
Embeddings of the black holes
in a flat space

Anton Sheykin,
D. Grad and S.Paston

Saint-Petersburg State University

St. Petersburg 2013

Anton Sheykin, D. Grad and S.Paston (Saint-Petersburg State University )Embeddings of the black holesin a flat space St. Petersburg 2013 1 / 19



Contents

What is an isometrical embedding
Applications
Exact embeddings of the black holes
Thermodynamical properties of the black holes

Anton Sheykin, D. Grad and S.Paston (Saint-Petersburg State University )Embeddings of the black holesin a flat space St. Petersburg 2013 2 / 19



Idea of embedding

Janet-Cartan theorem (1916)
Аn arbitrary n-dimensional Riemannian manifold can be locally
isometrically embedded in N-dimensional flat space with

N ≥ n(n + 1)

2
. (1)

For our 4D manifold N = 10; if the manifold has symmetries, N may be
smaller. Metric of this manifold can be expressed in terms of embedding
function:

gµν = ∂µy
a(x)∂νy

b(x)ηab, (2)

where ya(x) – embedding function, ηab – metriс of flat ambient space.
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Embedding-based theory of gravity

Change of variables in action:

gµν(xµ)→ ya(xµ) (3)

δS =
1

2κ

∫
d4x
√−g(Gµν − κTµν)δgµν =

=
1

2κ

∫
d4x
√−g(Gµν − κTµν)∂µy

a(x)∂νδy
b(x)ηab =

= ∂µ(
√−g(Gµν − κTµν)∂νy

a) = (Gµν − κTµν)Dµ∂νy
a = 0. (4)

(Regge, Teitelboim 1975) Natural appearance of the flat spacetime in this
approach can be useful in the quantization of gravity:

Preferred «time slicing»
Definition of causality
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Applications of isometrical embedding
Quantization
The Wheeler-de Witt equation for RT approach (Davidson, PRD 2003)

8πG

2
√
h

( √h
8πG

)2

(λ̂+R(3))(x)−

−~2
(

(Ψ− λ̂I )−1
)AB

(x)
δ2

δyA(x)δyB(x)

]
Φ[y ] = 0 . (5)

Classification of exact solutions of Einstein equations

Embedding class p = N − d = d(d−1)
2 of a metric is invariant.

Geometrical properties of Riemannian manifolds
Fronsdal embedding of the Schwarzchild black hole is closely related to the
Kruskal coordinates:
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Fronsdal embedding (1959)

r > R :

y0 = 2R

√
1− R

r
sh
( t

2R

)
,

y1 = ±2R

√
1− R

r
ch
( t

2R

)
,

r < R :

y0 = ±2R

√
R

r
− 1 ch

( t

2R

)
,

y1 = 2R

√
R

r
− 1 sh

( t

2R

)
,

y2 = r cos(θ), (6)
y3 = r sin(θ) cos(φ),

y4 = r sin(θ) sin(φ),

y5 = g(r).

Ambient space metric is ηab = diag(1,−1,−1,−1,−1,−1).
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Known embeddings of the Schwarzshild black hole
Kasner (1921)

y0 = f (r), y1 = R

√
1−

R

r
sin(t/R), y2 = R

√
1−

R

r
cos(t/R). (7)

Fujitani et al. (1961)

y0 = t

√
1−

R

r
, y1,2 =

1
√
2 γ

(
γ2t2

2
∓ 1

)√
1−

R

r
+

u(r)
√
2
.

(8)

Davidson and Paz (1999)

y0,1 =
R

2β
√
rc r

(
eβt+u(r) ∓

r − rc

R
e−βt−u(r)

)
, y2 = kt. (9)

y3 = r cos θ, y4 = r sin θ cosφ, y5 = r sin θ sinφ.
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New embeddings of the Schwarzshild black hole
Asymptotically flat embedding (S.Paston, A.S., CQG, 2012)

y0 = t, y1 =

√
27R3

r
sin

(
t√
27R

−
√

(r + 3R)3

27R2r

)
, (10)

y2 =

√
27R3

r
cos

(
t√
27R

−
√

(r + 3R)3

27R2r

)
.

Cubic embedding (S.P., A.S., TMPh, 2013)

y0 =
ξ2

6
t3 +

(
1− R

2r

)
t + u(r),

y1 =
ξ2

6
t3 − R

2r
t + u(r), (11)

y2 =
ξ

2
t2 +

1

2ξ

(
1− R

r

)
.
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The global structure of the Schwarzchild black hole
embeddings

II

I

III

IV

r
=
R

r
=
R

r
=
R

r
=
R

r
=∞

r
=
∞

r
=
∞r

=∞

r = 0

r = 0

I – our universe; II – black hole; III – white hole; IV – parallel universe.
Fronsdal – I,II,III,IV; Kasner, Fujitani – I; Davidson, As. flat, Cubic – I,II.
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New global embeddings of the charged black hole

ds2 =

(
1− 2m

r
+

q2

r2

)
dt2 − dr2(

1− 2m

r
+

q2

r2

) − r2dΩ2.

Spiral

y0 =

√
(mr − q2)2 + b2r2

αqr
sin (αt + u(r)) ,

y1 =

√
(mr − q2)2 + b2r2

αqr
cos (αt + u(r)) ,

y2 =

√
b2 + m2 − q2

q
t. (12)
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Exponential

y0 = γt,

y1,2 =
e−βt−v(r)

2β
∓
(

1− 2m

r
+

q2

r2
− γ2

)
eβt+v(r)

2β
.

Cubic

y0 = − q4

8m3

(
1− 2m

r
+

q2

r2

)
+

2m3

q4
t2,

y1,2 = w(r)− 1

4

(
1− 2m

r
+

q2

r2

)
t +

4m6

3q8
t ′3 ∓ t.

Ambient space metric is ηab = diag(1, 1,−1,−1,−1,−1).
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The global structure of the charged black hole embeddings

II

I

III

IV

r
=
r+

r
=
r
+

r
=
r−

r
=
r−

r
=∞

r
=
∞r

=∞

r
=
∞

Vr = 0 VI r = 0
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Hawking and Unruh effect

Hawking effect

A black hole has a radiation with a thermal spectrum T0 =
1

4πR
.

Tolman law
In thermal equilibrium a temperature is not constant when space is curved.
For the Schwarzchild black hole

T = T0/
√

1− R/r . (13)

Unruh effect
Uniformly accelerated observer, when coupled to the quantum fields,
detects a radiation with a thermal spectrum and a temperature
proportional to his acceleration: T =

a

2π
.
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Connection between Hawking and Unruh effect in ambient
space

Deser & Levin, PRD 1999
Unruh radiation detected by observer moving on the embedding surface in
the ambient space has the same spectrum and temperature as the Hawking
radiation from the horizon in the corresponding manifold: T =

aemb

2π
. This

hypothesis was tested for Fronsdal embedding.

Further development
Hong, GRG 2003 – charged black holes,
Chen et al., JHEP 2004 – stationary motions,
Santos et al., PRD 2004 – D-dimensional black holes,..
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T = a/2π =
1

4πR
√

1− R/r
, T0 = T

√
1− R/r = const. (14)
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Accelerations for new embeddings

Asymptotically flat: a =
1

√
27Rr

(
1− R

r

)
Davidson-Paz: a =

β

1− R

r

√
1− R

r
+ k2

Cubic a =
ξ(

1− R

r

)
Corresponding temperatures (if we assume that the temperature and
acceleration are always related as in the Unruh effect) violate the Tolman
law and do not coincide with BH temperature!
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For moving on the arbitrary trajectories the spectrum of Unruh radiation is
not exactly thermal, but at sufficiently slowly varying accelerations
(ȧ/a2 << 1) the Unruh formula works good (Barbado & Visser, PRD,
2012).

Exact spectrum was found to be non-thermal for the trajectories
corresponding to lines of time in cubic (Letaw, PRD 1981) and
Davidson-Paz (Abdolrahimi, arXiv:1304:4237) embeddings.
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Summary

Isometrical embedding is a powerful tool for studying of Riemannian
manifolds.
Some features of embeddings possibly can help to quantize gravity.
Exact embeddings of black holes might be related to their
thermodynamical properties.
Mapping between Hawking effect and Unruh effect in ambient space
holds only for hyperbolic (Fronsdal-like) embeddings.
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