Universal Landau Pole

Alexander Andrianov

Saint Petersburg State University

and Insitut de Ciencies del Cosmos, UB

in collaboration with: D. Espriu, M. Kurkov and F. Lizzi

QFTHEP 2013, Repino, June 28
Outline:

• **Do we really need asymptotic freedom?**
 Our understanding of quantum gravity suggests that at the Planck scale the usual geometry loses its meaning. Then grand unification in a large non-abelian group naturally endowed with the property of asymptotic freedom may also lose its motivation.

• **Singular unification:**
 an unification of all fundamental interactions at the Planck scale in the form of a **Universal Landau Pole (ULP)**, at which all gauge couplings diverge.

• **Minimal working model of the Universal Landau Pole.**
 The unification is achieved with the addition of fermions with vector gauge couplings coming in multiplets and with hypercharges identical to those of the Standard Model.

• **Stability of the Higgs Potential.**
 The Higgs quartic coupling diverges while the Yukawa couplings vanish.
DO WE REALLY NEED ASYMPTOTIC FREEDOM?

• Simplicity: the less parameters the better \rightarrow unification.

• Asymptotic freedom (flat space-time): the theory is valid up to infinitely high energies.

• BUT what about gravity?

• At the energies of order of Planck scale $M_{Pl} \sim 10^{19}$ GeV gravity becomes strongly coupled, concept of weakly interacting point-like fields looses its meaning!

• Simplicity $+$ pointless geometry \rightarrow singular unification.
SINGULAR UNIFICATION: UNIVERSAL LANDAU POLE

- We propose a singular unification at the Planck scale: one should find such a generalization of the Standard Model, that under the renormalization group flow ALL gauge couplings meet their common Landau pole at the Planck scale.

\[g_{1,2,3}(\mu) \to \infty \text{ at } \mu \to M_{Pl} \]

- Kinetic terms of ALL gauge fields vanish and they cannot propagate anymore.

\[\frac{1}{g(\mu)^2}F_{\mu\nu}F^{\mu\nu} \to 0 \text{ at } \mu \to M_{Pl} \]

- ? UV fixed point and dimensional reduction of gauge fields ?

\[F_{\mu\nu} \left(\frac{1}{g(\mu)^2} + \gamma \frac{\Box}{M_{Pl}^2} + \cdots \right) F^{\mu\nu} \to \gamma F_{\mu\nu} \frac{\Box}{M_{Pl}^2} F^{\mu\nu} \text{ at } \mu \to M_{Pl} \]
MINIMAL ULP: REQUIREMENTS

- **Simplicity:** the gauge group of SM $SU(3) \times SU(2) \times U(1)$. We add only fermions. Enlarging the gauge group in principle could be motivated by introduction of a GUT group. However it leads to ULP at 10^{16} GeV [see V. A. Rubakov and S. V. Troitsky, hep-ph/0001213, for a review] much smaller than M_{Pl}.

- **Higgs sector:** to remain unchanged. If the new particles are described by 4-component spinors with Dirac masses and vector-like gauge interactions \rightarrow no necessity for any Higgs fields. It fits well the recent LHC bounds on the number of generations [see A. Lenz, Adv. High En. Phys. 2013 (2013) 910275]

- **NO pathological electric charges \rightarrow restrictions on the representations of new fermions.**

- **Stability:** quartic coupling of the Higgs field self interaction λ is always positive under the renormalization group flow. It discriminates a single scenario with four generations.
MINIMAL WORKING ULP: REALIZATION

- We use Dirac mass terms $M \bar{\psi} \psi$ for new fermions and we are looking for a minimal number of them.

- New fermions belong to known representations of gauge group

 L-quarkons: $SU(3)$ - triplets, $SU(2)$ - doublets, $Y = \frac{1}{3}$

 R-quarkons: $SU(3)$ - triplets, $SU(2)$ - singlets, $Y = \frac{4}{3}, -\frac{2}{3}$

 L-leptos: $SU(3)$ - singlets, $SU(2)$ - doublets, $Y = -1$

 R-leptos: $SU(3)$ - singlets, $SU(2)$ - singlets, $Y = -2, 0$

- Remark: L- and R- notations do not imply left and right chiralities! They vector-like relatives.
MINIMAL WORKING ULP: REALIZATION

The only new vertexes appearing in the theory couple Quarkons and Leptos to E-W gauge bosons and gluons.

And at one loop level only beta functions of gauge fields are modified due to presence of these diagramms:
MINIMAL WORKING ULP: THE ANSWER

ULP can be rendered within 4 identical "generations" of new vector-like massive fermions with different mass scales:

- **At** $5.0 \cdot 10^3$ GeV L-quarkons ($N_{L-\text{quarkon}} = 4$).
- **At** $3.7 \cdot 10^7$ GeV R-quarkons ($N_{R-\text{quarkon}} = 4$).
- **At** $2.6 \cdot 10^{14}$ GeV L and R-leptos ($N_{L-\text{leptos}} = N_{R-\text{leptos}} = 4$).
One(two)-loop RG running of gauge couplings
One(two)-loop RG running of top Yukawa coupling
One(two)-loop RG running of Higgs boson quartic coupling
ON THE STABILITY OF THE HIGGS POTENTIAL

Now we clarify how our vector-like fermions save the Universe from instability, i.e. how they don’t let RG flow to drive the quartic coupling $\lambda(\mu)$ to negative values.

$$\beta^{(1)}_{\lambda} = \frac{1}{16\pi^2} \left(24 \lambda^2 - 6 y^4 + \frac{3}{4} g_2^4 + \frac{3}{8} (g_2^2 + g_1^2)^2 + (-9 g_2^2 - 3 g_1^2 + 12 y^2) \lambda \right).$$

\[\text{Diagram} \]
UV completion
It could well be the case that the onset of gravity corrections renders the ULP non-singular. Indeed gravity being non-renormalizable will require higher-dimensional operators with more derivatives to make the theory finite. In particular, we expect dimension six kinetic terms like

\[
\frac{\gamma}{2M_P^2} \text{tr} (D_\mu W^{\mu\nu} D_\mu W^{\nu}_\nu) + \cdots
\]

This would correspond to a renormalization of the gauge coupling induced by gravity of the form

\[
\frac{1}{g^2(p^2)} \simeq \beta_0 \log \frac{m_P^2}{p^2} + \gamma \frac{p^2}{m_P^2}
\]

Thus gravitational corrections may drive the ULP towards a new fixed point [see, for instance, M. E. Shaposhnikov, Theor. Math. Phys. 170, 229 (2012)].
CONCLUSIONS

• An idea of singular unification of ALL gauge interactions at the Planck scale, can be realized in the form of the Universal Landau Pole (ULP).

• The minimal working model of ULP generalization of the SM is constructed.

• Under the RG flow the top Yukawa coupling eventually goes to zero while the quartic coupling has a concordant singularity at the Planck scale. Such a RG behavior saves the Universe from instability problem.