New options in Higgs-Dark physics: Strongly interacting dark matter; degeneracy of some intermediate state during cooling of the Universe

I. F. Ginzburg Sobolev Inst. of Mathematics, SB RAS and Novosibirsk State University Novosibirsk, Russia

Inert Doublet Model. Brief review

SM with standard Higgs field ϕ_S is supplemented by Higgs field ϕ_D , having no interaction with matter fields and v.e.v. $\langle \phi_D \rangle = 0$. **G. Despande, L. Ma** *Phys.Rev.* **D18 (1978) 2574**; many papers now. Some points repeat I.F.G., K.A. Kanishev, M. Krawczyk, D. Sokolowska. Phys. Rev. **D 82**, 123533 (2010), hep-ph/1009.4593

Lagrangian: $\mathcal{L} = \mathcal{L}_{gf}^{SM} + \mathcal{L}_{Y} + \frac{1}{2}(D_{\mu}\phi_{S}D_{\mu}\phi_{S}^{\dagger} + D_{\mu}\phi_{D}D_{\mu}\phi_{D}^{\dagger}) - V.$ \mathcal{L}_{gf}^{SM} : $SU(2) \times U(1)$ SM interaction of gauge bosons and fermions; \mathcal{L}_{Y} : Yukawa interaction of fermions with Higgs field ϕ_{S} only. Z_2 symmetric Higgs potential (forbidding (ϕ_S, ϕ_D) mixing), with all real λ_i :

$$V = -\frac{1}{2} \left(m_{11}^2 (\phi_S^{\dagger} \phi_S) + m_{22}^2 (\phi_D^{\dagger} \phi_D) \right) + \frac{1}{2} \left(\lambda_1 (\phi_S^{\dagger} \phi_S)^2 + \lambda_2 (\phi_D^{\dagger} \phi_D)^2 \right) + \lambda_3 (\phi_S^{\dagger} \phi_S) (\phi_D^{\dagger} \phi_D) + \lambda_4 (\phi_S^{\dagger} \phi_D) (\phi_D^{\dagger} \phi_S) + \frac{\lambda_5}{2} \left((\phi_S^{\dagger} \phi_D)^2 + (\phi_D^{\dagger} \phi_S)^2 \right) + V_0.$$

We fix $\lambda_5 < 0$. Potential is positive at large quasi-classical values for fields ϕ_i and gives neutral DM if only (**positivity**)

$$\lambda_1 > 0$$
, $\lambda_2 > 0$; $R = (\lambda_3 + \lambda_4 + \lambda_5)/\sqrt{\lambda_1 \lambda_2} > -1$

This potential keeps D-parity $\phi_D \leftrightarrow -\phi_D$ and S-parity $\phi_S \leftrightarrow -\phi_S$. The latter is violated by Yukawa interaction.

Extrema of potential

The extrema of the potential define the values $\langle \phi_{S,D} \rangle$ of the fields $\phi_{S,D}$ via equations: $\partial V/\partial \phi_i|_{\phi_i = \langle \phi_i \rangle} = 0$. For each extremum with $\langle \phi_S \rangle \neq 0$ we choose the *z* axis in the weak isospin space so that $\langle \phi_S \rangle = \begin{pmatrix} 0 \\ v_S \end{pmatrix}$ with real $v_S > 0$ ("neutral direction"). After this choice the most general form extremum is $\langle \phi_S \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_S \end{pmatrix}$, $\langle \phi_D \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} u \\ v_D \end{pmatrix}$. The vacuum with $u \neq 0$ is excluded for potentials with λ 's, allowing the IDM with neutral DM particle.

We use below abbreviations $\mu_1 = \frac{m_{11}^2}{\sqrt{\lambda_1}}, \quad \mu_2 = \frac{m_{22}^2}{\sqrt{\lambda_2}}.$

Complete set of extrema with their v.e.v.'s and energies $\overline{\mathcal{E}}_a = \mathcal{E}_a - V_0$. I. The electroweak symmetry preserving extremum EWs $v_D = 0, \quad v_S = 0, \quad \overline{\mathcal{E}}_{EWs} = 0.$ **Electroweak symmetry violating extrema:** II. Inert extremum I_1 , preserving *D*-parity: $v_D = 0, \ v_S^2 = m_{11}^2 / \lambda_1, \quad \mathcal{E}_{I_1} = -\mu_1^2 / 8;$ III. Inert-like extremum I_2 , violating *D*-symmetry: $v_S = 0, \; v_D^2 = m_{22}^2/\lambda_2, \quad \mathcal{E}_{I_2} = -\mu_2^2/8$; **IV. Mixed extremum** *M*, violating *D*-symmetry: $v_S^2 = \frac{\mu_1 - R\mu_2}{\sqrt{\lambda_1}(1 - R^2)}, \quad v_D^2 = \frac{\mu_2 - R\mu_1}{\sqrt{\lambda_2}(1 - R^2)}; \quad \bar{\mathcal{E}}_M = -\frac{\mu_1^2 + \mu_2^2 - 2R\mu_1\mu_2}{8(1 - R^2)}.$

If some of these v_a^2 are negative, mixed extremum is absent.

Assumption: Our world is described by I_1 (inert phase): This state can be ground state with neutral DM particle if only

$$m_{11}^2 > 0;$$
 $\lambda_4 + \lambda_5 < 0;$
 $\mu_1 > \mu_2 \ at \ R > 1,$ $R\mu_1 > \mu_2 \ at \ |R| < 1$

In this state we have $(G^{\pm}, G - \text{Goldstone modes})$

$$\phi_S = \begin{pmatrix} G^+ \\ (v+h+iG)/\sqrt{2} \end{pmatrix}, \quad \phi_D = \begin{pmatrix} D^+ \\ (D+iD_A)/\sqrt{2} \end{pmatrix}.$$

Let M_h , M_D , M_A , $M_{\pm} \equiv M_+$ are masses of h, D, D_A and D^{\pm} . As in SM, $M_h^2 = \lambda_1 v^2$ with v = 246 GeV. For $M_h = 125$ GeV (LHC) it gives $\lambda_1 = 0.25$; $M_D^2 = \sqrt{\lambda_2} (R\mu_1 - \mu_2)/2$, $M_A^2 = M_D^2 - v^2 \lambda_5$, $M_+^2 = M_D^2 - v^2 (\lambda_4 + \lambda_5)/2$.

Due to *D*-parity conservation, the lightest from these D-scalars can play a role of DM particle. Interactions of scalar h with the fermions and gauge bosons, just as their self-interactions, are the same as for Higgs boson in the SM. D-scalars D, D_A , D^{\pm} don't couple to fermions directly. They couple to known particles via covariant derivative in kinetic term $D_{\mu}\phi_D^{\dagger}D_{\mu}\phi_D$, that are $D^+D^-\gamma$, D^+D^-Z , $D^{\pm}DW^{\mp}$, $D^{\pm}D^AW^{\mp}$, DD^AZ .

Dh interactions

$$\frac{2v \cdot h + hh}{4} \left[4\lambda_3 D^+ D^- + (\lambda_3 + \lambda_4) (DD + D^A D^A) + \lambda_5 (DD - D^A D^A) \right].$$
DD interactions

$$\lambda_2 \cdot \left[\frac{1}{8} (DD + D^A D^A) (DD + D^A D^A + 4D^+ D^-) + D^+ D^- D^+ D^- \right].$$

Possible interactions of D and D^A are identical. Their attribution as scalar and pseudoscalar is only subject of agreement. With our choice $\lambda_5 < 0$ boson D^A is heavier than D.

Limitations for masses

1. Cosmology. Stability is provided by *D*-parity conservation. The rate of annihilation processes $DD \rightarrow W^{+*}W^{-*}$ together with $DD \rightarrow h \rightarrow fermions$ should be low enough to keep modern abundance of *D* during life of Universe. It gives limitation $M_D < M_W$. More detail limitations depend on DDh coupling value. Roughly we have $M_D < 60 \ GeV$. (Another region $M_D > 1500$ GeV, related to low density of DM particles in this case, is also discussed).

2. LEP limitations. The non-observation of processes $e^+e^- \rightarrow Z \rightarrow DD^A \rightarrow DDZ$ and $e^+e^- \rightarrow (\gamma, Z) \rightarrow D^+D^- \rightarrow DDWW$ with either on-shell or off-shell W and Z gives

 $M_A > 100 \ GeV, \ M_+ \gtrsim 100 \ GeV$

Possible discovery and measuring of masses At ILC/CLIC (I.F.G. hep-ph/10105579;1211/2429)

Processes $e^+e^- \rightarrow D^+D^- \rightarrow DDW^+W^- \rightarrow DD(q\bar{q})(q\bar{q})$; $DD(q\bar{q})(\ell\nu)$. Study of energy distribution of diquark (dijet) and single lepton from W decay. The upper end point in the dijet energy spectrum and singularities in the single lepton spectrum will give information, necessary to determine M_D and M_+ . (The study of singularities in single lepton spectrum is new tool, suggested in my paper recently).

Process $e^+e^- \rightarrow DD^A \rightarrow DDZ$ allow to determine M_A and M_D via end points in the energy spectra of dilepton from decay of Z, but with lower accuracy.

Effects in Higgs physics

1. Invisible decay of Higgs $h \rightarrow DD$ with coupling $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$, which can be considered as free parameter of theory. It can be measured in principle in ZH production at LHC and (more precise) at ILC/CLIC.

2. Additional hD^+D^- contribution to two-photon width of Higgs which value is given by free parameter of theory λ_3 (with arbitrary value and sign).

After measuring M_+ and M_D comparison of two-photon width and its invisible width allow to verify model completely.

Possible strong interaction in Dark sector (NEW)

Interactions among *D*-particles are determined by parameter λ_2 which don't influence for standard Higgs sector at fixed M_D . Therefore, the opportunity of large λ_2 cannot be ruled. In this case we have strong interaction in dark sector.

At the tree level it is repulsion ($\lambda_2 > 0$). Therefore "light" DD, D^+D^- , DD^+ , etc. "molecules" don't appear.

However, one can exist resonances in the "D-matter", similar those discussed in many papers devoted to the strong interaction in Higgs sector.

Inert-like phase I_2 can be ground state (vacuum) if

$$m_{22}^2 > 0 \ at \ any \ R \equiv \frac{\lambda_{345}}{\sqrt{\lambda_1 \lambda_2}},$$

 $\mu_2 > \mu_1 \ at \ R > 1, \quad R\mu_2 > \mu_1 \ at \ |R| < 1.$

This state **looks** similar to the inert phase. Field ϕ_D looks similar to Higgs field in SM. It splits into 3 Goldstone modes + observable Higgs boson D_h with mass $M_{D_h}^2 = \lambda_2 v^2$. D_h don't couple with fermions. The ϕ_S field is realized as physical fields S_H , S_A , S_{\pm} with masses $M_{S_H}^2 = \sqrt{\lambda_1} \frac{R\mu_2 - \mu_1}{2}$, $M_{S_A}^2 = M_{S_H}^2 - v^2\lambda_5$, $M_{S_{\pm}}^2 = M_{S_H}^2 - v^2 \frac{\lambda_4 + \lambda_5}{2}$. They are couple to massless fermions.

This state contains no candidates for DM particle.

M (mixed phase) is similar to that in 2HDM with Model I for Yukawa interaction. Scalars h, H, A, H^{\pm} + 3 Goldstones mix components of ϕ_D and ϕ_S .

This extremum can be minimum if only $|R| = |\lambda_{345}/\sqrt{\lambda_1\lambda_2}| < 1$. Since symmetry $\phi_D \leftrightarrow -\phi_D$ of entire Lagrangian (including Yukawa term), this extremum is degenerated in the sign of $\langle \phi_D \rangle$, there are 2 mixed type states M_{\pm} , with $\langle \phi_D \rangle = v_D$ and $\langle \phi_D \rangle = -v_D$ $\Rightarrow \beta \rightarrow -\beta, \alpha \rightarrow -\alpha$. **NEVV-2013:** These vacua can be distinguished by the SIGN of couplings of H to gauge bosons $\propto \sin(\beta - \alpha)$ in the processes like $t\bar{t} \rightarrow WW$, etc.

The actual mixed phase consists of domains M_+ and M_- .

Fate of Universe

Temperature dependence. At the finite temperature the ground state of system is given by minimum of the Gibbs potential $V_G = Tr\left(Ve^{-\hat{H}/T}\right)/Tr\left(e^{-\hat{H}/T}\right)$. At high enough temperatures in the main approximation V_G has the same form as V with the same λ_i , and mass terms varying with temperature

$$m_{11}^2(T) = m_{11}^2(0) - c_1 T^2, \quad m_{22}^2(T) = m_{22}^2(0) - c_2 T^2,$$

$$c_1 = c_{H1} + c_{SM} + c_Y \equiv \tilde{c}_1 \sqrt{\lambda_1}, \quad c_2 = c_{H2} + c_{SM} \equiv \tilde{c}_2 \sqrt{\lambda_2};$$

$$c_{Hi} = \frac{3\lambda_i + 2\lambda_3 + \lambda_4}{12} \quad (i = 1, 2); \quad c_{SM} = \frac{3g^2 + g'^2}{32}; \quad c_Y = \frac{g_t^2 + g_b^2}{8}.$$

Here g and g' are coupling constants of gauge EW interaction; the Yukawa couplings for t and b quarks are $g_t \approx 1$ and $g_b \approx 0.03$. Due to this variation of potential,

position and properties of ground state vary with temperature.

Thermal evolution of Universe

During cooling of the Universe mass terms in V were changed \Rightarrow phase states were changed. Possible ways of evolution are shown here: М I_2 15 P3 I_2 53 М 12 32 $\overline{\mu}_1$ μ_1 μ_1 $\mathbf{P2}$ Þ4 ×11 $5\overline{2}$ /31 Þ5/ EWs EWs EWs Ľτ I_1 /51 $\checkmark 21$ 41 54 R > 11 > R > 00 > R > -1

Evolution through mixed phase Ray 32 $\left(0 < \frac{c_2}{c_1} < \frac{m_{22}^2(T=0)}{m_{11}^2(T=0)}\right)$.

I. Starting from EWs state the Universe comes to the Inert-like phase I_2 at $T_{EWs,2} = \sqrt{\mu_2(0)/\tilde{c}_2}$ (2-nd order phase transition (PT) with the order parameter $\eta_{EW,2} \propto \langle \phi_2 \rangle \equiv v_D$).

(At some values of parameters more accurate calculation of the Gibbs potential can transform this PT to the 1-st order PT).

II. The inert like phase I_2 has no candidates for DM particles.

The Universe cooled in this phase up to a temperature

 $T = T_{2,M} = \sqrt{(\mu_1(0) - R\mu_2(0))/(\tilde{c}_1 - R\tilde{c}_2)}.$

III. At the temperature $T = T_{2,M}$ the Universe comes to the mixed phase M with domains M_+ , M_- . That is 2-nd order PT with order parameter $\eta_{2,M} \propto \langle \phi_S \rangle \propto \sqrt{|\mu_1 - R\mu_2|}$, which is represented by mass M_{SH} in the phase I_2 and mass M_h in the mixed phases M_{\pm} . At the transition point these masses vanish.

The height of domain wall is given by position of lowest saddle extremum between M_+ and M_- .

Here $\mu_2 > \mu_1$, and lowest saddle extremum is inert-like I_2 with height of domain wall $E_b = \mathcal{E}_{I2} - \mathcal{E}_M = \frac{(\mu_2 R - \mu_1)^2}{8(1 - R^2)}$ Near the PT $I_2 \rightarrow M$ (at $T \sim T_{2,M}$ – small $\eta_{2,M}$) we have $(\mu_2 R - \mu_1) = A_2(T^2 - T_{2,M}^2)$ with $A_2 > 0$. At these temperatures the system is highly non homogeneous, with the domains of I_2 phase (obliged by fluctuation of temperature and density), and phases M_+ and M_- with height of wall between domains $E_b \propto \eta_{2,M}^4$. The distribution of these domains in the space is constantly changing. The characteristic correlation radius is

$$R_c(T) \propto 1/\eta_{2,M} \propto 1/\sqrt{|T^2 - T^2_{2,M}|}.$$

With decreasing of temperature the domains of I_2 become energetically unfavourable. The domains M_+ and M_- are hardened, since the height of walls between them increases. The correlation radius decreases, domains become bubbles with surface tension $\sigma_s \sim E_b R_c$. The curved surface of this bubble is under pressure $\sim \sigma_s/r$, where ris the local radius of curvature. This pressure leads to the absorption of small domains by larger.

The local velocity of motion of domain walls is $\sim c$ – speed of light. But the global merging process is slow diffuse process with characteristic time $\sim (R/c)\sqrt{R/R_c}$, where R is characteristic radius of Universe inhomogeneity.

This temp must be compared with the temp of cooling of Universe.

At the cooling of Universe below $T = T_{2,1} = \sqrt{(\mu_1(0) - \mu_2(0))/(\tilde{c_1} - \tilde{c_2})}$, we come to the region $\mu_1 > \mu_2$, and the wall between domains M_+ and M_- is given by inert extremum I_1 with $E_b = \mathcal{E}_{I1} - \mathcal{E}_M = \frac{(\mu_1 R - \mu_2)^2}{8(1 - R^2)}$. With subsequent cooling the Universe passes to the inert phase I_1 at the temperature $T = T_{M,1} = \sqrt{(R\mu_1(0) - \mu_2(0))/(R\tilde{c_1} - \tilde{c_2})}$. That is 2-nd order PT with order parameter $\eta_{M,1} \propto \langle \phi_D \rangle \propto \sqrt{|R\mu_1 - \mu_2|} \propto (T^2 - T_{M,1}^2)$, representing by mass M_H in the mixed phases M_{\pm} and mass of DM particle M_D in the phase I_1 . At the transition point these masses vanish.

The evolution of fluctuations (domains) near this transition in the mixed phase is similar to that discussed for the transition $I_2 \rightarrow M$. It looks very probable, that after these transitions the Universe become strongly inhomogeneous. IV. Below $M \to I_1$ transition the system has fluctuations of type M_+ and M_- , obliged by fluctuations of temperature and density.

The previous history of fluctuations in the mixed phase can enhance size of these latest fluctuations.

Depending on parameters of model, the temperature of this transition $T_{M,1}$ can be low enough. It can results inhomogeneities in the modern Universe. In this case these fluctuations can influence for history of baryogenesis. In this case our approximation can give only qualitative picture, lattice calculations can be useful.

The considered IDM can be denoted as (1 + 1) IDM (1-Dark, 1-Standard). More complex IDM with 2 "standard" Higgs field ϕ_{S1} , ϕ_{S2} and one "dark" doublet $\phi_D - (1 + 2)$ IDM can be treated also (see e.g. **B. Grzadkowski, O.M. Ogreid, P. Osland, A. Pukhov, M. Purmohammadi**). Complete description of temperature evolution of Universe in this model is absent to-day. Perhaps, the most interesting new physical phenomenon in the evolution of Universe in this case would be intermediate stage with charged vacuum, without massless photons and electric charge conservation and with very strong winds after transition from this phase.

The intermediate mixed phase similar to that described above with the same degeneracy and similar fluctuations takes place in such model as well.

The end