Extended scalar sector

- 2HDM Type II Yukawa
- IDM2

QFTHEP June 2013

Per Osland

Work with:

L Basso, A Lipniacka, F Mahmoudi, S Moretti, G M Pruna, M Purmohammadi G M Pruna, A Pukhov, M Purmohammadi arXiv:1205.6569, arXiv:1305.3219

Preamble

- Higgs particle found! SM?
- 2HDM excluded?
- not quite
- but parameter space severely constrained
- Look for charged Higgs!

2HDM notation 1

$$V = \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] - \frac{1}{2} \left\{ m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + \left[m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \right] + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) \right\}$$

No FCNC: $\lambda_6=0; \quad \lambda_7=0$ Allow CPV: $\lambda_5, \quad m_{12}^2$ complex

2HDM notation 2

$$\Phi_{i} = \begin{pmatrix} \varphi_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + \eta_{i} + i\chi_{i}) \end{pmatrix}$$
$$\begin{pmatrix} H_{1} \\ H_{2} \\ H_{3} \end{pmatrix} = R \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \eta_{3} \end{pmatrix}$$
$$\eta_{3} = -\sin\beta\chi_{1} + \cos\beta\chi_{2}$$
$$R\mathcal{M}^{2}R^{\mathrm{T}} = \mathcal{M}_{\mathrm{diag}}^{2} = \mathrm{diag}(M_{1}^{2}, M_{2}^{2}, M_{3}^{2})$$

$$\begin{array}{c} \begin{array}{c} \text{2HDM notation 3} \\ \text{2 vs 3} & 1 \text{ vs 3} & 1 \text{ vs 2} \end{array} \\ R = R_3 R_2 R_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha_3 & \sin \alpha_3 \\ 0 & -\sin \alpha_3 & \cos \alpha_3 \end{pmatrix} \begin{pmatrix} \cos \alpha_2 & 0 & \sin \alpha_2 \\ 0 & 1 & 0 \\ -\sin \alpha_2 & 0 & \cos \alpha_2 \end{pmatrix} \begin{pmatrix} \cos \alpha_1 & \sin \alpha_1 & 0 \\ -\sin \alpha_1 & \cos \alpha_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix} \text{ PDG convention} \end{array}$$

 $c_i = \cos \alpha_i, \ s_i = \sin \alpha_i$

CP-conserving limits:

 $\begin{array}{ll} H_1 \mbox{ odd:} & \alpha_2 \simeq \pm \pi/2, \ \alpha_1, \alpha_3 \mbox{ arbitrary,} \\ H_2 \mbox{ odd:} & \alpha_2 = 0, \ \alpha_3 = \pi/2, \ \alpha_1 \mbox{ arbitrary,} \\ H_3 \mbox{ odd:} & \alpha_2 = \alpha_3 = 0, \ \alpha_1 \mbox{ arbitrary.} \end{array}$

Yukawa couplings

$$H_{j}b\overline{b}: \qquad \frac{-ig m_{b}}{2 m_{W}} \frac{1}{\cos \beta} [R_{j1} - i\gamma_{5} \sin \beta R_{j3}],$$

$$H_{j}t\overline{t}: \qquad \frac{-ig m_{t}}{2 m_{W}} \frac{1}{\sin \beta} [R_{j2} - i\gamma_{5} \cos \beta R_{j3}].$$

$$H^{+}b\bar{t}: \qquad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}[m_{b}(1+\gamma_{5})\tan\beta + m_{t}(1-\gamma_{5})\cot\beta],\\H^{-}t\bar{b}: \qquad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}^{*}[m_{b}(1-\gamma_{5})\tan\beta + m_{t}(1+\gamma_{5})\cot\beta].$$

Gauge couplings

 $H_j Z Z: \qquad [\cos\beta R_{j1} + \sin\beta R_{j2}], \quad \text{for } j = 1,$

 $H_1 \rightarrow ZZ, WW$ observed (off-shell) $H_{2,3} \rightarrow ZZ, WW$ not observed (on-shell)

 $H_{j}H^{\pm}W^{\mp}: \qquad \frac{g}{2}[\mp i(\sin\beta R_{j1} - \cos\beta R_{j2}) + R_{j3}](p_{\mu}^{j} - p_{\mu}^{\pm}).$

Enter in total widths: $H_{2,3} \rightarrow H_1Z$

Parameters

Input: $\tan \beta$, (M_1, M_2) , $(M_{H^{\pm}}, \mu^2)$, $(\alpha_1, \alpha_2, \alpha_3)$

Reconstruct:

$$M_3^2 = \frac{M_1^2 R_{13} (R_{12} \tan \beta - R_{11}) + M_2^2 R_{23} (R_{22} \tan \beta - R_{21})}{R_{33} (R_{31} - R_{32} \tan \beta)}$$

Explicit expressions for

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \operatorname{Re} \lambda_5, \operatorname{Im} \lambda_5$$

in terms of input

Branching ratios

Branching ratios

Decay rates

random

Decay rates

Decay rates

Decay rates

 H_2 (if, for example at 400 GeV) and H_3 must decay more slowly than SM Higgs (at same mass), in order for model not to be excluded by LHC data

Constraints-theory

- Positivity
 - Explicit conditions
- Unitarity
 - Explicit conditions
- Perturbativity
- Global minimum
 - Three coupled cubic equations

Constraints-experiment

- $\bullet \ b \to s \gamma$
- $\Gamma(Z \to b\bar{b})$
- $B \to \tau \nu(X), B \to D \tau \nu, D \to \tau \nu$
- $B_0 \leftrightarrow \bar{B}_0$
- $B_{d,s} \to \mu^+ \mu^-$
- $\bullet\,$ EW constraints: $S,\,T$
- Electron EDM
- LHC: $H_1 \rightarrow \gamma \gamma$
- LHC: $H_{2,3} \rightarrow W^+W^-$

Parameters

Allowed regions (red) Ignore LHC (apologies)

LHC constraints

$$1 \quad gg \to H_1 \to \gamma\gamma$$
$$R_{\gamma\gamma} = \frac{\Gamma(H_1 \to gg) \text{BR}(H_1 \to \gamma\gamma)}{\Gamma(H_{\text{SM}} \to gg) \text{BR}(H_{\text{SM}} \to \gamma\gamma)}$$

Triangle diagrams modified by couplings, also axial term $0.5 \leq R_{\gamma\gamma} \leq 2.0$

$$2 gg \rightarrow H_{2,3} \rightarrow W^+W^-$$

$$R_{ZZ} = \frac{\Gamma(H_j \to gg) \text{BR}(H_j \to ZZ)}{\Gamma(H_{\text{SM}} \to gg) \text{BR}(H_{\text{SM}} \to ZZ)} \quad \text{bounded}$$

Adopt LHC (ATLAS & CMS) 95% CL

ATLAS CMS

ATLAS, CMS, CMS 2013

Allowed regions LHC constraints 2012

Next:

• Combine all constraints:

2013 vs 2012

- 2013: More exclusion in heavy-Higgs region
- 2012 $0.5 \le R_{\gamma\gamma} \le 2.0$
- 2013 ATLAS $1.03 \le R_{\gamma\gamma} \le 2.33$ (2σ)
- 2013 CMS $0.26 \le R_{\gamma\gamma} \le 1.34$ (2σ)

Allowed regions 2013

Allowed regions 2013

Allowed regions 2013

$\tan\beta = 1$

Range of μ (all masses in GeV)

M_2 $M_{H^{\pm}}$	300	350	400	450	500
500	none	none	(300, 400)	(300, 450)	(350, 500]
450	none	[250, 350]	(250, 400]	(250, 450]	(300, 450]
400	(300)	(200, 350]	(200, 400]	(250, 400]	(300, 400]

$$\mu \leq \operatorname{avg}(M_2, M_{H^{\pm}})$$

$\tan\beta=2$

Range of μ (all masses in GeV)

M_2 $M_{H^{\pm}}$	300	350	400	450	500
500	none	none	(400, 450)	(400, 450)	(400, 500]
450	none	(300, 350)	(300, 450)	(350, 450]	(400, 500]
400	(200, 300]	(200, 350]	(250, 450]	(300, 450]	(350, 400]

$$\mu \leq \operatorname{avg}(M_2, M_{H^{\pm}})$$

Allowed regions high tanbeta 2012

Decoupling

Allowed regions high tanbeta 2013

Allowed regions high tanbeta 2013

CP conserving limits

CP conserving limits

$H_1 \to \gamma \gamma$

- $R_{\gamma\gamma} > 1?$
- $\bullet~$ In SM $W~{\rm and}~t~$ loop interfere destructively

•
$$H_j t \overline{t}$$
: $\frac{-ig m_t}{2 m_W} \frac{1}{\sin \beta} [R_{j2} - i\gamma_5 \cos \beta R_{j3}].$

• Flip sign of *t*-loop?

•
$$R_{12} = s_1 c_2, \quad s_1 < 0? \quad c_2 < 0?$$

• Also γ_5 term (additive)

Overview ATLAS constraints

Overview CMS constraints

H₃ mass, M₃ CMS constraints

Charged Higgs

- Only way to exclude SM?
- Identify Benchmarks!

Requirements:

- Not excluded by theoretical arguments
- Not excluded by experimental data
- Good production cross section
- Good BR for decay to $W + H_1$
- Moderate background

Charged Higgs Benchmarks

	$lpha_1/\pi$	α_2/π	$lpha_3/\pi$	aneta	M_2	$M_{H^{\pm}}^{\min}, M_{H^{\pm}}^{\max}$
P_1	0.23	0.06	0.005	1	300	$300,\!325$
P_2	0.35	-0.014	0.48	1	300	$300,\!415$
P_3	0.35	-0.015	0.496	1	350	$300,\!450$
P_4	0.35	-0.056	0.43	1	400	$300,\!455$
P_5	0.33	-0.21	0.23	1	450	$300,\!470$
P_6	0.27	-0.26	0.25	1	500	$300,\!340$
P_7	0.39	-0.07	0.33	2	300	$300,\!405$
P_8	0.34	-0.03	0.11	2	400	$300,\!315$
P_9	0.47	-0.006	0.05	10	400	400,440
P_{10}	0.49	-0.002	0.06	10	600	600,700

Proposed channel:

 $pp \to W^{\pm}H^{\mp}(+X)$ $\rightarrow W^+W^-H_1$ $\rightarrow jj \ell^{\pm} \nu b\bar{b}$ H_1 W

 $H_j H^{\pm} W^{\mp}$ coupling squared: $\sim (\sin \beta R_{j1} - \cos \beta R_{j2})^2 + R_{j3}^2$ $H_1 H^{\pm} W^{\mp} := \sin^2 (\beta - \alpha_1) \cos^2 \alpha_2 + \sin^2 \alpha_2$

 $H_{j}H^{\pm}W^{\mp}$ coupling squared: $\sim (\sin\beta R_{j1} - \cos\beta R_{j2})^{2} + R_{j3}^{2}$ $H_{1}H^{\pm}W^{\mp}$: $= \sin^{2}(\beta - \alpha_{1}) + \sin^{2}\alpha_{2}\cos^{2}(\beta - \alpha_{1})$

Branching ratios:

Branching ratios:

Dominant production mechanisms

Coupling may depend on details

Cross sections: legend next page

Cross sections:

- cross section larger by factor 10³
- impose generic cuts, BG reduction by factor 40, signal reduction by 2-3

Generic cuts

1) **Kinematics:** standard detector cuts

$$p_{\ell}^{T} > 15 \text{ GeV}, \qquad |\eta_{\ell}| < 2.5,$$

 $p_{j}^{T} > 20 \text{ GeV}, \qquad |\eta_{j}| < 3,$
 $\Delta R_{jj}| > 0.5, \qquad |\Delta R_{\ell j}| > 0.5;$

2) light Higgs reconstruction:

$$\left| M(b\overline{b}) - 125 \text{ GeV} \right| < 20 \text{ GeV};$$

3) hadronic W reconstruction $(W_h \rightarrow jj)$:

$$|M(jj) - 80 \text{ GeV}| < 20 \text{ GeV};$$

Generic cuts

4) top veto: if $\Delta R(b_1, W_h) < \Delta R(b_2, W_h)$, then

 $M(b_1 jj) > 200 \text{ GeV}, \qquad M_T(b_2 \ell \nu) > 200 \text{ GeV},$ otherwise $1 \leftrightarrow 2$; disfavor top, for each b-quark separately

5) same-hemisphere b quarks:

$$\frac{\mathbf{p}_{b_1}}{|\mathbf{p}_{b_1}|} \cdot \frac{\mathbf{p}_{b_2}}{|\mathbf{p}_{b_2}|} > 0 \,.$$

Additional anti-top cut

Idea: Since $M_{H^\pm} > m_t$

One of the W's should form high invariant mass with $b\bar{b}$ pair

Possible cuts

"squared cut": "single cut":

$$C_{squ} = \max \left(M(b\bar{b}jj), M_T(b\bar{b}\ell\nu) \right) > M_{lim}$$
$$C_{sng} = M_T(b\bar{b}\ell\nu) > M_{lim}.$$

Choose: C_{sng} $\dot{M}_{lim} = 600 \text{ GeV}$

 $P_2: \tan \beta = 1, \quad M_2 = 300 \text{ GeV}, \quad \alpha_i = \{0.35, -0.014, 0.48\}$

$$P_3: \tan \beta = 1, \quad M_2 = 350 \text{ GeV}, \quad \alpha_i = \{0.35, -0.015, 0.496\}$$

 $P_4: \tan \beta = 1, \quad M_2 = 400 \text{ GeV}, \quad \alpha_i = \{0.35, -0.056, 0.43\}$

$$P_5: \tan \beta = 1, \quad M_2 = 450 \text{ GeV}, \quad \alpha_i = \{0.33, -0.21, 0.23\}$$

$$P_7: \tan \beta = 2, \quad M_2 = 300 \text{ GeV}, \quad \alpha_i = \{0.39, -0.07, 0.33\}$$

	$M_{H^{\pm}} =$	310 GeV	$M_{H^{\pm}} = 390 \text{ GeV}$		
	Events	S/\sqrt{B}	Events	S/\sqrt{B}	
$t\overline{t}$		24	9		
peak	11.9	—	9.9	_	
P_1	3.8	0.8	—	—	
peak	2.6	0.8	_	—	
P_2	4.7	1.0	8.8	1.8	
peak	3.3	1.0	7.3	2.3	
P_3	11.3	2.3	22.0	4.4	
peak	7.7	2.3	17.2	5.4	
P_4	10.0	2.0	20.3	4.1	
peak	7.8	2.3	16.0	5.1	
P_5	21.1	4.2	30.2	6.1	
peak	13.9	4.1	25.0	7.9	
P_6	14.0	2.8	_	_	
peak	9.4	2.8	_	—	
P_7	3.1	0.6	7.4	1.5	
peak	2.8	0.8	7.3	2.3	
P_8	1.2	0.2	—		
peak	1.2	0.4	_	—	

2HDM Conclusions

- 2HDM II parameter space is severely constrained by LHC data
- Parts of 2HDM II parameter space are still open
- SM would be excluded by charged Higgs discovery

• $pp \rightarrow \underbrace{jj}_{W} \underbrace{\ell^{\pm}\nu}_{W} \underbrace{b\bar{b}}_{H_{1}}$ channel allows detection in part of parameter space

The Extension Scalar DM

• "Inert (Scalar) Doublet Model (IDM)", Barbieri et al, 2006

Extend SM with additional scalar doublet, unbroken Z_2 symmetry makes lightest "odd" particle stable. No vev, no direct coupling to SM matter.

• "CP-violating Inert Doublet Model", Grzadkowski et al, 2009

Extend 2HDM with additional scalar doublet, unbroken Z_2 symmetry makes lightest "odd" particle stable. No vev, no direct coupling to SM matter.

IDM2: 2HDM + inert doublet

Grzadkowski et al, 2009

Motivation: IDM + CP violation

Fields:

$$\Phi_{1} = \begin{pmatrix} \varphi_{1}^{+} \\ (v_{1} + \eta_{1} + i\chi_{1})/\sqrt{2} \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} \\ (v_{2} + \eta_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

$$\eta = \begin{pmatrix} \eta^{+} \\ (S + iA)/\sqrt{2} \end{pmatrix}$$
Coupling:
$$V(\Phi_{1}, \Phi_{2}, \eta) = V_{12}(\Phi_{1}, \Phi_{2}) + V_{3}(\eta) + V_{123}(\Phi_{1}, \Phi_{2}, \eta)$$

$$\begin{split} V_{12}(\Phi_1, \Phi_2) &= -\frac{1}{2} \left\{ m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] \right\} \\ \text{(standard)} &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \\ V_3(\eta) &= m_{\eta}^2 \eta^{\dagger} \eta + \frac{\lambda_{\eta}}{2} (\eta^{\dagger} \eta)^2 \end{split}$$

Coupling:

$$\begin{split} V_{123}(\Phi_{1},\Phi_{2},\eta) &= \lambda_{1133}(\Phi_{1}^{\dagger}\Phi_{1})(\eta^{\dagger}\eta) + \lambda_{2233}(\Phi_{2}^{\dagger}\Phi_{2})(\eta^{\dagger}\eta) \\ \text{(most general)} &+ \lambda_{1331}(\Phi_{1}^{\dagger}\eta)(\eta^{\dagger}\Phi_{1}) + \lambda_{2332}(\Phi_{2}^{\dagger}\eta)(\eta^{\dagger}\Phi_{2}) \\ &+ \frac{1}{2} \left[\lambda_{1313}(\Phi_{1}^{\dagger}\eta)^{2} + \text{h.c.} \right] + \frac{1}{2} \left[\lambda_{2323}(\Phi_{2}^{\dagger}\eta)^{2} + \text{h.c.} \right] \\ &\text{Many parameters...} \end{split}$$

Many parameters! Simplify!

"Dark democracy":
$$\lambda_a \equiv \lambda_{1133} = \lambda_{2233}$$
,
 $\lambda_b \equiv \lambda_{1331} = \lambda_{2332}$,
 $\lambda_c \equiv \lambda_{1313} = \lambda_{2323}$ (real)

Masses of inert sector:

$$M_{\eta^{\pm}}^{2} = m_{\eta}^{2} + \frac{1}{2}\lambda_{a} v^{2},$$

$$M_{S}^{2} = m_{\eta}^{2} + \frac{1}{2}(\lambda_{a} + \lambda_{b} + \lambda_{c})v^{2} = M_{\eta^{\pm}}^{2} + \frac{1}{2}(\lambda_{b} + \lambda_{c})v^{2},$$

$$M_{A}^{2} = m_{\eta}^{2} + \frac{1}{2}(\lambda_{a} + \lambda_{b} - \lambda_{c})v^{2} = M_{\eta^{\pm}}^{2} + \frac{1}{2}(\lambda_{b} - \lambda_{c})v^{2}$$

Important:

These $\lambda_{a,b,c}$ characterize coupling of inert sector to noninert sector, and also mass splitting in inert sector

Higgs portal

• Coupling of scalars: Higgs \leftarrow DM $\lambda_L \equiv \frac{1}{2}(\lambda_a + \lambda_b + \lambda_c) = \frac{M_S^2 - m_\eta^2}{v^2}$
Constraints

- positivity (rather complicated), 20% excluded
- unitarity, 60% excluded
- global minimum, 10% excluded
- additional 2HDM constraints: $T, b \rightarrow s\gamma$ etc • DM \searrow EW "precision data" determined by MicrOMEGAs

Positivity

Define:

$$\lambda_x = \lambda_3 + \min(0, \lambda_4 - |\lambda_5|)$$

$$\lambda_y = \lambda_{1133} + \min(0, \lambda_{1331} - |\lambda_{1313}|)$$

$$\lambda_z = \lambda_{2233} + \min(0, \lambda_{2332} - |\lambda_{2323}|)$$

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_\eta > 0, \quad \lambda_x > -\sqrt{\lambda_1 \lambda_2}$$

$$\lambda_y > -\sqrt{\lambda_1 \lambda_\eta}, \quad \lambda_z > -\sqrt{\lambda_2 \lambda_\eta}$$

Plus additional constraint, which in the case of Dark democracy $\lambda_y = \lambda_z$ takes the form:

$$\lambda_y \ge 0 \lor \left(\lambda_\eta \lambda_x - \lambda_y^2 > -\sqrt{(\lambda_\eta \lambda_1 - \lambda_y^2)(\lambda_\eta \lambda_2 - \lambda_y^2)}\right)$$

Getting correct DM density

Main Early Universe annihilation mechanisms:

- Annihilation to W^+W^- , effective above 75 GeV
- Annihilation via real or virtual neutral Higgs

like IDM...

Annihilation in the Early Universe

The DM particles can annihilate via the gauge coupling:

$$SSW^+W^-: \quad \frac{ig^2}{2}$$
$$SSZZ: \qquad \frac{ig^2}{2\cos^2\theta_W}$$

Annihilation in the Early Universe

The DM particles can annihilate via the gauge coupling:

or quartic couplings:

$$SSH_{j}H_{j}: -2i(\lambda_{L} - \lambda_{c}R_{j3}^{2})$$
$$SSH_{j}H_{k}: 2i\lambda_{c}R_{j3}R_{k3}$$
$$SSH^{+}H^{-}: -i\lambda_{a}$$

Allowed regions in Ms

Scan over parameters

- 1. M_S , M_1 (lowest masses of inert and 2HDM sectors, fixed)
- 2. M_A , $M_{\eta^{\pm}}$ (inert sector, physical masses, fixed).
- 3. M_2 , μ (2HDM sector parameters)
- 4. m_{η} (inert sector, soft mass parameter, fixed).
- 5. $\tan \beta$, $M_{H^{\pm}}$ (2HDM sector), $0.5 \leq \tan \beta \leq 50, 300 \text{ GeV} \leq M_{H^{\pm}} \leq 700 \text{ GeV}.$

6. $\alpha_1, \alpha_2, \alpha_3$ (2HDM sector), $-\pi/2 \leq \alpha_{1,2} \leq \pi/2$, and $0 \leq \alpha_3 \leq \pi/2$.

Collect results in $M_{\eta^{\pm}}, m_{\eta}$ plane

Need some coupling to Higgs, $|\lambda_L|$ can not be too small

Mass of charged state

Compare CDMS-II and XENON100

Compare CDMS-II and XENON100

Can the model be experimentally tested?

Production and discovery at the LHC?

Pair production and single production

Single production

Pair production

Bumps are due to resonant production via H_2 , H_3

For small mass splitting, get displaced vertex

For hadronic W decay, get two jets (may merge to one)

Ideas for a search

 $pp \to \eta^{\pm} S \to W^{\pm} S S.$

$pp \rightarrow j + \text{MET}$

MET > 120 GeV, $p_j^T > 120$ GeV

Conclusions

... if scalars are dark matter...

- Scalar sector could be much more exciting than in the SM
- Possibly signals in Direct or Indirect detection experiments
- Possibly interesting signals at the LHC
- In the meantime, parts of parameter space will be excluded