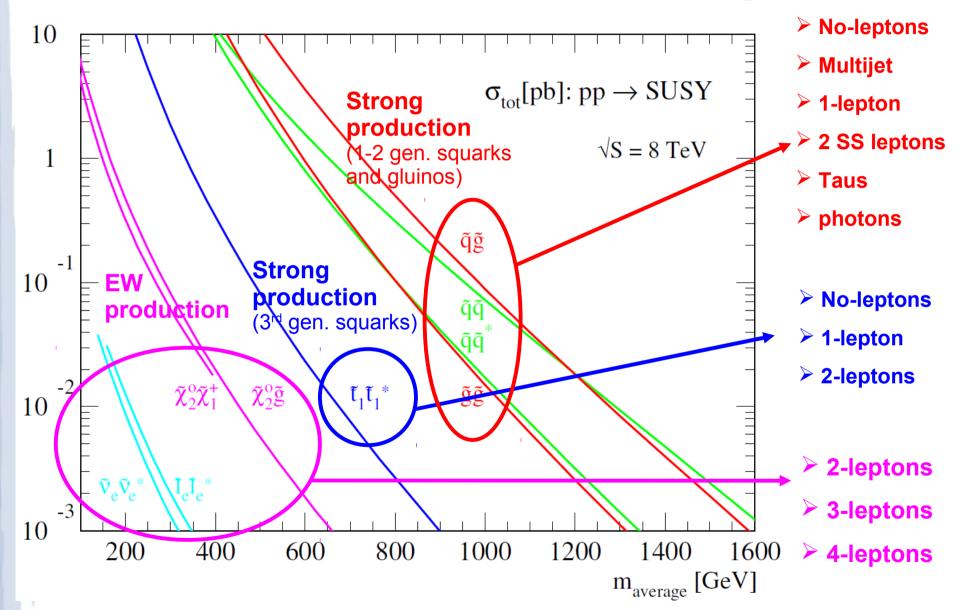
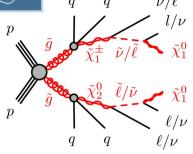


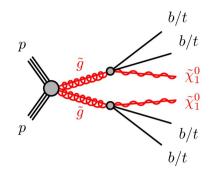
Supersymmetry (SUSY)

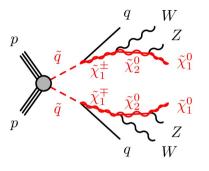
"Superpartners" to each SM particles (same quantum numbers, but spin differs by ½)

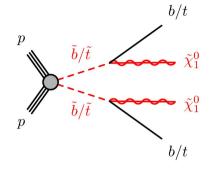

- ightharpoonup if R-parity is conserved ($R=(-1)^{3(B-L)+2S}$), SUSY particles are pair produced and the lightest one (LSP) is stable
- Why is SUSY popular? It answers many open questions at once:
- ✓ allows unification of gauge couplings
- ✓ provides a solution to the hierarchy problem: the fermion/boson contribution to the Higgs mass cancel
- ✓ If R-parity is conserved the LSP is stable and is a dark matter candidate

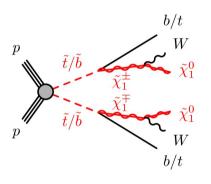
SUSY search strategies

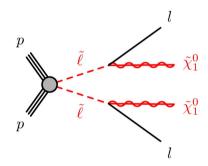

3

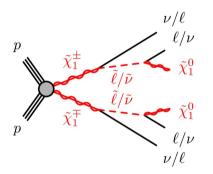


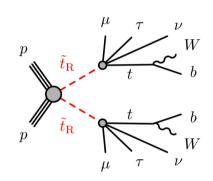

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults




SUSY search strategies







R-Parity violating searches (RPV)

- LSP: no need to be neutral nor stable.
- LSP decay: possibility to explore new signals, exploit LSP invariant mass and decay properties
- Single Sparticles production is possible
- Not so large E_Tmiss

R-Parity conserving searches (RPC)

- Neutral Stable LSP
- Sparticles produced in pairs
- Large E, miss
- Long-lived particles

4

Background estimation

Standard Model

Top, multijets
V, VV, VVV, Higgs
& combinations of these

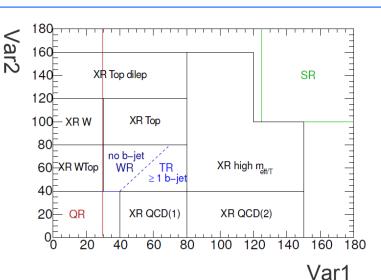
Reducible backgrounds

Determined from data Backgrounds and methods depend on analyses

Irreducible backgrounds

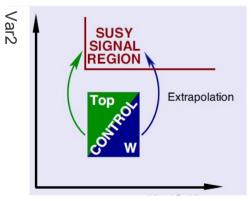
Dominant sources: normalise MC in data control regions Subdominant sources: MC

Validation


Validation regions used to cross check SM predictions with data

Signal regions

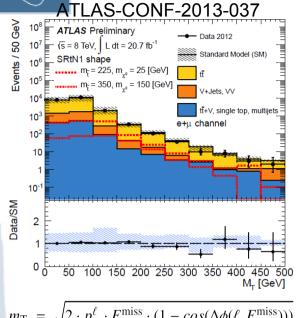
Examples

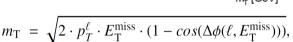

Fake leptons or heavy-flavour jets determined with "matrix method" in different-purity samples using "real" and "fake" probabilities measured in data.

Charge flip rate measured in Z events

$$C_{iR \to SR}^{j} = \frac{N(MC_{j}, SR)}{N(MC_{i}, iR)}$$

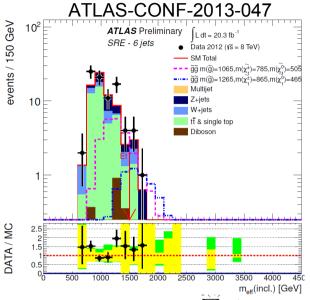
$$N_{MC\ pred._j}^{SR} = N_{data}^{iR} \times \frac{N(MC_j, SR)}{N(MC_j, iR)} = N_{data}^{iR} \times C_{iR \to SR}^{j}$$

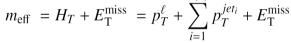


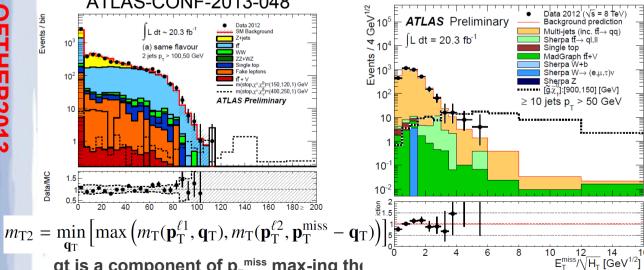

5

Var1

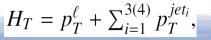
Common variables

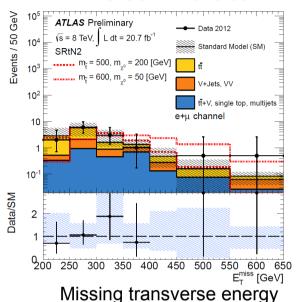


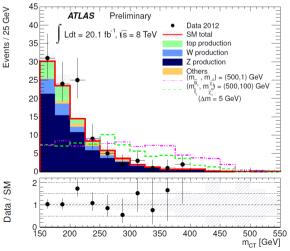



ATLAS-CONF-2013-048

L dt ~ 20.3 fb⁻¹


ATLAS-CONF-2013-054


qt is a component of p_T miss max-ing the "lep, qt" comb. giving the min $m_{_{\rm T}}$


t + V n(stop,χ±,χ⁰)=(150,120,1) GeV

ATLAS Preliminary

ATLAS-CONF-2013-037

$$m_{\text{CT}}^2(v_1, v_2) = [E_{\text{T}}(v_1) + E_{\text{T}}(v_2)]^2 - [\mathbf{p}_{\text{T}}(v_1) - \mathbf{p}_{\text{T}}(v_2)]^2$$

Inclusive searches for squark and gluino production $\tilde{q}\tilde{q}$ production; $\tilde{q} \to q \tilde{\chi}_1^0$

 $m_{\widetilde{\chi}_{i}}^{0}$ [GeV]

500

400

300

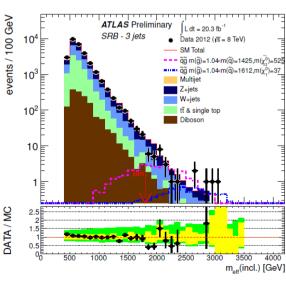
200

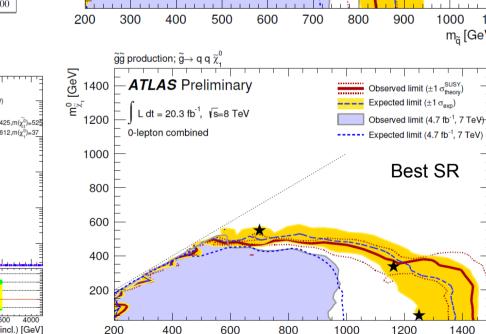
100

0-lepton and 2-6 jets (20.3 fb⁻¹)

	Channel											
Requirement	A (2-	-jets)	В	B (3-jets)		-jets)	D (5-jets)	E (6-jets)				
	L	M	M	T	M	T	-	L	M	T		
$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}] >$		160										
$p_{\mathrm{T}}(j_1)$ [GeV] >		130										
$p_{\mathrm{T}}(j_2) [\mathrm{GeV}] >$		60										
$p_{\mathrm{T}}(j_3) [\mathrm{GeV}] >$	- 60			60		60	60					
$p_{\mathrm{T}}(j_4) [\mathrm{GeV}] >$	-				60		60	60				
$p_{\mathrm{T}}(j_{5}) [\mathrm{GeV}] >$	-	-		_	_		60	60				
$p_{\mathrm{T}}(j_{6}) [\mathrm{GeV}] >$	-				-		-	60				
$\Delta \phi(\mathrm{jet}_i, \mathbf{E}_\mathrm{T}^\mathrm{miss})_\mathrm{min} >$	$0.4 (i = \{1, 2, (3 \text{ if } p_{\text{T}}(j_3) > 40 \text{ GeV})\})$				$0.4 (i = \{1, 2, 3\}), 0.2 (p_T > 40 \text{ GeV jets})$)		
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)>$	0.2	_a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25		
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1600	1800	1800 2200		2200	1600	1000	1200	1500		

⁽a) For SR A-medium the cut on $E_T^{\text{miss}}/m_{\text{eff}}(N_f)$ is replaced by a requirement $E_T^{\text{miss}}/\sqrt{H_T} > 15 \text{ GeV}^{1/2}$.


Backgrounds:


Multijets

 $Z(\rightarrow vv)$ + jets

W+jets

ttbar+single top

ATLAS Preliminary

L dt = 20.3 fb^{-1} , $\sqrt{s}=8 \text{ TeV}$

0-lepton combined

Observed limit ($\pm 1 \sigma_{theory}^{SUSY}$) Expected limit $(\pm 1 \sigma_{exp})$

Expected limit (4.7 fb⁻¹, 7 TeV) -

Best SR

Observed limit (4.7 fb⁻¹, 7 TeV)-

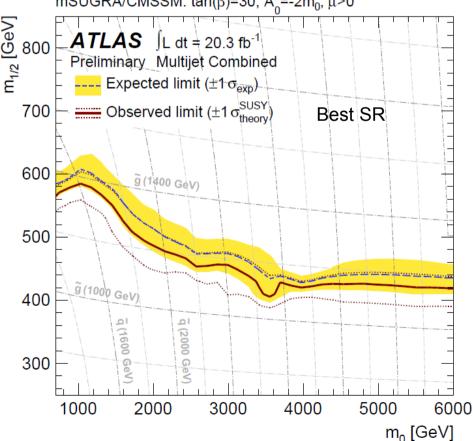
1000

m_ã [GeV]

1400 m_ã [GeV]

Data are in agreement with SM expectations in all regions

Inclusive searches for squark and gluino production



Key observation: $E_{t}^{\text{miss}}/\text{sqrt}(H_{T})$ and M_{I}^{Σ}

$$M_J^{\Sigma} \equiv \sum_j m_j^{R=1.0}$$

mSUGRA/CMSSM: $tan(\beta)$ =30, A_n =-2 m_0 , μ >0

	Multi-jet + flavour stream												
Identifier		8j50			9j50		≥ 10j50	7j80			≥ 8	j80	
Jet η				•	< 2.	0		< 2.0					
Jet p _T	> 50 GeV					> 80 GeV							
Jet count	= 8		= 9		9	≥ 10	= 7		≥ 8		8		
b -jets $(p_{\rm T} > 40 \ {\rm GeV}, \eta < 2.5)$	0	1	≥ 2	0	1	≥ 2	_	0	1	≥ 2	0	1	≥ 2
M_J^{Σ} [GeV]	_			_									
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	> 4 GeV ^{1/2}				> 4 GeV ^{1/2}								

Main background is multijet production

	Multi-jet + M_J^{Σ} stream					
Identifier	≥ 8j50	≥ 9 j 50	≥ 10j50			
Jet η		< 2.8				
Jet p _T		> 50 GeV				
Jet count	≥ 8	≥ 9	≥ 10			
<i>b</i> -jets	_					
$(p_{\rm T} > 40 \text{ GeV}, \eta < 2.5)$						
M_J^{Σ} [GeV]	> 340 and > 420 for each case					
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}$	> 4 GeV ^{1/2}					

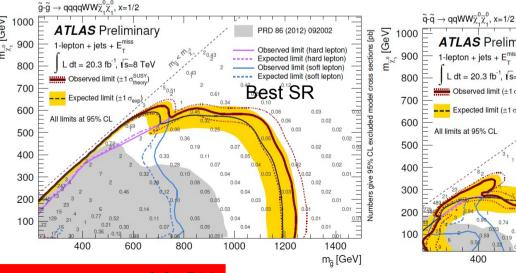
Data are in agreement with SM expectations in all regions

Inclusive searches for squark and gluino production

ma [GeV]

1-lepton searches (20.3 fb⁻¹)

Soft-lepton SRs:


- el/mu: (10-25)/(6-25) Gev
- > 0 b-jet + 2mu + ≥ 2 jets
- 1 b-jet + 1lep + ≥ 3 jets
- 2 b-jets + 1lep + ≥ 2 jets
- No b-tag + 1lep + 3-4,≥5 jets

Hard-lepton SRs

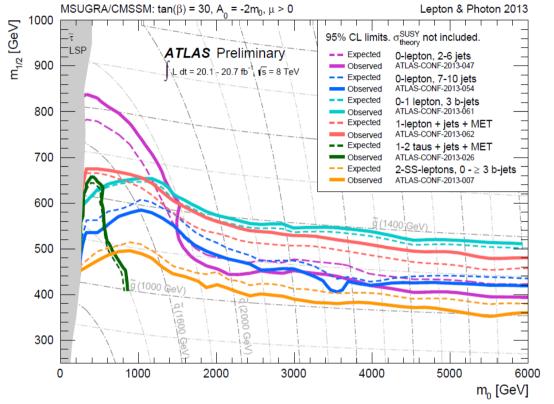
	3-jet	5-jet	6-jet								
N_{ℓ}	1 (electron or muon)										
$p_{\mathrm{T}}^{\ell}(\mathrm{GeV})$		> 25									
$p_{\mathrm{T}}^{\mathrm{add.}\ \ell}$ (GeV)		< 10									
$N_{ m jet}$	≥ 3	≥ 5	≥ 6								
$p_{\mathrm{T}}^{\mathrm{jet}}(\mathrm{GeV})$	> 80, 80, 30	> 80, 50, 40, 40, 40	> 80, 50, 40, 40, 40, 40								
$p_{\rm T}^{\rm add. jets}({\rm GeV})$	- (< 40)	- (< 40)	_								
$E_{\rm T}^{\rm miss}$ (GeV)	>500 (300)	>300	>350 (250)								
$m_{\rm T}~({\rm GeV})$	> 150	> 200 (150)	> 150								
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm excl}$	> 0.3	_	_								
$m_{\rm eff}^{\rm incl}$ (GeV)	> 1	1400 (800)	> 600								

Background:

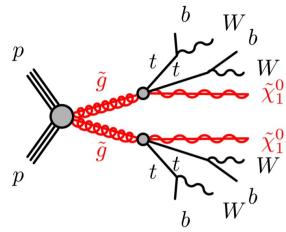
- ttbar production
- W/Z+jets production
- > WW, ZZ, WZ

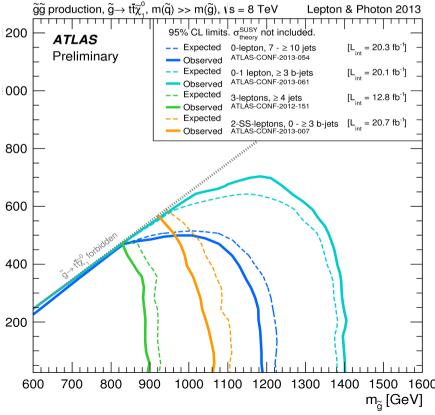
Data are in agreement with SM expectations in all regions

ATLAS-CONF-2013-062


ATLAS Preliminary

. dt = 20.3 fb⁻¹, \subseteq s=8 TeV


Inclusive searches for squark and gluino production summary



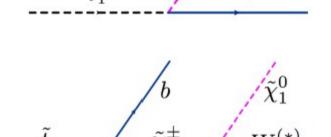
Max gluino mass exclusion limit ~1.34 TeV for Gtt model

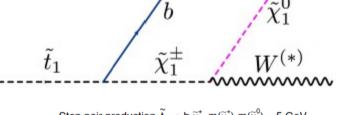
3rd generation searches

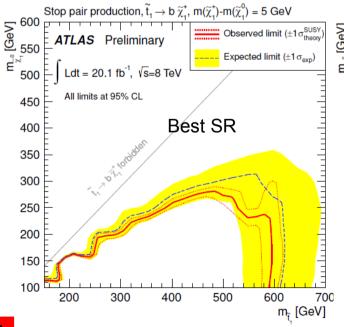
0-lepton, b-jets (20.1 fb⁻¹)

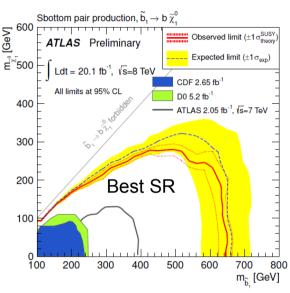
Event selection:

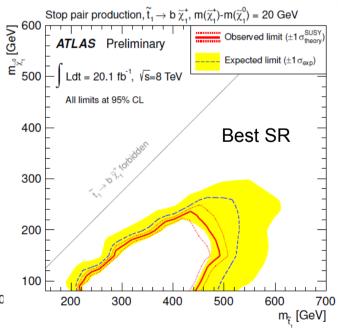
- Lepton veto
- 2 b-jets
- ightharpoonup $\mathsf{E}_\mathsf{T}^\mathsf{miss}$


Background:

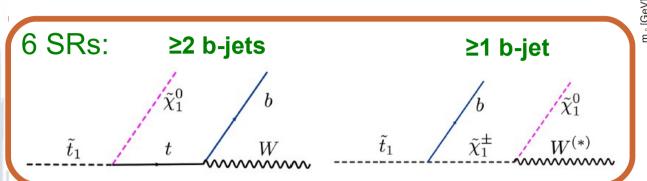

- ttbar production
- W/Z+jets production


Signal regions:


SRA: large $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$

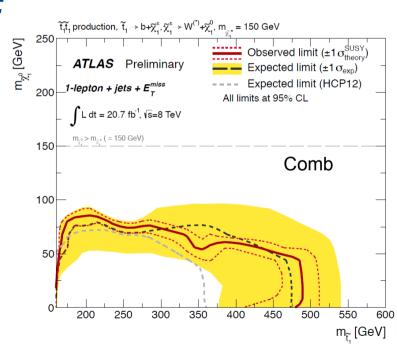

SRB: small $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$

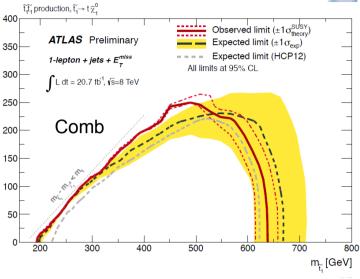
ATLAS-CONF-2013-053

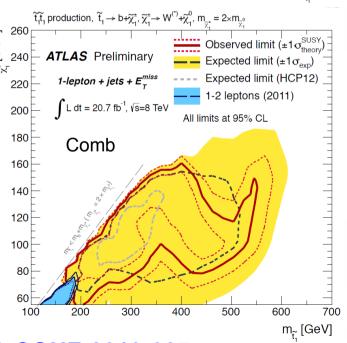

Data are in agreement with SM expectations in all regions

3rd generation searches

1lepton, b-jets (20.3 fb⁻¹)

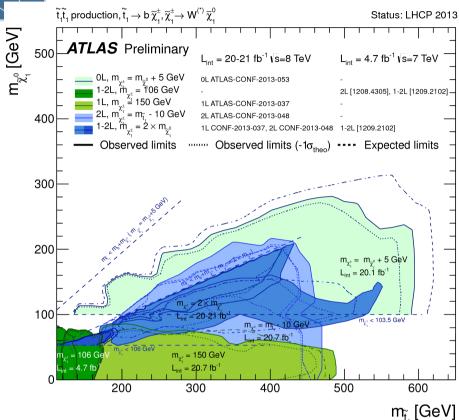



Event selection:

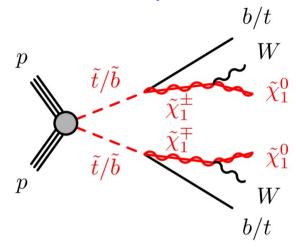

- > e/μ p_T > 25 GeV
- > ≥4 jets with
- $p_{T} > 80,60,40,25 \text{ GeV}$
- ➤ E_T^{miss} > 80 GeV

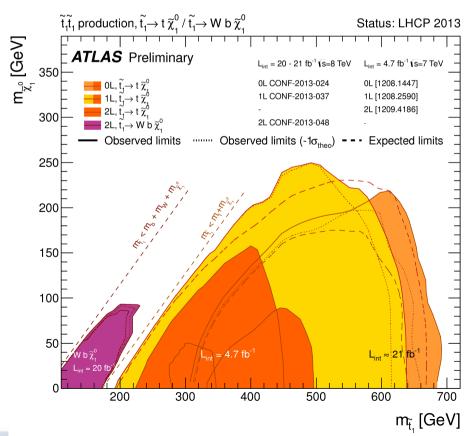
Background:

- ttbar production
- W/Z+jets production
- > WW, ZZ, WZ



Data are in agreement with SM expectations in all regions

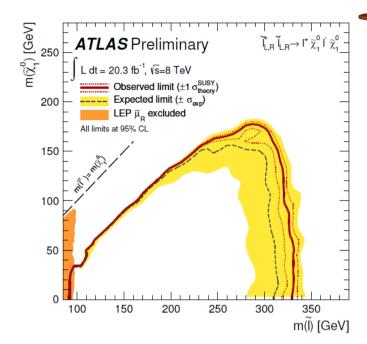


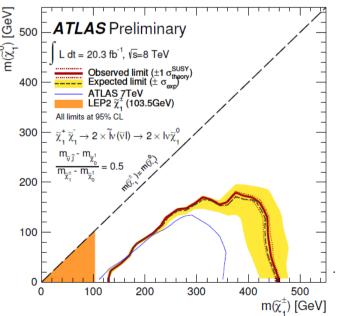

3rd generation searches summary

Gluino and light squark masses below ~1.15 and ~1.24 TeV correspondingly are excluded

Max stop mass exclusion limit ~660 GeV and sbottom limit ~630 GeV

2-leptons searches (20.3 fb⁻¹)

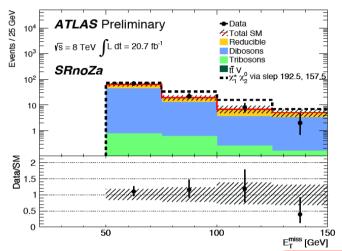

Opposite sign analysis (OS)

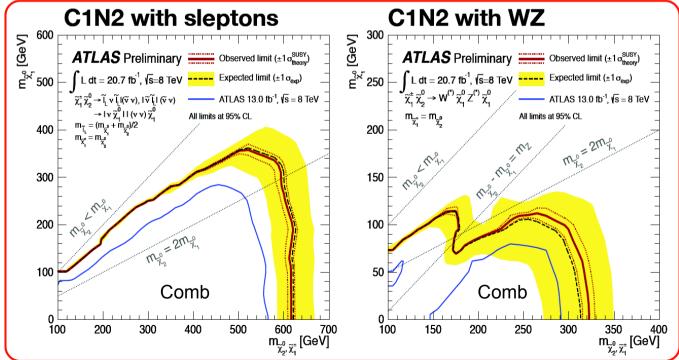

- Background: ttbar, WW, WZ, ZZ
- Discr. variable:

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

	$SR-m_{T2,90}$	$SR-m_{T2,110}$	SR-WWa	SR-WWb	SR-WWc			
lepton flavour	$e^{+}e^{-}, \mu^{+}$	$\mu^-, e^{\pm}\mu^{\mp}$	$e^{\pm}\mu^{\mp}$					
$p_{\mathrm{T}}^{\ell 1}$	_	_	> 35 GeV					
$p_{\mathrm{T}}^{ ilde{t}2}$	_	_	> 20 GeV					
$m_{\ell\ell}$	Z v	veto	< 80 GeV	< 130 GeV				
$p_{\mathrm{T},\ell\ell}$	_	_	> 70 GeV	< 170 GeV	< 190 GeV			
$\Delta\phi_{\ell\ell}$	_	_	'	< 1.8 rad	'			
$E_{ m T}^{ m miss,rel}$	> 40	GeV	> 70 GeV	_	_			
m_{T2}	> 90 GeV	> 110 GeV		> 90 GeV	> 100 GeV			

- > SR-m_{T2}: $\tilde{\ell}^{\pm}\tilde{\ell}^{\mp}$ and $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ production
- SR-WW: chargino and neutralino production with $\tilde{\chi}_1^{\pm} \to W^{\pm} + \tilde{\chi}_1^0$

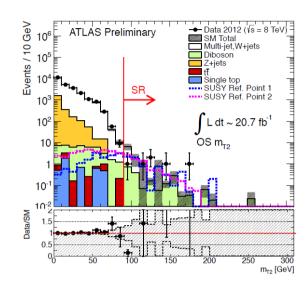


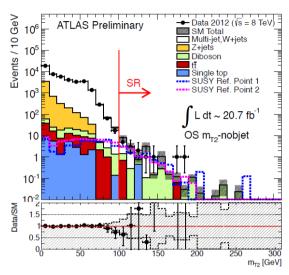


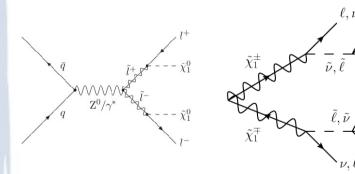
3-leptons searches (20.7 fb⁻¹)

	Z	deplet	ted	Z enriched			
Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc	
m _{SFOS} [GeV]	<60	60-81.2	<81.2 or >101.2	81.2-101.2	81.2-101.2	81.2-101.2	
$E_{\rm T}^{\rm miss}$ [GeV]	>50	>75	>75	75-120	75-120	>120	
$m_{\rm T}$ [GeV]	_	-	>110	<110	>110	>110	
$p_{\rm T}$ 3 rd ℓ [GeV]	>10	>10	>30	>10	>10	>10	
SR veto	SRnoZc	SRnoZc	-	-	-	-	
Target	Low mass splitting	No-slep off-shell 2	Slepton Z bulk	WZ-like	No-slep on-shell Z	No-slep bulk	

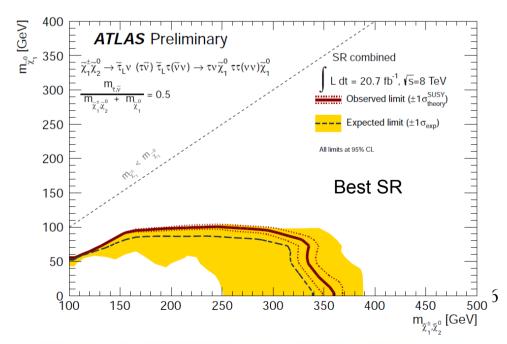
- Six specialized signal regions targeting
 C1N2
 - Split into Z-veto and Z-request regions
- Background modeling
 - ttbar, s.top, V+jets
 - Di-, tribosons ttbar+V



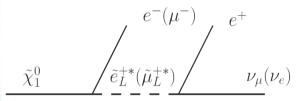




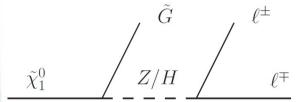
2-tau searches (20.7 fb⁻¹)


Signal region	requirements
OS $m_{\rm T2}$	at least 1 OS tau pair
	jet veto
	Z-veto
	$E_{\rm T}^{\rm miss} > 40~{\rm GeV}$
	$m_{\rm T2} > 90 {\rm GeV}$
OS m _{T2} -nobjet	at least 1 OS tau pair
	b-jet veto
	Z-veto
	$E_{\rm T}^{\rm miss} > 40~{\rm GeV}$
	$m_{\rm T2} > 100 {\rm GeV}$

an t	an oa	an oa
SM process	SR OS $m_{\rm T2}$	SR OS $m_{\rm T2}$ -nobjet
top	$0.2 \pm 0.5 \pm 0.1$	$1.6 \pm 0.8 \pm 1.2$
Z+jets	$0.28 \pm 0.26 \pm 0.23$	$0.4 \pm 0.3 \pm 0.3$
diboson	$2.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.5 \pm 0.9$
multi-jet & W+jets	$8.4 \pm 2.6 \pm 1.4$	$12 \pm 3 \pm 3$
SM total	$11.0 \pm 2.7 \pm 1.5$	$17 \pm 4 \pm 3$
data	6	14

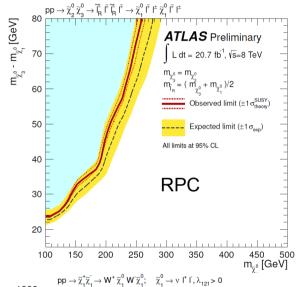

4-leptons searches (20.7 fb⁻¹)

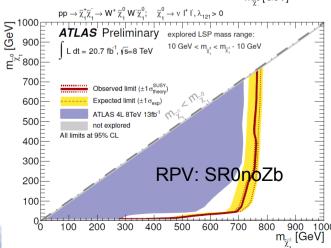
$$R = (-1)^{3(B-L)+2S}$$

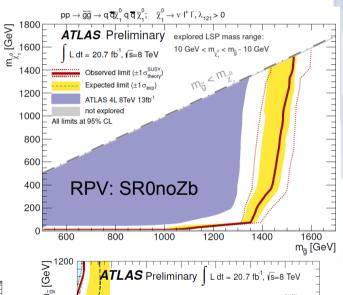

RPC

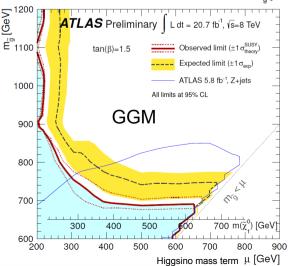
$$\tilde{\chi}^0_{2,3} \to \ell^{\pm} \tilde{\ell}^{\mp}_{R} \to \ell^{+} \ell^{-} \tilde{\chi}^0_{1}$$

RPV

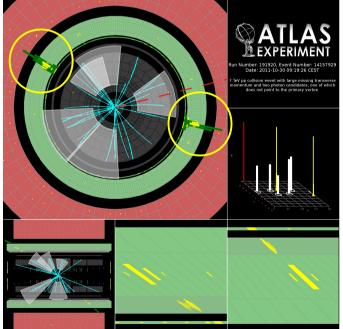

GGM



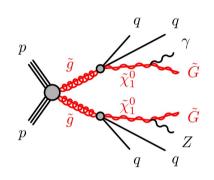

Background:

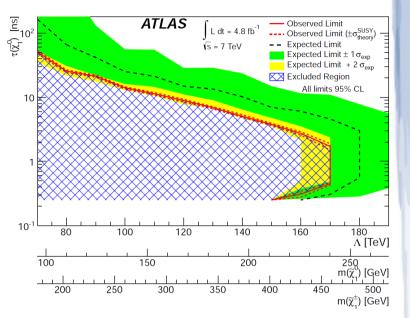

- ttbar, ttbar+V, ttbar+VV
- ➤ Di- and tribosons production

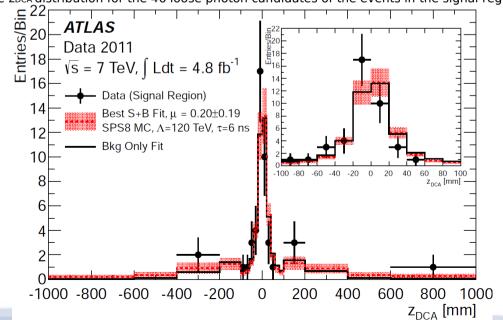
SR	$N(\ell = e, \mu)$	$N(\tau)$	Z Candidate	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$		$m_{\rm eff} [{\rm GeV}]$	Scenario
SR0noZa	≥4	≥0	extended veto	>50			RPC
SR0noZb	≥4	≥ 0	extended veto	>75	or	>600	RPV
SR1noZ	=3	≥1	extended veto	>100	or	>400	RPV
SR0Z	≥4	≥0	request	>75			GGM
SR1Z	=3	≥1	request	>100			GGM


Long-lived particles searches

"non-pointing" photons searches (4.8 fb⁻¹, 7 TeV)


The decay length of the neutralino is a free parameter of the theory.


The long-lived NLSP scenario introduces the possibility of a decay photon being produced after a finite delay and with a flight direction that does not point back to the primary vertex (PV) of the event.


ATLAS-CONF-2013-028

The ZDCA distribution for the 46 loose photon candidates of the events in the signal region.

18

Summary table

S SUSY Searches* - 95% CL Lower Limits

 $\int f dt = (AA - 220) \text{ fb}^{-1}$

ATLAS Prelimina 1/5 - 7 0 To

	LP 2013					$\int \mathcal{L} dt = (4.4 - 22.9) f$	$b^{-1} \sqrt{s} = 7, 8 \text{ Te}$
	Model	e, μ, τ, γ	Jets	E _T miss	∫£ dt[fl		Reference
	MSUGRA/CMSSM MSUGRA/CMSSM MSUGRA/CMSSM $qq, \bar{q} \rightarrow q\bar{\chi}_1^0$ $gg, \bar{q} \rightarrow q\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{q}q\ell\ell(\ell\ell)\bar{\chi}_1^0\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{q}q\ell\ell(\ell\ell)\bar{\chi}_1^0\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qq\bar{q}q\ell\ell(\ell\ell)\bar{\chi}_1^0\bar{\chi}_1^0$ $gg, \bar{g} \rightarrow qg, g$	$\begin{array}{c} 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu (SS) \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3 jets 2-4 jets 0 0 1 b 0-3 jets mono-jet	Yes	20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATIAS-CONF-2013-062 ATIAS-CONF-2013-054 ATIAS-CONF-2013-047 ATIAS-CONF-2013-047 ATIAS-CONF-2013-062 ATIAS-CONF-2013-007 1208.4688 ATIAS-CONF-2013-026 1209.0753 ATIAS-CONF-2012-144 1211.1167 ATIAS-CONF-2012-152 ATIAS-CONF-2012-147
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0-1 e, μ 0-1 e, μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
П	$\begin{array}{c} b_1b_1,\ b_1\!\!\rightarrow\!b\bar{\chi}_1^0\\ b_1b_1,\ b_1\!\!\rightarrow\!b\bar{\chi}_1^0\\ b_1b_1,\ b_1\!\!\rightarrow\!b\bar{\chi}_1^0\\ \bar{t}_1\bar{t}_1(\text{light}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{light}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{light}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{medium}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{medium}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heavy}),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1\bar{t}_1(\text{heav},\bar{t}_1),\ \bar{t}_1\!\!\rightarrow\!b\bar{\chi}_1^{\bar{t}}\\ \bar{t}_1,\ $	0 2 e, \(\mathcal{\mu} \) (SS) 1-2 e, \(\mu \) 2 e, \(\mu \) 0 1 e, \(\mu \) 0 2 e, \(\mu \) (Z) 3 e, \(\mu \) (Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b	Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATIAS-CONF-2013-053 ATIAS-CONF-2013-007 1208.4305, 1209.2102 ATIAS-CONF-2013-048 ATIAS-CONF-2013-048 ATIAS-CONF-2013-053 ATIAS-CONF-2013-037 ATIAS-CONF-2013-024 ATIAS-CONF-2013-025 ATIAS-CONF-2013-025
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \vec{\delta} \\ \vec{\delta} \\ \vec{\lambda} \\$	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2)) ATLAS-CONF-2013-028 ATLAS-CONF-2013-035
	Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived \tilde{X}_1^+ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}$ Direct $\tilde{\tau}\tilde{\tau}$ prod., stable $\tilde{\tau}$ or $\tilde{\ell}$ GMSB, $\tilde{X}_1^0 \to \gamma \tilde{g}$, long-lived \tilde{X}_1^0 $\tilde{X}_1^0 \to qq\mu$ (RPV)	0 0 1-2 μ 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0 0	Yes Yes - - Yes Yes	4.7 22.9 15.9 15.9 4.7 4.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1210.2852 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 ATLAS-CONF-2013-058 1304.6310 1210.7451
	LFV $pp \rightarrow \overline{v}_{\tau} + X$, $\overline{v}_{\tau} \rightarrow e + \mu$ LFV $pp \rightarrow \overline{v}_{\tau} + X$, $\overline{v}_{\tau} \rightarrow e(\mu) + \tau$ Bilinear RPV CMSSM $ X_{1}^{+} \overline{X}_{1}^{-}, X_{1}^{+} \rightarrow W \overline{X}_{1}^{0}, \overline{X}_{1}^{0} \rightarrow ee\overline{v}_{\mu}, e\mu i \overline{x}_{1}^{+} \overline{X}_{1}^{-}, \overline{X}_{1}^{+} \rightarrow W \overline{X}_{1}^{0}, \overline{X}_{1}^{0} \rightarrow \tau \tau \overline{v}_{e}, er\overline{v}$ $ \overline{g} \rightarrow qqq \\ \overline{g} \rightarrow \overline{t}_{1} \overline{t}, \overline{t}_{1} \rightarrow bs $	1 e, μ 4 e, μ	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
	Scalar gluon WIMP interaction (D5, Dirac χ)	0	4 jets mono-jet	- t Yes	4.6 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 M* scale 704 GeV m(χ) <80 GeV, limit of <687 GeV for December 110.2693	1210.4826 ATLAS-CONF-2012-147
		√s = 8 TeV		8 TeV		10 ⁻¹ Mass scale [To	≱V]

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Summary and perspective

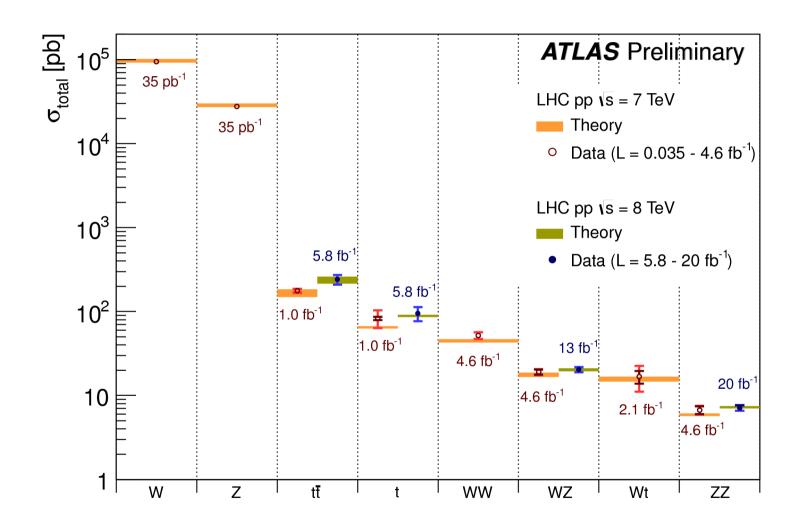
No discovery yet

Motivations for SUSY still strong, many analyses in progress to full data sets.

Searches are physics mode oriented, very large number of final states analyzed (Presented limits valid within a specific simplified or constrained model)

New window opens in 2015 with 14 TeV collision energy!

Preparation of 14 TeV analyses ongoing!


Thank you!

Backup slides

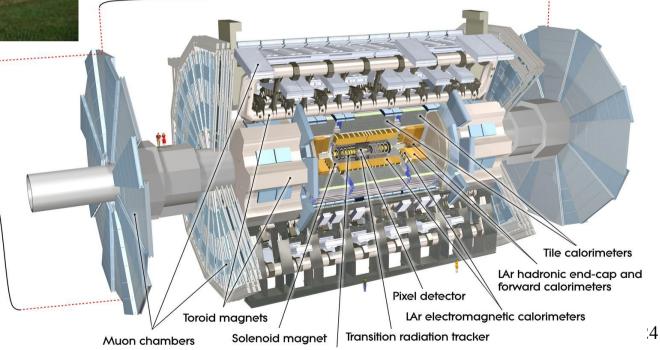
Standard Model Cross-Sections

 $M_{H} = 125.5 \text{ GeV (ATLAS-CONF-2013-014)}$

ATLAS Detector

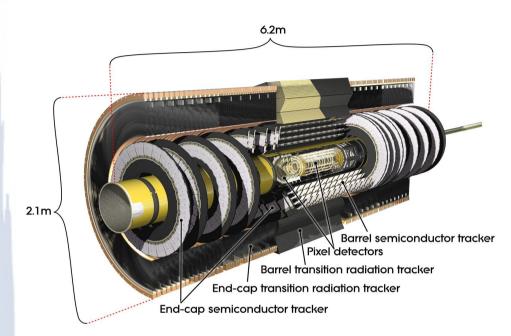
25m

Excellent resolution for jets, electrons, photons, muons and missing E_T


Excellent vertex reconstruction

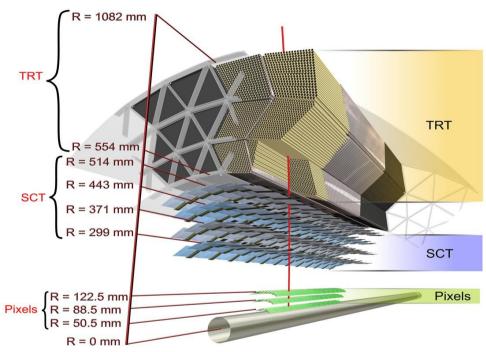
 $\sim 4\pi$ coverage in solid angle

7000 T


ATLAS superimposed to the 5 floors of building 40

Muon Spectrometer
HadCAL
EMCAL
Solenoid
TRT
SCT
Pixels

Semiconductor tracker

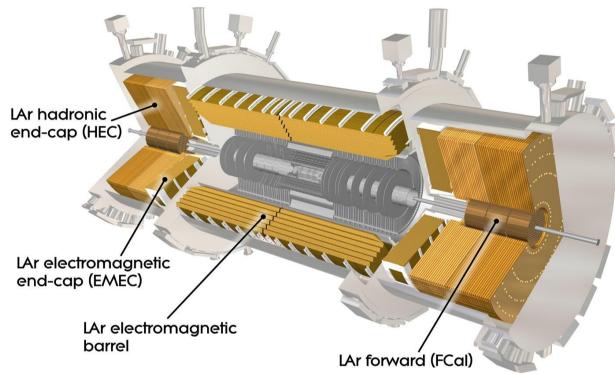

Inner Detector (tracker)

Silicon pixels (Pixel): 0.8 10⁸ channels Silicon strips (SCT): 6 10⁶ channels Transition Radiation Tracker (TRT): straw tubes (Xe), 4 10⁵ channels e/π separation

 $\sigma/p_{T} \sim 5x10^{-4} p_{T} \oplus 0.01$

Covers $|\eta|$ <2.5 in a solenoidal magnetic field of 2T

Pixel: each pixel is 50 μm wide in Rφ and 300 μm long. At R=4cm -- "B-layer" (good vertexing)


SCT: 4 double layers of silicon strips. Each double layer consists of strips aligned in the azimuthal direction and strips rotated by a 40 mrad stereo angle with respect to the first set. The strips have an 80 μ m pitch and are 12 cm long.

TRT: consists of ~36 layers of 4 mm diameter straw tubes with resolutions ~200 µm

LAr EM Calorimeter

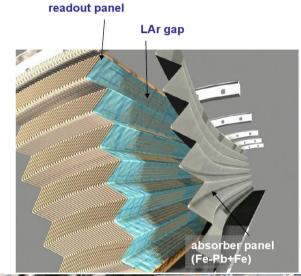
Barrel coverage $|\eta|$ <3.2

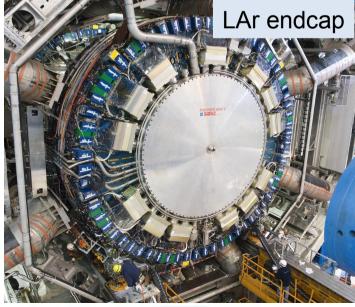
Total coverage |η|<4.9

Outer radius of 2.25 m and half-length 6.65 m

Electromagnetic Calorimeter

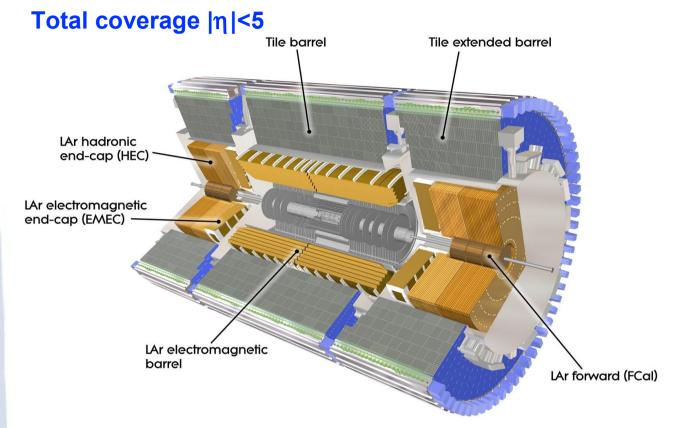
Barrel, Endcap: Lead-LAr

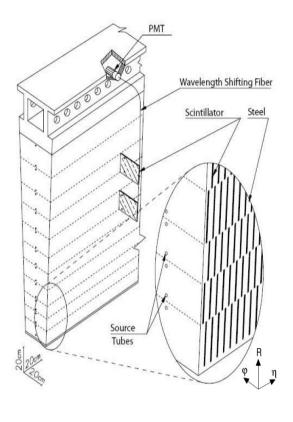

FCal: Copper/Tungsten-LAr


~10%/√E energy resolution e/γ

180000 channels: longitudinal segmentation

Trigger for e/γ


High granularity accordion geometry



Hadronic calorimeter

Barrel coverage |η|<1.7

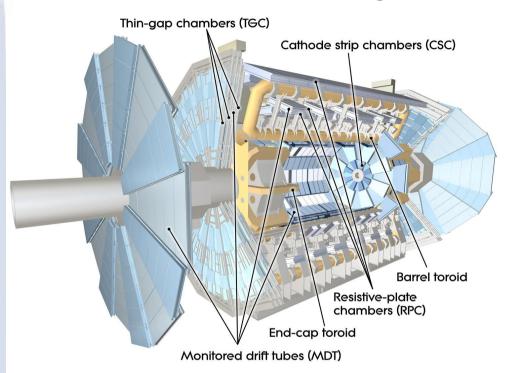
Outer radius of 4.25 m and half-length 6.10 m

Hadron Calorimeter

barrel: Iron-Tile; HEC: Copper-LAr; (~20000 channels)

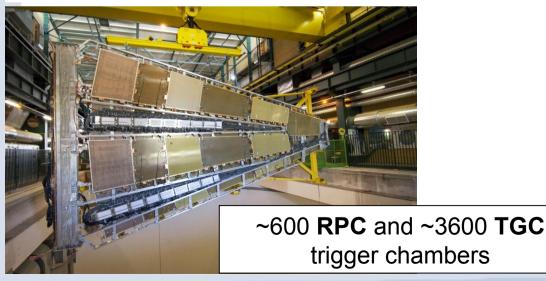
 σ /E ~ 50%/ \sqrt{E} ⊕ 0.03 pion (at η≈10 λ (λ -interaction length))

Trigger for jets, Missing E_T


The total weight of the Calorimeter System is ~4000

Tons

Muon System (Spectrometer)


Outer radius of 11 m and half-length 12.5 m

Stand-alone momentum resolution Δpt/pt < 10% up to 1 TeV

2-6 Tm $|\eta|$ <1.3 4-8 Tm 1.6< $|\eta|$ <2.7

~1200 **MDT** precision chambers for track reconstruction (+ **CSC**)

