

Search for $v_{\mu} \rightarrow v_{\tau}$ oscillations with the OPERA experiment

M. Pozzato (Bologna University and INFN) on behalf of the OPERA Collaboration

QFTHEP - 2013

Outline

- The OPERA experiment
 - Requirements
 - CNGS neutrino beam
 - OPERA detector
- Physics Results
 - Charm control sample
 - v_{τ} candidates
 - Background sources
- Conclusions.

The OPERA experiment Oscillation Project with Emulsion-tRacking Apparatus

 v_{τ} appearance from an initially relatively pure v_{μ} high energy artificial beam through the v_{τ} CC interaction with the target mass.

- Intense high-energy long baseline muon-neutrino beam;
- Massive active target with a spatial resolution of the order of μ m;
- Detection capability of the tau-lepton production and decay
- Underground location (low background)

The CNGS neutrino beam

• Protons from SPS: 400 GeV	V/
-----------------------------	----

- Cycle length: 6 s
- 2 extractions separated by 50 ms
- Pulse length: 10.5 µs
- Beam intensity: 2.4 10¹³ proton/extr.

<ev<sub>µ></ev<sub>	17 GeV
$(v_e + \overline{v}_e) / v_\mu$	0.8% (*)
$\overline{\nu}_{\mu} / \nu_{\mu}$	2.1% (*)
v_{τ} prompt	Negligible (*)

(*) interaction rate at LNGS

Nominal Intesity: 4.5 10¹⁹ pot/year 5 years (nominal pot): $\sim 23600 v_{\mu} CC + NC$ $\sim 160 v_{e} + \overline{v}_{e} CC$ $\sim 110 v_{\tau} CC (\Delta m^{2} = 2.5 \ 10^{-3} \ eV^{2})$ $\sim 10 \tau$ decays are expected to be observed (BG < 1)

CNGS performances

Year	Proton On Target	Run
2006	$0.076 \mathrm{x} 10^{19}$	Commissioning
2007	$0.082 \mathrm{x} 10^{19}$	Commissioning
2008	1.74x10 ¹⁹	First physics run
2009	3.53x10 ¹⁹	Physics run
2010	4.09x10 ¹⁹ pot	Physics run
2011	4.75x10 ¹⁹ pot	Physics run
2012	3.86x10 ¹⁹ pot	Physics run

Total: 17.97 10^{19} pot 20% less than the proposal value (22.5 10^{19})

The OPERA detector

Strip granularity: 2.6 x 2.6 cm²

Detector elements: -Electronic detectors -Muon spectrometers -Emulsion Cloud Chamber

1 SuperModule:

-31 walls; - ~77000 bricks; <u>- ~620 ton</u>.

Measured magnetic field: 1.52 T

v_{τ} detection

Detection of decay topologies triggered by large IP wrt primary vertex or by kink/trident topologies

Charm candidate events

Check of the tau detection efficiency: similar life-time and decay topology (but with muon at the primary vertex)

Kolmogorov test > 0.99 for all plots

12

44

Multiplicity

The first v_{τ} candidate

Observation of a first ν_τ candidate event in the OPERA experiment in the CNGS beam

Event number: 9234119599 taken on 22nd of August, 19:27 (UTC)

v_{τ} event recorded by the Electronic Detector

The first v_{τ} candidate

Kinematical variables

VARIABLE	Measured	Selection criteria
Kink (mrad)	41 ± 2	>20
Decay length (µ m)	1335 ± 35	Within 2 plates
P daughter (GeV/c)	12 ⁺⁶ _3	>2
Pt daughter (MeV/c)	470 ⁺²⁴⁰ -120	>300 (γ attached)
Missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000
φ (deg)	173 ± 2	>90

The second v_{τ} candidate

Momentum measurement and particle identification of event tracks

Track#	Momentum (1σ interval) [GeV/c]	Particle ID	Method / Comments
Primary	2.8 (2.1-3.5)	Hadron	 Momentum-Range Consistency Check Stops after 2 brick walls. Incompatible with muon (26+44 brick walls)
d1	6.6 (5.2 - 8.6)	Hadron	 Momentum-Range Consistency Check
d2	1.3 (1.1 -1.5)	Hadron	 Momentum-Range Consistency Check
d3	2.0 (1.4 - 2.9)	Hadron	Interaction in the Brick @ 1.3cm downstream

Kinematical variables

	Cut	Value
φ (Tau - Hadron) [degree]	>90	167.8±1.1
average kink angle [mrad]	< 500	87.4±1.5
Total momentum at 2ry vtx [GeV/c]	> 3.0	8.4±1.7
Min Invariant mass [GeV/c ²]	0.5 < < 2.0	0.96±0.13
Invariant mass [GeV/c²]	0.5 < < 2.0	0.80±0.12
Transverse Momentum at 1ry vtx [GeV/c]	< 1.0	0.31±0.11

The third v_{τ} candidate

Topological sketch

Decay in the plastic base

Muon momentum reconstruction

The muon momentum evaluated: -by range in electronic detector is: 2.8 ± 0.2 GeV -by MCS in brick: 3.1 [2.6, 4.0] GeV

Muon charge reconstruction

By MC estimation the probability to reconstruct a μ + stopping in the 7th iron layer with p2 < -0.00389 is 0.063%²¹

Kinematical variables

VARIABLE	AVERAGE
Kink angle (mrad)	245 ± 5
decay length (µm)	376 ± 10
Pμ (GeV/c)	2.8±0.2
Pt (MeV/c)	690±50
φ (degrees)	154.5 ± 1.5

Background sources

- Hadronic interaction (nuclear fragment detection);
- µ⁻ at primary vertex not identified by ED at very large angle;
- Large angle muon scattering

Hadronic interaction

Comparison between Fluka simulation and test beam pion

Large angle tracks measurements

- Improvements on background rejection:
 - Undetected soft and large angle muons are source for charm background;
 - Detection of particles and nuclear fragments in hadronic interactions.

Large angle muon scattering

Rate in lead O(10⁻⁶) and even less in emulsion/base (10⁻⁸ \rightarrow 10⁻⁷)

Statistical considerations

Channel	Signal	Background	Charm	μScattering	Had. Inter.
τ→h	0.66	0.045	0.029		0.016
τ→3h	0.61	0.090	0.087		0.003
τ→μ	0.56	0.026	0.008	0.018	
τ→e	0.49	0.065	0.065		
total	2.32	0.226	0.19	0.018	0.019

By a simple counting method the probability that the observed 3 events in the 3 channels can be explained as background is 7.29 10-4.

 \rightarrow 3.2 σ significance of non-null observation

Conclusion

- The OPERA experiment is aimed at the discovery of neutrino oscillations in appearance mode through the study of $v_{\mu} \rightarrow v_{\tau}$ channel;
- Decay topologies due to charmed particles observed in good agreement with expectation;
- 3 tau candidate events have been found in the channel $\tau \rightarrow h$, $\tau \rightarrow 3h$, $\tau \rightarrow \mu$ for an overall significance of 3.2 σ

Introduction

In the last decades several experiments provided evidence for neutrino oscillations (disappearance mode).

-CHOOZ (1997): The main oscillation channel responsible for atmospheric neutrino disappearance is not $v_{\mu} \rightarrow v_{e}$;

-SK (1998): The main oscillation channel responsible for atmospheric neutrino anomaly is not $\nu_{\mu} \rightarrow \nu_{s}$ and can be interpreted as $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations.

-(2004-2009) K2K, MINOS precision measurments of ν_{μ} disappearance

Emulsion Cloud Chamber (ECC)

ECC: series of emulsions sheets interspaced with lead plates.

- Provide high resolution and large mass in a modular way

Brick: is the target basic component

- 57 nuclear emulsion films interleaved with 1 mm thick lead plates
- a box with a removable pair of films (Changeable Sheets) interface to the electronic detectors

Detector working principle

TT : identifies the brick with the candidate interaction

Spectrometer: µ identification, measurement of charge and momentum

The Brick Manipulator System extracts the candidate brick from the wall

- CS developed in the cavern;

- CS measured half at LNGS half in Japan (scanning area depending on event type);
- If CS-TT tracks found \rightarrow Brick exposed to Cosmic rays (12 h);
- Brick assigned to a lab for locating the neutrino interaction \rightarrow see next slides

ECC performances

Linearity of momentum center Pion Test Beam – MC comparison

Momentum resolution dependece on number of emulsion plate transversed

Soft muons momentum measured inside the brick and compared with one measured by electronic detector

Electronic Detector Performances

Energy deposit in the Target Tracker

Overall efficiency (Trigger + reconstruction) for CC events > 97.5%
 Charge id efficiency > 96% (2.5 GeV/c < |P| < 45 GeV/c)
 Momentum resolution (MC computation): 10% at 2.5GeV/c

20% at 25 Gev/c

■ Transverse spatial resolution < 1 mm

Changeable Sheets interface between ED and ECC

-CS used to validate the brick selected by electronic detector;
-Allows to go from a "scale" of the order of cm to one of the order of µm
→ see next slide

CS – Brick connection

Tracks connected are not only muons.

Track follow – down of trk #2

$$\begin{split} L &= \text{track length} \\ R_{lead} &= \mu \text{ range} \\ \rho_{average} &= \text{average density} \\ \rho_{lead} &= \text{lead density} \\ p &= \text{momentum in emulsion} \end{split}$$

Momentum/range comparison is inconsistent with muon hypotesis

Interaction location in ECC brick

1. Follow back in brick tracks found in CS until they disappear: vertex plate

2. Search for all track segments in volume of $1 \times 1 \text{ cm}^2 \times 15$ films around plate where scanned back tracks disappear.

3. Reject all track segments that do not form tracks or that form tracks traversing the whole volume.

Frames correspond to the scanning area in successive films. Yellow short lines \rightarrow measured tracks. Other colored lines \rightarrow interpolation or extrapolation