r}_{D}\mathbf{\sin}\left(\delta_{B}^{*} + \delta_{D}\right)\mathbf{\sin}\gamma/\mathbf{R}_{ADS}(\mathbf{D}_{\gamma}^{*}\mathbf{K}) \end{aligned}$$

ADS method

Multiple solutions in $\phi_3(\gamma)$

Gronau-London-Wyler method

[Phys. Lett. B 253 (1991) 483] [Phys. Lett. B 265 (1991) 172]

CP eigenstate of D-meson is used (D_{CP}) .CP-even: $D_1 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ CP-odd: $D_2 \rightarrow K_S \pi^0$, $K_S \omega$, $K_S \varphi$, $K_S \eta$...

$$\mathcal{A}_{1,2} = \frac{Br(B^- \to D_{1,2}K^-) - Br(B^+ \to D_{1,2}K^+)}{Br(B^- \to D_{1,2}K^-) + Br(B^+ \to D_{1,2}K^+)} = \frac{2r_B \sin \delta' \sin \varphi_3}{1 + r_B^2 + 2r_B \cos \delta' \cos \varphi_3}$$
$$\delta' = \begin{cases} \delta & \text{for } D_1 \\ \delta + \pi & \text{for } D_2 \end{cases} \implies \mathcal{A}_{1,2} \text{ have opposite signs} \end{cases}$$

Additional constraint:

CP-asymmetry:

$$\mathcal{R}_{1,2} = \frac{Br(B \to D_{1,2}K) / Br(B \to D_{1,2}\pi)}{Br(B \to D^0 K) / Br(B \to D^0 \pi)} = 1 + r_B^2 + 2r_B \cos \delta' \cos \varphi_3$$

4 equations (3 independent: $\mathcal{A}_1 \mathcal{R}_1 = -\mathcal{A}_2 \mathcal{R}_2$), 3 unknowns (r_B, δ, φ_3)

GLW method

Multiple solutions in ϕ_3

Dalitz analysis method

A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD **68**, 054018 (2003) A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep 2002.

$$\left| \widetilde{D}^{0} \right\rangle = \left| D^{0} \right\rangle + re^{i\theta} \left| \overline{D}^{0} \right\rangle$$
Using 3-body final state, identical for D^{0} and \overline{D}^{0} : $K_{s}\pi^{+}\pi^{-}$.
Dalitz distribution density: $d\sigma(m_{K_{s}\pi^{+}}^{2}, m_{K_{s}\pi^{-}}^{2}) \propto |\mathbf{A}|^{2} dm_{K_{s}\pi^{+}}^{2} dm_{K_{s}\pi^{-}}^{2}$

(assuming CP-conservation in D^0 decays)

If $f(m_{K_s\pi^+}^2, m_{K_s\pi^-}^2)$ is known, parameters (r_B, δ, φ_3) are obtained from the fit to Dalitz distributions of $D \rightarrow K_s\pi^+\pi^-$ from $B^{\pm} \rightarrow DK^{\pm}$ decays

Only $|f|^2$ is observable \rightarrow Model uncertainty

Dalitz: fit results

Fit parameters are $x_{\pm} = r_B \cos(\pm \phi_3 + \delta)$ and $y_{\pm} = r_B \sin(\pm \phi_3 + \delta)$

Physical parameters r_B , δ and ϕ_3 are extracted from x and y.

Dalitz: ϕ_3 results

Stat. confidence level of CPV is $(1-5.5 \cdot 10^{-4})$ or 3.5σ

 $B^{\pm} \rightarrow DK^{\pm}$ only: $\varphi_3 = 81 \stackrel{+13}{_{-15}} \pm 5^{\circ}(\text{syst}) \pm 9^{\circ}(\text{model})$ $B^{\pm} \rightarrow D^{*} K^{\pm}$ only: $\varphi_3 = 64 \frac{+21}{-23} \pm 4^{\circ}(\text{syst}) \pm 9^{\circ}(\text{model})$ $B^{\pm} \rightarrow DK^{\pm}, B^{\pm} \rightarrow D^{*}K^{\pm}$ combined: $\varphi_3 = 78 + 11_{-12}^{+11_{\circ}} \pm 4^{\circ}(\text{syst}) \pm 9^{\circ}(\text{model})$ $r_{DK} = 0.16 \pm 0.04 \pm 0.01$ (syst) ± 0.05 (model) $r_{D*K} = 0.21 \pm 0.08 \pm 0.01$ (syst) ± 0.05 (model) $\delta_{DK} = 136^{+14} \circ \pm 4^{\circ}(\text{syst}) \pm 23^{\circ}(\text{model})$ $\delta_{D^{*}K} = 343^{+20}_{-22} \circ \pm 4^{\circ}(\text{syst}) \pm 23^{\circ}(\text{model})$

Future improving is limited by the model uncertainty

BaBar result: $\gamma = (68 \pm 15 \pm 4 \pm 3)^{\circ}$ 3.0 σ CPV significance

Binned Dalitz analysis method

Solution: use binned Dalitz plot and deal with numbers of events in bins. [A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD **68**, 054018 (2003)] [A. Bondar, A. P. EPJ C **47**, 347 (2006); EPJ C **55**, 51 (2008)]

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$
$$x_{\pm} = r_{B}\cos(\delta_{B} \pm \phi_{3}) \quad y_{\pm} = r_{B}\sin(\delta_{B} \pm \phi_{3})$$

 $\begin{array}{l} M_i^{\pm}: \text{ numbers of events in } D \to K_S^0 \pi^+ \pi^- \text{ bins from } B^{\pm} \to DK^{\pm} \\ K_i: \text{ numbers of events in bins of flavor } \overline{D}{}^0 \to K_S^0 \pi^+ \pi^- \text{ from } D^* \to D\pi. \\ c_i, s_i \text{ contain information about strong phase difference between symmetric } \\ \text{Dalitz plot points } (m_{K_S^0 \pi^+}^2, m_{K_S^0 \pi^-}^2) \text{ and } (m_{K_S^0 \pi^-}^2, m_{K_S^0 \pi^+}^2): \\ c_i = \langle \cos \Delta \delta_D \rangle, \quad s_i = \langle \sin \Delta \delta_D \rangle \end{aligned}$

Binning & measurement of c_i, s_i

Binned analysis reduces stat. precision.

Can improve this by choosing a binning inspired by $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ model [CLEO collaboration, PRD 82, 112006 (2010)]

Optimized $\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ binning using BaBar 2008 measurement.

Measured c_i, s_i values and predictions by Belle model

Optimal binning depends on model, but ϕ_3 does not. Bad model \Rightarrow worse precision, but no bias!

Fit results

Free parameters: (x, y), normalization, background fractions in bins.

 $x_{-} = +0.095 \pm 0.045 \pm 0.014 \pm 0.017$ $y_{-} = +0.137^{+0.053}_{-0.057} \pm 0.019 \pm 0.029$ $\operatorname{corr}(x_{-}, y_{-}) = -0.315$ $x_{+} = -0.110 \pm 0.043 \pm 0.014 \pm 0.016$ $y_{+} = -0.050^{+0.052}_{-0.055} \pm 0.011 \pm 0.021$ $\operatorname{corr}(x_{+}, y_{+}) = +0.059$ st error is statistical. 2nd --- sys

$$\begin{split} \phi_3 &= (77.3^{+15.1}_{-14.9} \pm 4.2 \pm 4.3)^{\circ} \\ r_B &= 0.145 \pm 0.030 \pm 0.011 \pm 0.011 \\ \delta_B &= (129.9 \pm 15.0 \pm 3.9 \pm 4.7)^{\circ} \end{split}$$

1st error is statistical, 2nd — systematic, 3rd — c_i , s_i precision.

Sides of UT

UT CKM Parameter	Measurement	δ٧/٧	Ref.
V ub**	(4.4±0.5)10 ⁻³	10%	
V _{cb}	(4.1±0.1)10 ⁻²	3%	
V _{td} (Δmd)**	(8.4±0.6)10 ⁻³	7%	PDG
Vtd/Vts(mix)		3%	
V _{cd}	0.228±0.006	3%	1209.0085
Vtb:single-t	~1.03±0.04	4%	1302.1773

V_{cb} from inclusive B->X_cI_V

HQE params & |V_{cb}| from spectral "moments"

$$\left\langle M_{x}^{n}\right\rangle|_{E_{\ell}>E_{0}} = \tau_{B} \int_{E_{0}} M_{x}^{n} d\Gamma = f(E_{0}, m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{LS}^{3})$$

Cut-off quark masses Non-perturbative parameters

Moments can be calculated for cut-off in E_l

- Need high resolution access to B rest frame, unfolded:
 - Hadronic invariant mass
 - Lepton momentum

Use hadronic tag B_{tag} → D^(*)Y
 (Y=nπ,mπ⁰,pK_s,qK...),
 to infer signal B: flavour, charge, p₄

V_{cb} determination

- Inclusive CL decay recoiling against B_{tag}
- Unfold to true
- Extra constraints on m_b from $b \rightarrow s \gamma$ photon spectrum

Exclusive V_{cb}

 $B \rightarrow D^{(*)}$ lv differential decay rates proportional to $|V_{cb}|^2$ & form factors.

$$\frac{\mathrm{d}\Gamma(\bar{B} \to D^* \ell \bar{\nu})}{\mathrm{d}w \,\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_V \,\mathrm{d}\chi} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} m_{D^*}^3 \sqrt{w^2 - 1} P(w) |\mathcal{F}(w, \cos\theta_\ell, \cos\theta_\ell, \chi)|^2}{\frac{\mathrm{d}\Gamma(\bar{B} \to D \,\ell \bar{\nu})}{\mathrm{d}w}} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2}$$

1 normalisation point from lattice-QCD at 0-recoil (w=1)

From experiment

|V_{cb}| x F.F. @w=1

 ρ_D , ρ_{D^*} (F.F. slopes)

G_{B→D}(1)=1.074(18)_{stat}(16)_{sys}

[Fermilab/MILC NPPS 140, 461(2005)]

F_{B→D*}(1)=0.9077(51)_{stat}(158)_{sys}

[Fermilab/MILC, arXiv:1011.2166]

B->D*I_∨

- FF pars from fit to 1D hists (10 bins) of *w*, cosθ_{lep}, cosθ_v, χ
- 40x40 covariance in $F(1)|V_{cb}|$ fit

Sys: Limited by track (fast&slow) efficiencies
 ~0.8%, and B→D**lv

B \rightarrow **D***Iv FF's, 1.6% accuracy (2.6% in 2008)

Belle PRD82, 112007(2010)

V_{cb} summary

Small persistent discrepancy, up to ~2.4σ; exclusive - inclusive.
 ΔExclusive~2%, ΔInclusive~1-2%

Exclusive V_{ub}

- Rates determined by |Vub| & Form Factors
- Calculable at kinematical limits with
 Light Cone Sum Rules or Lattice QCD
- Empirical extrapolation necessary to extract |V_{xb}| from measurements

B-> π lv results

High

Low

Experimentally robust.

Biggest (recent) advance: improved hadron tag for m²miss analyses.

Reduced model dependence cross check of untagged.

ε _{tag} %	BABAR Cut (2008>)	Belle Cut	Belle NN (2011>)
Modes	1768	-	~1000
B ⁺ tag	0.4	0.14	0.28
B ⁰ tag	0.21	0.1	0.18

Tag $B \rightarrow D^{(*)}|v$

Tag B → hadrons

Exclusive V_{ub}

- 1. |V_{ub}| from partial q² integral with **FF** (theory/lattice).
- Fit data & theory: LCSR or LQCD in q²(2-3 shape pars + |V_{ub}|, data & LQCD correlations)
 - 1.Not precise enough to rule out any theory (other than ISGW2)

HFAG PDG 2013	q² (GeV/c)²	V _{ub} 10 ³
LCSR Siegen	<12	3.42±0.06+0.37-0.32
LCSR Ball/Zwicky	<16	3.58±0.06 ^{+0.59} -0.40
LQCD HPQCD	>16	3.49±0.09 ^{+0.60} -0.40
LQCD FNAL/MILC	>16	3.33±0.08 ^{+0.37} -0.31
Global Fit (FNAL)	All	3.26±0.29
Global Fit (LCSR)	All	3.26±0.19

Error budget:

2% total rate 4% q² shape 8% FF normalisation

Inclusive V_{ub}

- Total rate can't be measured! Too much $\mathbf{B} \rightarrow \mathbf{X}_{c} \mathbf{I} \mathbf{v}$ background.
- Remove b→clv: BUT lose part of b→ulv.

 $E_l(GeV)$

Inclusive V_{ub}

				$p_1 > 1$	Jev
		Babar p⊧>1 GeV	Systematics %	Babar	Belle
_			$B \to X_u \ell \bar{\nu}_\ell (SF)$	5.6	3.6
		Belle p _l >1 GeV	$B \to X_u \ell \bar{\nu}_\ell (g \to s\bar{s})$	2.7	1.5
	<u> ' ' ● '</u> '		$B \to X_u \ell \bar{\nu}_\ell$ exclusive	1.9	4.0
		Average tagged	$B \to X_u \ell \bar{\nu}_\ell$ unmeasured	-	2.9
	┝╫╵●┻┼╢╵		All $B \to X_u \ell \bar{\nu}_\ell$	6.5	5.8
æ		(endpoint)	$B \to X_c \ell \bar{\nu}_\ell$	2.7	1.7
	' ' ├──┤ ● '┼ ─┤		PID and reconstruction	3.4	3.1
<u>Š</u>		Average all	BDT	-	3.1
lg si		5	Other	2.1	2
<u>a</u> X	GGOU		Total	8.4	8.1
≥ 0	BLNP				

3 3.5 4 4.5 5 V_{ub}[× 10⁻³]

- "Inclusive" analyses not inclusive enough...
- Need much better understanding of X_ul⁺v
 Resonant & non-res., light quark hadronisation.
 Common techniques used in Belle & Babar m_{Xu}>1 GeV (exclusives) next frontier.

Enters UT in 2 main ways: B(B→τν) ∝ f_B² |V_{ub}|² (f_B very precise)

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

• B(B $\rightarrow \tau v$) / $\Delta m_d \propto |V_{ub}|^2$ / $|V_{td}|^2$, Cancels f_B uncertainties.

New Had tagged results

PRL 110, 131801 (2013).

arXiv:1207.0698

f_B and $|V_{ub}|$ from leptonic decays

V_{ub} summary

Exclusive / inclusive |Vub| differ by $\sim 3\sigma$

LCSR: Khodjamirian et al. q² < 12 PRD 83:094031 (2011)

GGOU: Gambino et al. JHEP 0710:058 (2007)

Summary

- Angle $\phi_1(\beta)$ is measured with 1° accuracy in b $\rightarrow \overline{c}cs$. No deviation from SM is found in b $\rightarrow sq\overline{q}$ penguin and b $\rightarrow c\overline{c}d$ decays.
- Accuracy of O(5°) is achieved in $\phi_2(\alpha)$ measurement using $\rho\rho$ and $\rho\pi$. Still is limited by statistic.
- $\phi_3(\gamma)$ remains the most difficult angle of the UT to measure. Good perspectives with higher statistics since the theoretical uncertainties are very low.
- 3% and 10% accuracy are obtained for $|V_{ub}|$ and $|V_{ub}|$. 2-3 σ discrepancy in inclusive / exclusive methods.
- Excellent agreement with Standard Model so far. Next order of statistics is necessary to give an answer for the New Physics existence.