Physics prospects and plan of SuperKEKB/Belle II

Anatoly Sokolov (IHEP, Protvino) On behalf of the Belle II collaboration

Outline

- KEKB and Belle
- Physics Achievement and Prospects
- □ SuperKEKB and Belle-II

KEK Laboratory, Tsukuba Japan

The KEKB Collider

- Asymmetric energy collider (8 GeV e⁻ x 3.5 GeV e⁺)
 - √S ≈ m_{Y(4S) (Y(nS), n=1,2,3,5)}
 - Lorentz boost: βγ =0.425
- Finite angle beam crossing (22mrad)

Peak luminosity (WR!) : **2. 1 x 10³⁴ cm⁻²s⁻¹** =2x design value

First physics run on June 2, **1999** Last physics run on June 30, **2010** $L_{peak} = 2.1 \times 10^{34} / cm^2 / s$

 $\int \mathcal{L} \, dt = 1.04 \, ab^{-1}$

Data at KEKB/Belle

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Physics at B factory

Accelerator

Discovery of CPV in B decays

 $sin2\phi_1 = 0.667 \pm 0.023$ (stat) ± 0.012 (syst)

Complete Test of KM & SM

B - Factories (KEKB&PEP-II): A Success Story

Quantitative confirmation of the KM model in the SM

The Nobel Prize in Physics 2008

Press Release

7 October 2008

"... As late as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier."

KEKB/Belle results

Integrated Luminosity(cal)

Excellent KEKB performance allowed BELLE experiment to obtain many exciting results

Variety of Successes from B Factories

Belle II physics: Searching physics beyond the SM using indirect probes

SM is a valid effective theory at the current E-scale

LHC - New Physics beyond SM at **High Energy scale B-, charm-, \tau-factories** – search for NP using **indirect probes** (like *c*-quark prediction from the $K_L \rightarrow \mu^+\mu^-$ suppression; m_c estimation from Δm_K)

LHC vs SuperKEKB

In order for the flavor physics to be useful in the coming LHC era, the precision of various flavor measurements must be significantly improved, both in terms of experimental reach and understanding of theoretical uncertainty

B Factories (**BF**) → Super B Factory (**SBF**) • $\sigma \propto 1/\sqrt{N} \Rightarrow O(10^2)$ higher luminosity

 complementarity to other intensity frontiers experiments (LHCb, BES III,);

accurate theoretical predictions to compare to

Illustrative reach of NP searches

Complementary to LHC Searches

Study of modes with missing energy

 $B \rightarrow \tau \nu, B \rightarrow D^{(*)} \tau \nu, B \rightarrow K^{(*)} \nu \nu$

- Multiple neutrinos! Significant missing energy.
- These are very challenging experimentally...
 - Rely on <u>clean e+e- environment</u> and detector

Fully reconstruct "tag" B to determine
 "signal" B flavor, charge, momentum.

B factories are uniquely suited for such measurements!

Precise CKM

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.4	-0.2 0.0	Δm _g & Δm _g t t v _{ub} 0.2 0.4 0.6 ρ	ε _κ sal wigen 30,<0 (ercl at/OL>0.95) φ ₂ day φ ₁ 0.8 1.0	0.6 sin2¢1 0.5 0.4 0.3 0.2 Vub 0.1 0.4 -0.2	e 0 0.2 p	¢2 50 0.4 0	ab-1
O	oservable		Belle 200 ($\sim 0.5 \text{ ab}^{-1}$	$6 Sup (5 ext{ ab}^{-1})$	$erKEKB$ ¹) (50 ab^{-1})	$^{\dagger \mathrm{I}}$ (2 fb ⁻¹)	$\frac{1}{(10 \text{ fb}^{-1})}$
Un	itarity triangle p	parameters					
:	$\sin 2\phi_1$		0.026	0.016	0.012	~ 0.02	~ 0.01
	$\phi_2 (\pi\pi)$		11°	10°	3°	-	-
	$\phi_2 (\rho \pi)$		$68^{\circ} < \phi_2 < 95^{\circ}$	3°	1.5°	10°	4.5°
	$\phi_2 \ (ho ho)$		$62^{\circ} < \phi_2 < 107^{\circ}$	3°	1.5°	-	-
	$\phi_2 \ (\text{combined})$			2°	$\lesssim 1^{\circ}$	10°	4.5°
	$\phi_3 (D^{(*)}K^{(*)}) (\Gamma$	Dalitz mod. ind.)	20°	7°	2°	8°	
	$\phi_3 (DK^{(*)})$ (AD)	S+GLW)	-	16°	5°	5-15°	
	$\phi_{3} (D^{(*)}\pi)$		-	18°	6°		
	$\phi_3 \ (\text{combined})$			6°	1.5°	4.2°	2.4°
	$ V_{ub} $ (inclusive)			5%	3%	BELLEII	in many cases
	$ V_{ub} $ (exclusive)		15%	12% (LQCD)	5% (LQCD)	is more	consitivo
	ρ =		20.0%		3.4%		Sensitive
	//		10.1%		1.170		arameters
	Physics at Super B factory: arXiv:1102.5012v1						ICb

 $S_{bs} = S_{bc}, A_{DCP} = 0$ S "b $\rightarrow ccs: sin2\phi_1$ " (SM reference)

deviation

15

Summary of New CPV search

SuperKEKB prospect

$B \rightarrow \phi K^0$ at 50/ab with ~2010 WA values

 $b \rightarrow s(d) \gamma$

- precise measurement of inclusive $B \rightarrow X_s \gamma$ branching fraction
- measurement of inclusive $B \rightarrow X_d \gamma$ branching fraction
- direct CP violation: $B \rightarrow X_s \gamma, B \rightarrow K^* \gamma, B \rightarrow X_s I^+ I^-$ and so on
- time-dependent CP violation in $B \rightarrow K^* \gamma$, $B \rightarrow \rho \gamma$ and related modes
- measurement of photon polarization with photon-conversion
- measurement of the forward-backward asymmetry and q^2 distribution of $B \rightarrow K^*|^+|^-$ and $B \rightarrow X_s|^+|^-$
- lepton flavor dependence of $B \rightarrow s l^+ l^-$

Time-dependent CPV in $B \rightarrow K^* \gamma$ decay

 $B \rightarrow K^* (\rightarrow K_s \pi^0) \gamma$ t-dependent CPV

SM: $S_{CP}^{K^*\gamma} \sim -(2m_s/m_b)\sin 2\phi_1 \sim -0.04$

Left-Right Symmetric Models: $S_{CP}^{K^*\gamma} \sim 0.67 \cos 2\phi_1 \sim 0.5$

D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005)

$$S_{CP}^{Ks\pi0\gamma} = -0.15 \pm 0.20$$

 $A_{CP}^{Ks\pi0\gamma} = -0.07 \pm 0.12$

HFAG, Summer'11

$$σ(S_{CP}^{K_{S\pi}0\gamma}) = 0.09 @ 5 ab^{-1}
0.03 @ 50 ab^{-1}
(~SM prediction)$$

t-dependent decays rate of $B \rightarrow f_{CP}$; S and A: CP violating parameters $P(B^0 \to f; \Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} [1 + S_{CP}^f \sin(\Delta m \Delta t) +$ $+A_{CP}^{f}\cos(\Delta m\Delta t)$] $K_{S} \pi^{0} \gamma S_{CP} vs C_{CP}$ С_{СР} 0.8 BaBar Belle Average 0.4 5 ab⁻¹ 0 -0.4 50 ab⁻¹ -0.8 0.8 S_{CP} -0.8 -0.4 0 0.4

Contours give -2 Δ (ln L) = $\Delta \chi^2$ = 1, corresponding to 60.7% CL for 2 dof

Example of complementarity: MSSM searches

$$m_{\tilde{q}} = m_{\tilde{g}} = 1 T e V$$

 $S(K_s \pi^0 \gamma) \simeq -0.4 \pm 0.1$ $S(K_s \pi^0 \gamma) \simeq 0.1 \pm 0.1$

Belle II constraints shown @ 5 ab⁻¹

LHCb: Br(B_s $\rightarrow \mu^+ \mu^-$)~ (4-5)x10⁻⁹ — (@ 3 fb⁻¹)

Belle II/LHCb combination: stringent limits on Re(δ^{d}_{RL})₂₃ , tan β

A.G. Akeroyd et al., arXiv:1002.5012

$B \rightarrow X_s \gamma$ inclusive

Experiment: measure low E_{γ} \Rightarrow huge bkg. $\Rightarrow E_{\gamma} > E_{cut}$

Advantage of B factories!

Only γ on signal side reconstructed Improve S/B by tagging the other B

Theory:

parameter extraction from partial $Br(E_{\gamma} > E_{cut}) \Rightarrow$ extrapolation needed;

 $\mathcal{B}(B \to X_s \gamma; 1.7 \, GeV < E_{\gamma} < 2.8 \, GeV) = (3.47 \pm 0.15 \pm 0.40) \cdot 10^{-4}$

 $B \rightarrow X_{s}\gamma$ summary

HFAG 2010: $B(B \rightarrow X_s \gamma) = (3.55 \pm 0.26) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$) vs SM: $B(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}$)

$B \rightarrow \tau v$: Experimental Challenge

Experimental Challenge !

$B \rightarrow \tau \nu$ results

$B \rightarrow \tau \nu$ results

$B \rightarrow D^{(*)} \tau v$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ,e could be reduced/enhanced significantly

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

T.Miki, T.Mimuta and Complementary and competitive with $B \rightarrow \tau v = \widehat{\Omega}$ M.Tanaka: hep-ph 0109244. 0.8 MSSM 1.Smaller theoretical uncertainty of R(D) 0.6 For $B \rightarrow \tau \nu$, There is O(10%) f_B uncertainty from lattice QCD SM 0.4 0.2 2.Large Brs ($\sim 1\%$) in SM (Ulrich Nierste arXiv:0801.4938.) 15 25 35 20 30 3. Differential distributions can be used to discriminate W⁺ and H⁺ $\tan\beta$ m_{Λ} 4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c m_H (LHC experiments sensitive to H-b-t) Always $\geq 2v$ B meson tagging Advantage of B factories!

First observation of B \rightarrow D^{*-} τv by Belle (2007) \rightarrow PRL 99, 191807 (2007)

$B \rightarrow D^{(*)} \tau \nu$ decays

Belle and BABAR average deviation from SM

- $R(D^*)$ 3.8 σ
- R(D) 2.4 σ
- $R(D^{(*)})$ 4.8 σ

Blue: this result, red: Type-II 2HDM.

exp. - acceptance variation with $tan\beta/m_{H+}$

 $R(r_H)$ in $B \rightarrow \tau \nu$, $B \rightarrow D \tau \nu$ and $B \rightarrow D^* \tau \nu$ suggest different values of $tan \beta/m_{H^{\pm}}$

- $r_{_H} \rightarrow tan \beta / m_{_H} \approx 0 0.1 \text{ or} \approx 0.25 \text{ GeV}^{-1}$
- $R_D \rightarrow tan \beta / m_H \approx 0.4 0.5 \text{ GeV}^{-1}$
- $R_{D^*} \rightarrow tan \beta/m_H \approx 0.7 0.9 \text{ GeV}^{-1}$

The *BABAR* collaborations excludes 2HDM-II charged Higgs at 99.8%

J. P. Lees *et al.* [BABAR Collaboration], arXiv:1303.0571 [hep-ex], submitted to Phys. Rev. D.

$B \rightarrow K^{(*)} \nu \nu$ decays

 $B \rightarrow K^{(*)} \nu \nu$ SM: penguin + box diagrams $B \rightarrow K \nu \nu, Br \sim 4.10^{-6}$ $B \rightarrow K^* \nu \nu, Br \sim 6.8.10^{-6}$

 $\mathscr{B}(B^+ \rightarrow K^{(*)+} \nu \nu)$ can be measured to ±30% with 50 ab⁻¹;

limits on right-handed currents

$$B_{sig}B_{tag} \rightarrow (K^{(*)}vv)(X\ell v) \text{ semil. tag} \rightarrow (K^{(*)}vv)(X) \text{ hadr. Tag}$$

Charm and τ physics

- **B physics** (~1.1nb)
 - CP violation & CKM
 - Rare decays
- Charm physics (~1.3 nb)
- τ physics (~0.9nb)
- two-photon processes
- New Resonance
 - ordinary & exotics

Complement/Cooperative with τ/**Charm factory**

LFV in τ decays

Strongly suppressed in SM Br($\tau \rightarrow \mu \gamma$) ~ 10⁻⁴⁹-10⁻⁵³ Beyond experimental sensitivity

Lepton flavour violation (LFV) in tau decays: would be a clear sign of new physics

Present status

48 modes searched for, U.L.s around ~10⁻⁸

LFV and New Physics

Br($\tau \rightarrow \mu \gamma$) = O (10⁻⁷ - 10⁻⁹)

Large LFV

- $\tau \rightarrow 3\ell, \ell\eta \xrightarrow{\tau} \mu$
- Neutral Higgs mediated decay
- Important when Msusy >> EW scale

mode	Br($\tau \rightarrow \mu \gamma$)	$Br(\tau \rightarrow 3I)$
mSUGRA + seesaw	10 ⁻⁷	10 ⁻⁹
SUSY + SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM + seesaw	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY + Higgs	10 ⁻¹⁰	10 ⁻⁷

Experimental sensivity

Belle II sensitivity for LFV covers predictions of many models

Physics sensitivity at Belle II

Observable	Belle 2006	SuperKI	SuperKEKB		ICb
	$(\sim 0.5 \mathrm{ab^{-1}})$	$(5 \mathrm{ab}^{-1})$	$(50 { m ab^{-1}})$	(2 fb^{-1})	(10 fb^{-1})
Hadronic $b \to s$ transitions					
$\Delta \mathcal{S}_{\phi K^0}$	0.22	0.073	0.029		0.14
$\Delta S_{\eta'K^0}$	0.11	0.038	0.020		
$\Delta S_{K^0_{\mathfrak{S}}K^0_{\mathfrak{S}}K^0_{\mathfrak{S}}}$	0.33	0.105	0.037	-	-
$\Delta \mathcal{A}_{\pi^0 K^0_S}$	0.15	0.072	0.042	-	-
$\mathcal{A}_{\phi\phi K^+}$	0.17	0.05	0.014		
$\phi_1^{eff}(\phi K_S)$ Dalitz		3.3°	1.5°		
Radiative/electroweak $b \rightarrow s$ transitions					
$\mathcal{S}_{K^0_S\pi^0\gamma}$	0.32	0.10	0.03	-	-
$\mathcal{B}(B \to X_s \gamma)$	13%	7%	6%	-	-
$A_{CP}(B \to X_s \gamma)$	0.058	0.01	0.005	-	-
$C_9 \text{ from } A_{FB}(B \to K^* \ell^+ \ell^-)$	-	11%	4%		
$C_{10} \text{ from } A_{FB}(B \to K^* \ell^+ \ell^-)$	-	13%	4%		
C_7/C_9 from $A_{FB}(B \to K^* \ell^+ \ell^-)$	-		5%		7%
R_K		0.07	0.02		0.043
$\mathcal{B}(B^+ \to K^+ \nu \nu)$	$^{\dagger\dagger} < 3 \; \mathcal{B}_{ m SM}$		30%	-	-
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$^{\dagger\dagger} < 40 \; \mathcal{B}_{SM}$		35%	-	-
Radiative/electroweak $b \rightarrow d$ transitions					
$\mathcal{S}_{ ho\gamma}$	-	0.3	0.15		
$\mathcal{B}(B \to X_d \gamma)$	-	24% (syst.)		-	-

Physics sensitivity at Belle II

Observable	Belle 2006	SuperK	EKB	ţΓ]	HCb
\ ~··/	$(\sim 0.5 \text{ ab}^{-1})$	$(5 ab^{-1})$	(50 ab^{-1})	$(2 { m fb}^{-1})$	$(10 { m ~fb^{-1}})$
Leptonic/semileptonic B decays					
$\mathcal{B}(B^+ \to \tau^+ \nu)$	3.5σ	10%	3%	-	-
$\mathcal{B}(B^+ \to \mu^+ \nu)$	$^{\dagger\dagger} < 2.4 \mathcal{B}_{\mathrm{SM}}$	$4.3~{ m ab}^{-1}$ for 5σ	discovery	-	-
$\mathcal{B}(B^+ \to D \tau \nu)$	-	8%	3%	-	-
$\mathcal{B}(B^0 o D au u)$	-	$\mathbf{30\%}$	10%	-	-
LFV in τ decays (U.L. at 90% C.L.)					
$\mathcal{B}(au o \mu \gamma) \ [10^{-9}]$	45	10	5	-	-
${\cal B}(au o \mu \eta) \; [10^{-9}]$	65	5	2	-	-
${\cal B}(au o \mu \mu \mu) \; [10^{-9}]$	21	3	1	-	-

Very broad physics program. For more, see the following article

Physics at Super B factory: arXiv:1002.5012v1

Upgrade! KEKB -> Super KEKB Belle -> Belle II

TIT

Super KEKB in nano-beam scheme

- □ To increase luminosity:
- → squeeze beams to nanometer scale and enlarge crossing angle (minimize β^*_y)
- \rightarrow decrease beam emittance (keep current ξ_y)
- ❑ Squeezing beams in stronger magnetic field saturated by hourglass effect
 → intersect bunches at highly focused region

$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \frac{R_L}{R_{\xi_y}}$$

I: beam current

 $β^*$: envelope around trajectories at IP $ξ_y ∝ √(β^*_y / ε_y)$ beam-beam parameter ε: beam emittance

 $σ^*$: beam size $∝ √(β^* ε)$

 $R_L, R_{\xi y}$: geometrical reduction factors (crossing angle, hourglass effect)

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of short lifetime for LER

	E (GeV) e+/e-	β* _y (mm) e+/e-	β* _x (cm) e+/e-	ε _x (nm) e+/e-	ε _y /ε _x e+/e-	φ (mrad)	I (A) e+/e-	L (cm ⁻² s ⁻ 1)
KEKB	3.5/8.0	5.9/5.9	120/120	18/24	0.88/0.66	11	1.6/1.2	2.1 x 10 ³⁴
Super KEKB	4.0/7.0	0.27/0.31	3.2/2.5	3.2/5.3	0.27/0.24	41.5	3.6/2.6	80x10 ³⁴

Accelerator upgrade

Super KEKB

Detector upgrade

- Critical issues at L= 8×10^{35} /cm²/s:
- Higher background (\times 10-20)
 - radiative Bhabha dominate
 - synchrotron radiation
 - beam-gas interactions
 - beam size (intrabeam scattering effects)
- Higher event rates (\times 10)
 - higher rate trigger (L1 trigg. $0.5 \rightarrow 30$ kHz)
 - DAQ, computing
- **Targeted improvements:**
 - increase hermeticity
 - improve IP and secondary vertex resolution
 - improve K_s and π^0 efficiency
 - improve K/ π separation
 - add µ-ID and PID in end-caps

Higher luminosity 🔶 higher background 🔶 the Belle detector has to be upgraded

Belle becomes Belle II

Belle II Detector Upgrade

Vertexing with silicon pixels and strips

- Pixels in DEPFET technology: thin (75µm) sensors give little multiple scattering, deal with high occupancy close to the IR, fast readout
- □ Strips deal with 10% occupancy, reduce bckgd. in PXD
- □ Improved IP resolution and $p_T < 100 \text{MeV}$ tracks reconstr., 30% larger eff. of $K_s \rightarrow \pi^+\pi^-$ with vertex info

Mechanical mockup of pixel detector

DEPFET sensor

Tracking with Central Drift Chamber

 □ Extended outer radius, longer lever arm, smaller cells near beampipe, faster readout electronics (1-2 µs → 200 ns)
 □ Improved momentum and dE/dx resolution

> $\sigma_{P_t} / P_t = 0.19 P_t \oplus 0.30 / \beta$ $\sigma_{P_t} / P_t = 0.11 P_t \oplus 0.30 / \beta \text{ with SVD}$

	Belle	Belle II
inner most sense wire	r=88mm	r=168mm
outer most sense wire	r=863mm	r=1111.4mm
Number of layers	50	56
Total sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
sense wire	W(Φ30μm)	W(Φ30μm)
field wire	Al(Φ120μm)	Al(Φ120μm)

Particle identification

- TOP: reconstructs Cherenkov rings from 3D info from PMTs: x,y and time of photon propagation (40 ps resolution)
 ARICH: measures Cherenkov angle.Inhomogeneous aerogel radiator to improve photon resolution
- Improved K/πseparation in wide momentum range
 (>4σ for pup to 4 GeV/c)

Electromagnetic Calorimeter

- **Crystals:**
 - Barrel: reuse existing CsI(TI).
 - Endcaps: (possibly staged) upgrade to pure CsI.
 - → Better performance & radiation hardness.
- **Readout electronics:**
 - Upgrade to 2 MHz waveform sampling.
 - Online signal processing.
 - \rightarrow Improved energy resolution.

old

Endcap $K_{\rm L}\mu$ Detector

RPCs → scintillator to tolerate high BG 75 strips (4 cm width)/1 layer/sector = 150 strips/superlayer

16800 strips for F&B endcap KLM w/ waveform sampling readout

the longest strip 2.8 m; the shortest 0.6 m

- WLS (blue → green) fiber in each strip (Y11 MC D=1.2mm)
- SiPM at one fiber end (at outer sector radius)
- mirrored far fiber end

SuperKEKB luminosity

Super

KEKB

Nov 18, 2011: SuperKEKB groundbreaking

The formal start of the project...

Belle-II Collaboration

~420 collaborators from 70 institutions in 20 countries

Summary

- Belle/KEKB is a very successful e+e- B Factory
 - Discovery of CPV in B decays
 - Precise test of KM and SM
 - ✓ Search for NP
- Major upgrade: SuperKEKB and Belle II, with 40x larger event rates
- Belle II at SuperKEKB will enable a new generation of precision studies in flavor physics.
- Belle II and LHC experiments will be complimentary.
- Upgrade of KEKB and Belle progressing well
- Start of data taking: October 2016
- Goal: Collect 50 ab⁻¹ by end of 2022