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MODIFIED GRAVITY MODELS

Modified gravity cosmological models have been proposed in
the hope of finding solutions to the important open problems
of the standard cosmological model. There are lots of ways to
deviate from Einstein’s gravity:

F (R) gravity

Addition of higher-derivative terms to the
Einstein–Hilbert action

Nonlocal gravity

S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A
Survey of Gravitational Theories for Cosmology and
Astrophysics, Fund. Theor. Phys. 170, Springer, NY, 2011
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Formulation of Nonlocal Gravity via Scalar Fields

A modification that assumes the existence of a new
dimensional parameter M∗ can be of the form

S =

∫
d4x
√
−g
(
M2

P

2
R +

1

2
RF

(
�
M2

∗

)
R − Λ

)
(1)

where M∗ is the mass scale at which the higher derivative
terms in the action become important, 8πGN = 1/M2

P .
An analytic function F(�/M2

∗ ) =
∑
n>0

fn�n.

Biswas T., Mazumdar A., and Siegel W., 2006, JCAP 0603
009 (hep-th/0508194)
Biswas T., Koivisto T., and Mazumdar T., 2010, JCAP 1011
008 (arXiv:1005.0590)
Biswas T., Koshelev A.S., Mazumdar T., Vernov S.Yu., JCAP
1208 (2012) 024 (arXiv:1206.6374)
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By virtue of the field redefinition one can transform the
non-local gravity action (1) as follows:

S =

∫
d4x
√
−g
(
M2

P

2
(1 + Φ)R +

1

2
τF
(
�
M2

∗

)
τ − M2

P

2
Φτ − Λ

)
(2)

with two new scalar fields Φ and τ .
Variation w.r.t. Φ gives τ = R and, therefore, the connection
(2) with action (1) is obvious.
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A modification that does not assume the existence

of a new dimensional parameter in the action

S2 =

∫
d4x
√
−g
{

1

16πGN

[
R
(
1 + f (�−1R)

)
− 2Λ

]
+ Lm

}
,

(3)
The term �−1R is dimensionless and it can appear as a
prefactor for the Newtonian gravitational constant, and explain
weakening of gravity at cosmological scales.
The action (3) can be rewritten by introducing two scalar
fields φ and ξ in the following form:

S̃2 =

∫
d4x

√
−g

16πGN
{[R (1 + f (η)) + ξ (�η − R)− 2Λ] + Lm} .

(4)
By the variation over ξ, we obtain �φ = R .
Substituting φ = �−1R into (4), one reobtains (3).
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For the model, describing by the initial nonlocal action, a
technique for choosing the distortion function so as to fit an
arbitrary expansion history has been derived in
C. Deffayet and R.P. Woodard, JCAP 0908 (2009) 023,
[arXiv:0904.0961].
For the local model, contained a perfect fluid with a constant
state parameter wm, a reconstruction procedure has been
made in
T.S. Koivisto, Phys. Rev. D 77 (2008) 123513,
[arXiv:0803.3399]
and
E. Elizalde, E.O. Pozdeeva, and S.Yu. Vernov,
Class. Quantum Grav. 30 (2013) 035002, [arXiv:1209.5957].
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SUPERPOTENTIAL METHOD

The Hamilton–Jacobi formulation (superpotential method) has
been proposed in the cosmological models with minimally
coupling scalar field:
A.G. Muslimov, Class. Quant. Grav. 7 (1990) 231–237;
D.S. Salopek, J.R. Bond, Phys. Rev. D 42 (1990) 3936–3962;
and has been develop in:
I.Ya. Aref’eva, A.S. Koshelev, S.Yu. Vernov, Phys. Rev. D 72
(2005) 064017, astro-ph/0507067;
D. Bazeia, C.B. Gomes, L. Losano, R. Menezes, Phys. Lett. B
633 (2006) 415–419; astro-ph/0512197;
K. Skenderis, P.K. Townsend, Phys. Rev. D 74 (2006)
125008, hep-th/0609056;
A.A. Andrianov, F. Cannata, A.Yu. Kamenshchik, and
D. Regoli, JCAP 0802 (2008) 015, arXiv:0711.4300
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The key point in this method is that the Hubble parameter is
considered as a function of the scalar field.
For models with non-minimally coupling scalar field this
method has been delevoped: A.Yu. Kamenshchik, A. Tronconi,
G. Venturi, and S.Yu. Vernov, Phys. Rev. D 87 (2013)
063503, arXiv:1211.6272

The superpotential method is actively used in models with
extra spatial dimensions:
A. Brandhuber, K. Sfetsos, J. High Energy Phys. 9910 (1999)
013; hep-th/9908116;
O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, Phys.
Rev. D 62 (2000) 046008; hep-th/9909134;
A.S. Mikhailov, Yu.S. Mikhailov, M.N. Smolyakov, I.P.
Volobuev, Class. Quant. Grav. 24 (2007) 231–242,
hep-th/0602143.
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MODELS WITH NON-MINIMALLY COUPLING

SCALAR FIELDS

Let us consider the model with the following action

S =

∫
d4x
√
−g
[
U(σ)R − 1

2
gµνσ,µσ,ν − V (σ)

]
,

In FLRW metric:

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
,

we get the following equations:

6UH2 + 6U̇H =
1

2
σ̇2 + V , (5)

2U
(

2Ḣ + 3H2
)

+ 4U̇H + 2Ü = − 1

2
σ̇2 + V . (6)

σ̈ + 3H σ̇ + V,σ = 6
(
Ḣ + 2H2

)
U,σ .
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Combining Eqs. (5) and (6) we obtain:

4UḢ − 2U̇H + 2Ü + σ̇2 = 0. (7)

This equation plays a key role in the reconstruction procedure.
Let H = Y (σ), and σ̇ = F (σ).
Substituting H , σ̇ and σ̈ = F,σF into (7), we obtain:

4UY,σ + 2(F,σ − Y )U,σ + (2U,σσ + 1)F = 0. (8)

Equation (8) contains three functions. If two of them are
given, then the third one can be found as the solution of a
linear differential equation.
The potential V (σ) can then be obtained from (5):

V (σ) = 6UY 2 + 6U,σFY −
1

2
F 2. (9)
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If U(σ) and F (σ) are given, then

Y (σ) = −

 σ∫
2F,σ̃U,σ̃ + (2U,σ̃σ̃ + 1)F

4U3/2
d σ̃ + c0

√U (10)

For given Y (σ) and U(σ), we obtain

F (σ) =

 σ∫
U,σ̃Y − 2UY,σ̃

U,σ̃
eΥd σ̃ + c̃0

 e−Υ(σ), (11)

where

Υ(σ) ≡ 1

2

σ∫
2U,σ̃σ̃ + 1

U,σ̃
d σ̃.
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For the case of induced gravity U(σ) = ξσ2 the reconstruction
procedure has been proposed in
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, Reconstruction
of scalar potentials in induced gravity and cosmology,
Phys. Lett. B 702 (2011) 191–196, arXiv:1104.2125.
They have not used the superpotential method and got a lot
of potential for different types of the Hubble behaviors.
There are two main reasons to use the superpotential method:

U(σ) can be arbitrary function.

H(t) can be more complicated than H = Y (σ).

A.Yu. Kamenshchik, A. Tronconi, G. Venturi, and
S.Yu. Vernov, Phys. Rev. D 87 (2013) 063503,
arXiv:1211.6272.
The two methods supplement each other and together allow
one to construct different cosmological models with some
required properties.
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Models with non-minimally coupled scalar fields are interesting
because of their connection with particle physics.
The are models of inflation, where the role of the inflaton is
played by the Higgs field non-minimally coupled to gravity.
(F.L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659
(2008) 703–706, arXiv:0710.3755).
For such models

U(σ) = ξσ2 + J . (12)

Y (σ) = −

 σ∫
4ξσ̃F,σ̃ + (4ξ + 1)F

4(ξσ̃2 + J)3/2
d σ̃ + c0

√ξσ2 + J ,

F (σ) =


σ∫ [
σ̃Y −

(
σ̃2 +

J

ξ

)
Y,σ̃

]
σ̃

1
4ξ d σ̃ + c̃0

σ− 1+4ξ
4ξ .
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Models with de Sitter solutions

Let us consider the general form of the potential V (σ), which
leads to the existence of the de Sitter solution

H = Y (σ) = H0 = const. (13)

Using (11), we obtain (for U = ξσ2 + J)

F (σ) =

 σ∫
H0e

Υd σ̃ + c̃0

 e−Υ =
4ξH0

8ξ + 1
σ + c̃0σ

− 1+4ξ
4ξ .

σ(t) =

[
σ0e

H0t +
c̃0(8ξ + 1)

H0ξ

] 4ξ
8ξ+1

, (14)

where σ0 is an arbitrary constant.
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V (σ) = 2H2
0

[
3J +

(3 + 32ξ)(1 + 12ξ)ξ

(8ξ + 1)2
σ2

]
−

− c̃2
0

2
σ−(4ξ+1)/(2ξ) +

8(12ξ + 1)ξ

8ξ + 1
H0c̃0σ

−1/(4ξ).

For c̃0 = 0, F (σ) is a linear function,

V = 2H2
0

[
3J +

(3 + 32ξ)(1 + 12ξ)ξ

(8ξ + 1)2
σ2

]
.

At ξ = −1/4, V = −5H2
0σ

2 − 4H0c̃0σ + 6H2
0J0 −

c̃2
0

2
.

The same result has been obtained by the method proposed in
A.Yu. Kamenshchik, A. Tronconi, G. Venturi, Phys. Lett. B
702 (2011) 191.
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The case ξ = −1/8

In the case ξ = −1/8, we get:

F (σ) = σH0 ln

(
σ

σ0

)
,

where σ0 is an integration constant, and the corresponding
potential has the following form:

V =
H2

0

4

[
24J − σ2

2

(
ln2

(
σ

σ0

)
+ 3 +

√
3

)(
ln2

(
σ

σ0

)
+ 3−

√
3

)]
.

The scalar field evolution is given by

σ(t) = σ0 exp
[
eH0(t−t0)

]
.
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Solutions with the hyperbolic tangent

Let us construct cosmological models, when the Hubble
parameter is a function of the hyperbolic tangent.

σ(t) = A tanh [ω(t − t0)] , (15)

where A, ω and t0 are constants.
Note that t0 can be complex, so the parametrization (15)
includes the functions σ(t) = A coth [ω(t − t0)] as well.
For such functions

σ̇ = ω

(
A− 1

A
σ2

)
= F (σ). (16)
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To get the desired Hubble parameter evolution (with constant
H attractors in the past and in the future), we assume

H = Y (σ) = B − Cσ,

where B and C are constants.
Equation (8) becomes the following equation for U(σ):

2Ω(A2−σ2)U,σσ+2 [(C − 2Ω)σ − B]U,σ−4CU+(A2−σ2)Ω = 0,

where ω = ΩA.
A particular solution of this equation is the second degree
polynomial

U(σ) = − 1

12
σ2 +

B

6(2Ω + C )
σ +

2A2CΩ + 4A2Ω2 − B2

12(2Ω + C )C
,
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Let us consider, for example, A = B = C = 1. We get

U(σ) = − 1

12
σ2 +

1

6(2Ω + 1)
σ +

(2Ω + 4Ω2 − 1)

12(2Ω + 1)
,

hence, U(σ) = 0 at

σ1,2 =
1± 2

√
2Ω2 + 2Ω3

2Ω + 1
.

U(1) > 0 for all Ω > 0, so, if we choose as a solution
σ(t) = tanh(Ωt), then U(t) is positive at late times.
When Ω = 1, U(σ(t)) ≥ 0 at any time because
−1 6 σ(t) 6 1.
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U

σ

V

σ

Figure : U(σ) and V (σ) at A = +B = C = Ω = 1.
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By the change of variable σ̃ = σ − 1/3, we get

U(σ̃) = − 1

12
σ̃2 +

4

27
, (17)

In terms of σ̃, we finally obtain

Y (σ̃) =
2

3
− σ̃,

F (σ̃) =
(2− 3σ̃) (4 + 3σ̃)

9
.

So, we found a model with exact solutions and U(σ̃) in the
form

U(σ̃) = ξσ̃2 + J .
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Non-monotonic behavior of the Hubble
Parameter in the Case of Induced Gravity

We put U(σ) = ξσ2.
Let us consider Y (σ) as a quadratic polynomial:

Y (σ) = A2σ
2 + A1σ + A0, (18)

where Ak are constants.
We obtain that F (σ) does not depend on A1:

F (σ) =
4ξ ((16ξ + 1)A0 − (8ξ + 1)A2σ

2)σ

(8ξ + 1)(16ξ + 1)
+ c̃0σ

− 1+4ξ
4ξ . (19)

We assume that ξ 6= −1/8 and ξ 6= −1/16.
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When c̃0 = 0, F (σ) is a cubic polynomial and the equation
σ̇ = F (σ) has the following general solution:

σ(t) = ±
√

(16ξ + 1)A0√
(16ξ + 1)A0c2e−ωt + (8ξ + 1)A2

, (20)

where ω = 8ξA0/(8ξ + 1), c2 is an arbitrary integration
constant.
The corresponding potential, V (σ), is the sixth degree
polynomial which, for example, when ξ = 1 has the following
form:

V (σ) =
910

289
A2

2σ
6 +

156

17
A1A2σ

5 +

+

(
6A2

1 +
2236

153
A0A2

)
σ4 +

52

3
A0A1σ

3 +
910

81
A2

0σ
2 .
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The cosmological consequences.

H

t

H

t

H

t

Figure : The function H(t) with A1 = −6, A1 = −4, and
A1 = 0 (from left to right). At all pictures we use A2 = 1,
A0 = 2, and c2 = 100000.

The same functions σ(t) is associated with different behaviors
of the Hubble parameter.
At A1 = −4 we get a non-monotonic behavior of H(t).
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Conclusion

A gravity model with a non-minimally coupling scalar field
and U(σ) = ξσ2 + J has been considered.

The superpotential method has been used for the
reconstruction procedure.

We do not need the expression of the Hubble parameter
in terms of the cosmic time or of the scale factor.

We have found the potentials and the corresponding
evolutions of the associated scalar field leading to de
Sitter solutions.

We have investigated a few models having a different de
Sitter asymptotic behaviour in the past and in the future.
Non-monotonic behaviour have been found.
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