Very rare decays at LHCb

Indrek Sepp Imperial College, London, on behalf of the LHCb Collaboration

June 18, 2013

Indrek Sepp Imperial College, London, on be

 $\textcircled{2} D^0 \rightarrow \mu^+ \mu^-$

3 $B^0_{d,s} \to \mu^+ \mu^- \mu^+ \mu^-$

Very rare decays at LHCb

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

Introduction

- $B^0_{d,s} \rightarrow \mu^+ \mu^-$, $D^0 \rightarrow \mu^+ \mu^-$ and $B^0_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$: Flavour Changing Neutral Current (FCNC) decays
- \bullet Forbidden at tree level in the SM \rightarrow sensitive to New Physics (NP) diagrams
 - ▶ $B^0_{d,s} \rightarrow \mu^+ \mu^-$, $D^0 \rightarrow \mu^+ \mu^-$: Indirectly probe energy scales greater than \sqrt{s} (due to new particles in loop diagrams)
 - ▶ $B^0_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$: Probes novel four-prong flavour-violating vertices
- Two approaches to interpret rare decay results:
 - Model dependent: Constrain specific models, such as SUSY
 - Model independent: Constrain generic coupling types via Wilson coefficients

3/19

$B^0_{d,s} \rightarrow \mu^+ \mu^-$: Theoretical overview

• Precise SM branching fractions (arXiv:1208.0934):

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.23 \pm 0.27) \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$$

- Sensitive to new scalar, pseudoscalar, axial-vector particles in loop
 - Sensitive to SUSY particles

Experimental overview

(b) $bb
ightarrow \mu^+ \mu^- X$ background

- $\bullet~\text{Use} \sim 2/3~\text{LHCb}$ dataset: 1.0 fb $^{-1}$ @ 7 $\,\mathrm{TeV}$ + 1.1 fb $^{-1}$ @ 8 $\,\mathrm{TeV}$
- Select oppositely charged muon pair with decay vertex displaced from primary vertex (PV,) combined $p_{\rm T}(\mu^+\mu^-) > 0.5~{
 m GeV}/c$
- Distinguish between signal and $bb \rightarrow \mu^+ \mu^- X$ background with Boosted Decision Tree (BDT) classifier:
 - Train and optimise on simulated events
 - ▶ Input variables: $\tau(B)$, impact parameter (IP) of μ & B, isolation of μ & B, distance of closest approach for $\mu^+\mu^-$, $p_{\rm T}(\mu)$, $\cos P(\mu)$

Experimental overview

• Split dataset into 8(7) BDT bins for 7(8) TeV data, 15 bins in total

• Count signal events in mass windows around the B_s^0 and B^0 masses

Figure from CERN CDS 1493613, Nov 2012

Branching fraction meausrement

$$\mathcal{B}(B^{0}_{d,s} \to \mu^{+}\mu^{-}) = \mathcal{B}_{norm} \times \frac{\epsilon_{norm}}{\epsilon_{B^{0}_{d,s} \to \mu^{+}\mu^{-}}} \times \frac{f_{norm}}{f_{d,s}} \times \frac{N_{B^{0}_{d,s} \to \mu^{+}\mu^{-}}}{N_{norm}}$$

• Normalise to well measured decay modes $B^+ o J/\psi K^+$ and $B^0 o K\pi$

- ϵ : efficiency of reconstructing, selecting and triggering the decay
 - Determined from simulation, cross-checked on normalisation channels
- f: Probability of b quark hadronising into a given meson
 - Ratio measured at LHCb: Arxiv:1301.5286
- Nnorm: Normalisation channel yield, taken from mass-fits

• $N_{B_{d,s}^0 \to \mu^+ \mu^-}$: No. of signal events, counted in mass window around $B_{d,s}^0$ mass Figures from CERN CDS 1493613, Nov 2012 $\Box \to \Box \to \Box \to \Box \to \Box \to \Box$

Results

• Compatibility with background only hypothesis (1-CL_b):

 $\begin{array}{l} \triangleright \ B^0 \to \mu^+\mu^-: \ 0.11 \\ \triangleright \ B^0_s \to \mu^+\mu^-: \ 5.3 \times 10^{-4} \to 3.5\sigma, \ \text{evidence of decay!} \\ \bullet \ \mathcal{B}(B^0 \to \mu^+\mu^-) < 9.4 \times 10^{-10} \ (\text{at } 95 \ \% \ \text{CL}) \\ \bullet \ \text{Set using the } \text{CL}_s \ \text{method} \\ \bullet \ \mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9} \\ \bullet \ \text{Profile likelihood scan of } \mathcal{B}(B^0_s \to \mu^+\mu^-) \ \text{by simultaneously fitting} \\ m_{\mu^+\mu^-} \ \text{across all BDT bins for } 7 \ \& 8 \ \text{TeV datasets} \\ \hline Figures \ from \ CERN \ CDS \ 1493613, \ Nov \ 2012 \end{array}$

Implications: model independent

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) \propto m_{\mu}^{2} \left(\left| C_{10}^{SM} + C_{10}^{NP} - C_{10}' \right| + \frac{m_{B_{s}}}{2m_{\mu}} (C_{P} - C_{P}') \right|^{2} + \left| \frac{m_{B_{s}}}{2m_{\mu}} (C_{S} - C_{S}') \right|^{2} \right)$$

• $B^0_{d,s} \rightarrow \mu^+ \mu^-$ sensitive to scalar (C_S) , pseudoscalar (C_P) and vector-axial (C_{10}) Wilson coefficients $(C_{10} \text{ can have SM contribution})$ Figure from Arxiv:1306.0022

Implications: model independent

1. $B_d^0 \to \mu^+ \mu^-$

Figure: Constraints on C_{10} , $B_s^0 \rightarrow \mu^+ \mu^-$ contribution in grey, combined 1,2 σ constraints in red.

Figure from Arxiv:1305.5704

1. $B^0_{d,s} \rightarrow \mu^+ \mu^-$

Implications: model independent

	Operator	Λ [TeV] for $ c_i = 1$				$ c_i $ for $\Lambda = 1$ TeV			
		+	_	+i	-i	+	-	+i	-i
$O_{10} =$	$(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$	43	33	23	23	$5.4\cdot 10^{-4}$	$9.2\cdot 10^{-4}$	$1.9\cdot 10^{-3}$	$1.9\cdot 10^{-3}$
$\mathcal{O}_{10}' =$	$(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$	25	89	24	23	$1.7\cdot 10^{-3}$	$1.3\cdot 10^{-4}$	$1.7\cdot 10^{-3}$	$1.9\cdot 10^{-3}$
$\mathcal{O}_{S}^{(\prime)} =$	$\frac{m_b}{m_{B_s}}(\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$	93	93	98	98	$1.1\cdot 10^{-4}$	$1.1\cdot 10^{-4}$	$1.1\cdot 10^{-4}$	$1.1\cdot 10^{-4}$
$\mathcal{O}_P =$	$\frac{m_b}{m_{B_s}}(\bar{s}P_Rb)(\bar{\ell}\gamma_5\ell)$	173	58	93	93	$3.3\cdot 10^{-5}$	$3.0\cdot 10^{-4}$	$1.1\cdot 10^{-4}$	$1.1\cdot 10^{-4}$
$\mathcal{O}'_P =$	$rac{m_b}{m_{B_s}}(ar{s}P_Lb)(ar{\ell}\gamma_5\ell)$	58	173	93	93	$3.0\cdot 10^{-4}$	$3.3\cdot 10^{-5}$	$1.1\cdot 10^{-4}$	$1.1\cdot 10^{-4}$

- Constraints from C_S , C_P) and C_{10} set minimum NP energy scale to 20-170 TeV (assuming no NP flavour suppression)
- \bullet Alternately, if NP scale is 1 $\,{\rm TeV},$ very strong NP flavour suppression implied

Table from Arxiv:1206.0273

11/19

1. $B^0_{d,s} o \mu^+ \mu^-$

Implications: model dependent

- Strong constraints on some SUSY models
 - ► Large *tan* β , pseudoscalar light Higgs SUSY models disfavoured
- Any model that violates flavour via (pseudo)scalar particles is constrained by $B_s^0 \rightarrow \mu^+ \mu^-$ Figure from Arxiv:1205.6094

$D^0 \rightarrow \mu^+ \mu^-$: Experimental Overview

- SM prediction: ${\cal B}(D^0 o \mu^+ \mu^-) < 6 imes 10^{-11}$
- Search for $D^{*+}
 ightarrow (D^0
 ightarrow \mu^+ \mu^-) \pi^+$
 - ▶ Two fit variables: $m_{\mu^+\mu^-}$ and $\Delta m_{\mu^+\mu^-} = m_{\mu^+\mu^-\pi} m_{\mu^+\mu^-}$
- Dataset: $\sim 0.9~{\rm fb}^{-1}$ @ 7 $\,{\rm TeV}$
 - ▶ 80 pb⁻¹ used to train a BDT
- Normalise to $D^0 \to \pi^+\pi^-$
- Main background: mis-identified $D^0
 ightarrow \pi^+\pi^-$
 - misID rates obtained from data

$D^0 ightarrow \mu^+ \mu^-$ results

- 2-dimensional fit to $m_{\mu^+\mu^-}$ (a) and $\Delta m_{\mu^+\mu^-}$ (b)
 - ▶ yellow: combinatorial background, red: mis-identified $D^{*+} \rightarrow (D^0 \rightarrow \pi^+ \pi^-) \pi^+$, green: expected SM signal
- \bullet No signal observed, set limits using ${\rm CL}_{\rm s}$ method:
 - $\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) < 7.6 \times 10^{-9}$ at 95% CL
 - ×20 improvement on previous worlds best constraint! (BELLE, Arxiv:1003.2345)
- Paper to be published in Phys. Lett. B, preprint at Arxiv:1305.5059

• No model (in)dependent constraints extracted yet (very recent result!) Figures from Arxiv:1305.5059

3. $B_{d,s}^{0} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}$

 $B^0_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$: Theoretical overview

- SM process very similar to $B^0_{d,s}
 ightarrow \mu^+ \mu^-$ (a)
 - Helicity supression removed $\mathcal{B}(\uparrow)$, two additional couplings $\mathcal{B}(\downarrow)$
 - SM $\mathcal{B}(B^0_{d,s} \to \mu^+ \mu^- \mu^+ \mu^-) < 10^{-10}$ (Arxiv: 0410146)
 - resonant SM decay via J/ψ and ϕ (b) is vetoed in the search
- Sensitive to NP processes not probed by $B^0_{d,s} \rightarrow \mu^+ \mu^-$:
 - ► SUSY sGoldstino particles (c) S (scalar) and P (pseudoscalar) (Arxiv: 1112.5230), B sensitive to scale of SUSY breaking
 - * HyperCP saw hints of 214.3 MeV/c^2 particle with properties consistent with *P* (Arxiv:0501014)
 - Hidden sector models (PRD 83, 054005 (2011))

- Dataset: 1.0 fb⁻¹ @ 7 TeV
- Simple cut based selection on: IP of $B^0_{d,s}$ and μ , quality of $B^0_{d,s}$ vertex and flight distance, muon PID
 - ► trained and optimised on data $B_s^0 \rightarrow J/\psi$ ($\rightarrow \mu^+\mu^-$) ϕ ($\rightarrow \mu^+\mu^-$) decays
- Measure \mathcal{B} in same way as for $B^0_{d,s} \to \mu^+\mu^-$, use $B^0 \to J/\psi K^{*0}$ as normalisation channel Figure from PRL 110, 211801 (2013)

16/19

• See one event in B^0 mass window, none in B^0_s window

Consistent with background expectations

Set 95% CL limits on generic phase-space models using CL_s :

•
$${\cal B}(B^0_s o \mu^+ \mu^- \mu^+ \mu^-) < 1.6 imes 10^{-8}$$

▶
$$\mathcal{B}(B^0
ightarrow \mu^+ \mu^- \mu^+ \mu^-) < 6.6 imes 10^{-9}$$

- Also limits on the sGoldstino models ($m_P = 214.3 \text{ MeV}/c^2$, $m_S = 2.5 \text{ GeV}/c^2$):
 - $\mathcal{B}(B_s^0 \rightarrow SP) < 1.6 \times 10^{-8}$

•
$$\mathcal{B}(B^0 \rightarrow SP) < 6.3 \times 10^{-9}$$

• Paper published in PRL: PRL 110, 211801 (2013) Figure from PRL 110, 211801 (2013)

Interpreting $B^0_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ results 0.00014 $\frac{Br(B^0 \rightarrow SP)}{Br(B_s \rightarrow SP)}$ 0.00012 -2 год¹⁰Вг -3 0.0001 Br(B→SP) 8e-05 M =214.3 MeV/c 6e-05 4e-05 2e-05 0 $Log_{10} \frac{m_S}{1 \text{ Cov}}$ 0 4 m_s, GeV (d) $\mathcal{B}(B^0_{ds} \to SP)$ vs m_S (e) $\mathcal{B}(S \to \mu^+ \mu^-)$ vs m_S

- Lots of free parameters in $B^0_{d,s} o SP$ decays
- $m_S > 1\,{
 m GeV}/c^2$ and ${\cal B}(S,P) o \mu^+\mu^- > 10\%$ models disfavoured
 - Phenomenologists can map out phase space, work out limits on SUSY breaking scale
- Future: extract model independent constraints?

Figure (c) from Arxiv:1112.5230, figure (d) from Arxiv:0007325

3. $B_{d,s}^0 \to \mu^+ \mu^- \mu^+ \mu^-$

Conclusions

- $\bullet\,$ Evidence of $B^0_s \to \mu^+\mu^-$ has set stringent constraints on NP
 - Model independent: flavour violating NP either strongly suppressed or at energies greater than LHC energy
 - ► Model dependent: large *tan*β, pseudoscalar light Higgs SUSY models disfavoured
- $\bullet\,$ Stringent limits also set on $B^0 \to \mu^+\mu^-$ and $D^0 \to \mu^+\mu^-$
- Search for $B^0_{d,s} \to \mu^+ \mu^- \mu^+ \mu^-$ has started to probe the phase space of NP models with four-prong flavour violating vertices
- These searches will be updated with the full 2011+2012 LHCb dataset
- With more data, these constraints will get much stronger
 - LHCb upgrade: aim to collect $\sim 50 \text{ fb}^{-1}!$
 - Maybe see hints of the structure of NP?

• • = • • = •