Bottomonia & charmonia at B-factories

Pavel Krokovny

Budker Institute of Nuclear Physics, Novosibirsk, Russia

- Introduction
- Bottomonium states
 - $Z_{b}(10610)$ and $Z_{b}(10650)$
- Charmonium states
 - Study of X, Y, Z states
 - Evidence for ψ_2
- Summary

QFTHEP 2013

Introduction

Heavy Quarkonia are ideal tool for testing QCD

In analysis of $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^-$ and $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$

Summary of Z_b parameters

	$\mathbf{I}(\mathbf{I}\mathcal{O})\mathbf{\Lambda}$	$I(2D) \wedge \Lambda$	$\mathbf{I}(00)\mathbf{n}$	$n_{b}(11) \wedge n$	$n_b(21) \wedge n$
$M[Z_b(10610)], {\rm MeV}/c^2$	$10611 \pm 4 \pm 3$	$10609 \pm 2 \pm 3$	$10608 \pm 2 \pm 3$	$10605 \pm 2^{+3}_{-1}$	10599^{+6+5}_{-3-4}
$\Gamma[Z_b(10610)], \text{ MeV}$	$22.3 \pm 7.7^{+3.0}_{-4.0}$	$24.2 \pm 3.1^{+2.0}_{-3.0}$	$17.6 \pm 3.0 \pm 3.0$	$11.4^{+4.5+2.1}_{-3.9-1.2}$	13^{+10+9}_{-8-7}
$M[Z_b(10650)], {\rm MeV}/c^2$	$10657\pm 6\pm 3$	$10651 \pm 2 \pm 3$	$10652 \pm 1 \pm 2$	$10654 \pm 3 {}^{+1}_{-2}$	10651^{+2+3}_{-3-2}
$\Gamma[Z_b(10650)], \text{ MeV}$	$16.3 \pm 9.8^{+6.0}_{-2.0}$	$13.3 \pm 3.3^{+4.0}_{-3.0}$	$8.4\pm2.0\pm2.0$	$20.9^{+5.4+2.1}_{-4.7-5.7}$	$19 \pm 7 {}^{+11}_{-7}$
Rel. normalization	$0.57 \pm 0.21^{+0.19}_{-0.04}$	$0.86 \pm 0.11^{+0.04}_{-0.10}$	$0.96 \pm 0.14^{+0.08}_{-0.05}$	$1.39 \pm 0.37^{+0.05}_{-0.15}$	$1.6^{+0.6+0.4}_{-0.4-0.6}$
Rel. phase, degrees	$58 \pm 43^{+4}_{-9}$	$-13 \pm 13^{+17}_{-8}$	$-9 \pm 19^{+11}_{-26}$	187^{+44+3}_{-57-12}	$181_{-105-109}^{+65+74}$

Z_b angular analysis

$J^P \setminus Mode$	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
1+	0	0	0
1^{-}	64	264	73
2^{+}	41	207	87
2^{-}	59	304	125

Confirms J^P=1⁺ hypothesis

6D amplitude analysis of decays $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$

$\Upsilon(5S) \rightarrow B^*B^{(*)}\pi$: Selection

Masses of $Z_b(10610)$ and $Z_b(10650)$ are close to BB* and B*B* threshold.

Search for Y(5S) $\rightarrow Z_b \pi$ decay with $Z_b \rightarrow B^{(*)}B^*$; reconstruct only one B and prompt pion

 $\Upsilon(5S) \rightarrow B^*B^{(*)}\pi$: Fit

Red histogram: right charge combination $B\pi$; Hatched histogram: wrong charge combination; The curve show the fit to the data.

Fit yields: $N(BB\pi) = 0.3 \pm 14$ $N(BB^*\pi) = 184 \pm 19$ (9.3 σ) $N(B^*B^*\pi) = 82 \pm 11$ (5.7 σ)

 $\Upsilon(5S) \rightarrow B^*B^{(*)}\pi$: Search for Z_h

Points represent the data.

Curves show the fit with various models.

Hatched histogram is the background contribution.

arXiv:1209.6450

B*B* π candidates are well described by $Z_{\rm b}(10650)$ only contribution. BB^{*} π can be described by two models: $Z_{\rm b}(10610) + Z_{\rm b}(10650);$ $Z_{b}(10610)$ + non-resonant amplitude.

BELLE

Z_b branching fractions

 Υ (5S) branching fractions: BB π < 0.60% (90%CL) BB* π = 4.25 ± 0.44 ± 0.69% B*B* π = 2.12 ± 0.29 ± 0.36%

To be compared with PRD 81 (2010) $f(BB^*\pi) = (7.3\pm2.2\pm0.8)\%$ $f(B^*B^*\pi) = (1.0\pm1.4\pm0.4)\%$

Assuming Z _b decaying to	• Υ(nS)π, h _b	$(mP)\pi$ and	B(*)B*only:
-------------------------------------	--------------------------	---------------	-------------

arXiv:1209.6450

Channel		Fraction, $\%$		
		$Z_b(10610)$	$Z_b(10650)$	
$\Upsilon(1S)\pi^+$		0.32 ± 0.09	0.24 ± 0.07	
$\Upsilon(2S)\pi^+$		4.38 ± 1.21	2.40 ± 0.63	
$\Upsilon(3S)\pi^+$	ARY	2.15 ± 0.56	1.64 ± 0.40	
$h_b(1P)\pi^+$	MINA	2.81 ± 1.10	7.43 ± 2.70	
$h_b(2P)\pi^+$	ILE PREE	4.34 ± 2.07	14.8 ± 6.22	
$B^+ \bar{B}^{*0} + \bar{B}^0 B^{*+}$	Bene	86.0 ± 3.6	_	
$B^{*+}\bar{B}^{*0}$		_	73.4 ± 7.0	

B(*)B* - is the dominant mode of Z_b decays

$\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^0 \pi^0$

 Υ (1,2,3S) \rightarrow $\mu^+\mu^-$, e⁺e⁻, Υ (2S) \rightarrow Υ (1S) $\pi^+\pi^-$

arXiv:1207.4345

 $BF[\Upsilon(5S) \rightarrow \Upsilon(1S)\pi^{0}\pi^{0}] = (2.25\pm0.11\pm0.20) \ 10^{-3}$ $BF[\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^{0}\pi^{0}] = (3.79 \pm 0.24 \pm 0.49) \ 10^{-3}$ Consistent with $\frac{1}{2}$ of Y(nS) $\pi^+\pi^-$

- **I** Z_{b}^{0} resonant structure is observed in $\Upsilon(2S)\pi^{0}\pi^{0}$
- **I** Statistical significance of $Z_b^0(10610)$ signal is 5.3 σ (4.9 σ with systematics)
- $\mathbb{Z}_{b}^{0}(10650)$ signal is not significant (~2 σ), not contradicting with its existence
- **I** $Z_{b}^{0}(10610)$ mass from the fit M=10609 $\pm 8 \pm 6$ MeV/c² $M(Z_{b}^{+})=10607\pm 2$ MeV/c² 11

$\Upsilon(1S)\pi^0\pi^0$ Dalitz analysis

Signals of both Z_b^0 are not significant. Data is not contradicting with their existence.

arXiv:1207.4345

Update of X(3872) \rightarrow J/ $\psi \pi^+\pi^-$

Observed 10 years ago by Belle in $B \rightarrow J/\psi \pi^+\pi^- K$ PRL 91, 262001 (2003)

Update using 772 $10^6 B\overline{B}$

PRD 84, 052004 (2011)

 $M(3872)=3871.84 \pm 0.27 \pm 0.19 \text{ MeV/c}^2;$

Γ(3872)<1.2 MeV @ 90% CL

Mass difference of X(3872) from B⁺ and B⁰: $\Delta M = -0.69 \pm 0.97 \pm 0.19 \text{ MeV/c}^2$

Search for charged X

Charged partner can exist if X(3872) is exotic. Search for X(3872)⁺ in J/ $\psi \rho^+$

Search for C-odd partner of X(3872)

- $B \rightarrow K + \eta J/\psi$: only ψ' signal and non-resonant component, no X(3872). $\mathcal{B}(B^+ \rightarrow X(3872)K^+) \times \mathcal{B}(X \rightarrow \eta J/\psi) < 3.8 \times 10^{-6}$ @90% C.L.
- $B \to K + \gamma \chi_{c1}$:no X(3872) signal observed, $N_{sig} = -1 \pm 5$. $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X \to \gamma \chi_{c1}) < 2.0 \times 10^{-6}$ @ 90% C.L. and $\mathcal{B}(X \to \gamma \chi_{c1}) / \mathcal{B}(X \to J/\psi \pi^+ \pi^-) < 0.26$ @ 90% C.L.,

according to PRD84, 052004(2011)(Belle):

 $\mathcal{B}(B^+ \to X(3872)K^+) \times \mathcal{B}(X \to \pi^+ \pi^- J/\psi) = (8.6 \pm 0.8 \pm 0.5) \times 10^{-6}.$

• BUT, what's the peak at $M(\gamma \chi_{c1})$? A new charmonium state observed? 15

Evidence for $\psi_2 \rightarrow \chi_{c1} \gamma$

 $\psi_2 \rightarrow \chi_{c1} \gamma$ was predicted, $\Gamma(\psi_2 \rightarrow \chi_{c1} \gamma)=260 \text{ KeV}$

Godfrey & Isgur, PRD 21, 189 (1985);

Eichten, Lane & Quigg, PRL 89 16202 (2002) & PRD 69, 094019 (2004)

First ψ_2 evidence

 ψ_2 significance is 4.2 σ including systematics $\Gamma(\psi_2) = 4 \pm 6$ MeV from the fit

$e^+e^- \rightarrow J/\psi \pi^+\pi^-$ and $\psi(2S)\pi^+\pi^-$ by ISR

Y(4260): M = 4245 \pm 5 \pm 4 MeV/c² Γ = 114 \pm 15 \pm 7 MeV Y(4360): M = 4340 \pm 16 \pm 9 MeV/c² Γ = 94 \pm 32 \pm 13 MeV Y(4660): M = 4669 \pm 21 \pm 3 MeV/c² Γ = 104 \pm 48 \pm 10 MeV

Consistent with previous Belle results

251±4±7

have been observed in final states not involving charm meson pair.

No signal from Y(4260/4360/4660).

ф

336±12±14

$X(3915) \rightarrow J/\psi \omega$ in two-photons collisions

ľ

J/ψ

7.6 σ significance M = 3919.4 ± 2.2 ± 1.6 MeV/c² Γ = 13 ± 6 ± 3 MeV JP=0⁺ Consistent with older studies by BaBar & Belle

PRD 86 072002 (2012)

Summary

New results on bottomonium states come from B factories:

- Observation of Z_b⁺(10610) and Z_b⁺(10650) decays to BB^{*} and B^{*}B^{*} main decay mode, supporting "molecular" hypothesis
- 6D amplitude analysis of $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ confirmed J^P=1⁺ for both Z_b
- Evidence for neutral partner $Z_b(10610)$ in analysis of $\Upsilon(5S) \rightarrow \Upsilon(2S)\pi^0\pi^0$ consistent with expectation from isospin

... and on charmonium states:

- No charged or C-odd partners of X(3872) have been found
- A first evidence of ψ_2 is obtained in $B \rightarrow K \chi_{c1} \gamma$ decay
- Y(4260/4360/4660) are seen in $\psi(1,2S)\pi^+\pi^-$, however no evidence in J/ $\psi\eta$

Back up

Comparison with $\Upsilon(nS)\pi^+\pi^-$

Heavy quark structure in Z_b

Bondar, Garmash, Milstein, Mizuk, Voloshin Phys.Rev.D 84 054010

Wave func. at large distance $- B(*)B^*$

$$\left|Z_{b}^{\prime}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{O}_{bb}^{-} \otimes \mathbf{I}_{Qq}^{-} - \frac{1}{\sqrt{2}} \mathbf{I}_{bb}^{-} \otimes \mathbf{O}_{Qq}^{-} \\ \left|Z_{b}^{\prime}\right\rangle = \frac{1}{\sqrt{2}} \mathbf{O}_{bb}^{-} \otimes \mathbf{I}_{Qq}^{-} + \frac{1}{\sqrt{2}} \mathbf{I}_{bb}^{-} \otimes \mathbf{O}_{Qq}^{-}$$

Explains

- Why $h_b \pi \pi$ is unsuppressed relative to $\Upsilon \pi \pi$
- Relative phase ~0 for Υ and ~180⁰ for h_b
- Production rates of $Z_b(10610)$ and $Z_b(10650)$ are similar
- Widths –"

Predicts

• Existence of other similar states

Other Possible Explanations

- Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552)
- Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492)
- Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649)

Observation of $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$

Process with spin flip of heavy quark is not suppressed: mechanism of $\Upsilon(5S) \rightarrow h_b(nP) \pi^+\pi^-$ decay violates Heavy Quark Spin Symmetry

Observation of $h_b \rightarrow \eta_b(1S) \gamma$

M [η_b(1S)] = 9402.4 ± 1.5 ± 1.8 MeV/c² Γ[η_b(1S)] = 10.8^{+4.0+4.5}_{-3.7-2.0} MeV potential models : Γ = 5 – 20 MeV B[h_b(1P)→η_b(1S)γ] = (49.2 ± 5.7 ^{+5.6}_{-3.3}) % Godfrey & Rosner : BF = 41%

Evidence of $h_b \rightarrow \eta_b(2S) \gamma$

PRL 109, 232002 (2012)

Belle value (%)

 $49.2 \pm 5.7^{+5.6}$

 $22.3 \pm 3.8^{+3.2}$

 $47.5 \pm 10.5^{+9.8}$

Branching Fraction

 $h_{\rm b}(1P) \rightarrow \gamma \eta_{\rm b}(1S)$

 $h_b(2P) \rightarrow \gamma \eta_b(1S)$

 $h_{\rm b}(2P) \rightarrow \gamma \eta_{\rm b}(2S)$

 $M [\eta_{b}(2S)] = 99999.0 \pm 3.5^{+2.8}_{-1.9} \text{ MeV/c}^{2}$ $\Gamma[\eta_{b}(2S)] = 10.8^{+4.0+4.5}_{-3.7-2.0} \text{ MeV}$ $B[h_{b}(2P) \rightarrow \eta_{b}(2S)\gamma] = (47.5 \pm 10.5 + 6.8)_{-7.7} \%$

 $\Delta M_{\rm HF} \left[\eta_{\rm b}(2S) \right] = 24.3^{+4.0}_{-4.5} \,{\rm MeV/c^2}$

 ΔM_{HF} = 23.5 ±4.7 MeV

Lattice Meinel PRD82,114502(2010)

 $\Upsilon(5S) \rightarrow \Upsilon(1D) \pi^+ \pi^-$

• First and only one *L*=2 state found in radiative decay chain CLEO(2004): $\Upsilon(3S) \rightarrow \chi_b(2P)\gamma \rightarrow \Upsilon(1D)\gamma\gamma \rightarrow \chi_b(1P)\gamma\gamma\gamma \rightarrow \Upsilon(1S)\gamma\gamma\gamma\gamma$

• Belle measured a new production chain $\Upsilon(5S) \rightarrow \Upsilon(1D)\pi^{+}\pi^{-} \rightarrow \chi_{b}(1P)\gamma\pi^{+}\pi^{-} \rightarrow \Upsilon(1S)\gamma\gamma\pi^{+}\pi^{-}$

CLEO $M = 10161.1\pm0.6\pm1.6 \text{ MeV}$ $B[\Upsilon(3S) \rightarrow \Upsilon(1D)\gamma\gamma \rightarrow \Upsilon(1S)\gamma\gamma\gamma\gamma] = (2.5\pm0.5\pm0.5)\times10^{-5}$

Belle preliminary B[$\Upsilon(5S) \rightarrow \Upsilon(1D)\pi^+\pi \rightarrow \Upsilon(1S)\gamma\gamma\pi^+\pi^-$] = (2.0±0.4±0.3)×10⁻⁴

18

16

14

12

10

8

6

2

Events/ 5 MeV

B[Υ(2S)→Υ(1S)η]=(3.41 ± 0.37 ± 0.35) 10⁻⁴ B[Υ(2S)→Υ(1S)π⁰]< 4.3 10⁻⁵ PRD 87, 011104(R) (2013) B[RI

B[Υ(2S)→Υ(1S)η]=(2.39 ± 0.31 ± 0.14) 10⁻⁴ B[Υ(3S)→Υ(1S)η]< 1.0 10⁻⁴ 29

$$\eta \rightarrow \pi^+ \pi^- \pi^0$$

 $\Upsilon(2S) \rightarrow \Upsilon(1S) \eta$

Observation of $\Upsilon(5S) \rightarrow \Upsilon(1,2S)\eta$

0.3

0.4

0.5

0.6

0.7

0.8

M(γγ), GeV

- Three modes:
 - $\Upsilon(1,2S)[\mu^+\mu^-] \eta[\pi^+\pi^-\pi^0]$
 - Υ(2S)[Υ(1S)π⁺π⁻] η[γγ]
 - Υ(1S)[μ⁺μ⁻] η'[ηπ⁺π⁻]

B[Υ(5S)→Υ(1S)η] = (7.3±1.6±0.8) 10⁻⁴ B[Υ(5S)→Υ(2S)η] = (38 ± 4 ± 5) 10⁻⁴ B[Υ(5S)→Υ(1S)η'] < 1.2 10⁻⁴

