

LHCb Overview

On behalf of the LHCb Collaboration

QFTHEP-2013 Conference Saint Petersburg, Russia

RAL

Sajan Easo June 25, 2013

LHCb Overview

Introduction

- LHCb detector, Performance of its sub systems
- Focus on results from
 - CP violation in $B_s \rightarrow J/\psi$ KK, B⁺ \rightarrow D K and other B-decays
 - CP violation in charm decays

Most results from 2011 dataset

Other selected results

LHCb Upgrade

> Summary

http://lhcb.cern.ch

Beauty and Charm production at LHC

LHCb: Mainly flavour physics,

QCD, Electroweak Physics

but not limited to this.

W differential cross-section

JHEP 06(2012)058

 $\rightarrow \mu^{\mathsf{T}} \nu$

LHCb Experiment

~ 760 Members from 60 institutes in 16 countries

Includes St. Petersburg (Gatchina PNPI), Moscow(ITEP,SINP MSU, INR RAN), Protvino (IHEP) and Novosibirsk (SB RAS) from Russia

Detectors in LHCb: Velo

- 21 stations measuring R and ϕ coordinates, with silicon strips
- 8 mm from the beam during data taking.

5

Detectors in LHCb

9000

11000

10000

Μ(μ⁻μ⁺) (MeV/c²)

Tracking System:

- Stations upstream and downstream of the magnet.
- Upstream and inner downstream parts: Silicon
- Outer downstream part: Drift chambers
- Magnetic field reversed for different data taking periods.
- Momentum resolution : $\Delta p/p = 0.35 \rightarrow 0.55 \%$ $\sigma_{\mu\mu} = 43 \text{ MeV/c}^2 \text{ for Y(1S)}$

Muon Stations:

5 stations, excellent μ/π separation:, single hadron mis-id rate: 0.7%

arXiv:1202.6579

Calorimeters:

ECAL: Shashlik technology with Pb-Scintillator $s(E)/E = 10\%/\sqrt{E} + 1\%$

HCAL: Fe-Scintillator, $s(E)/E = 80\%/\sqrt{E} + 10\%$

'raw' dimuon mass spectrum

Nucl.Phys. B 867 (2013) 1-18

Detectors in LHCb

Particle Identification:

Two RICH detectors covering a momentum range 1-100 GeV/c

with 3 radiators: aerogel, $C_4 F_{10}$, CF_4

Cover picture of EPJ C vol3 , 5, May 2013

EPJ C (2013), 73:2431

2010-12 Data taking

LHCb integrated luminosity during 2010-12

LHCb Trigger System

Goal: To select interesting beauty and charm decays while maintaining the managable data rates

Level-0: Hardware

- Using custom electronics to get 1 MHz output
- Largest P_T (or E_T) of hadron/e/ γ/μ used for selection
- Typical thresholds $1.5 \rightarrow 3.5 \text{ GeV/c}$

HLT: Software

- Stage1: Partial event reconstruction, selection based on IP, P_T
- Stage 2: Full event reconstruction, apply mass cuts

"On-line charm and strange signals" Signal/background ratio used to inspect data quality

LHCb Data Analysis

Same side

Opposite side

proton

primary vertex

B_c

signal B.

negative lepton taggers

 J/ψ μ^+

(e, μ) from b-quark

opposite B

proton

vertex-charge tagger

from inclusive vertexing

opposite

positive leptons from

c! | cascade

kaon tagger (K⁻)

- Selection of events:
 - Event kinematics+ topology information

 P, P_T of the tracks, Vertex quality, impact parameters of tracks, etc

- PID information
- Cut based or multivariate selection Boosted Decision Tree (BDT), Neurobayes etc.
- Optimize selection

Using MC data Using small sample of real data

Flavour tagging , if needed

LHCb Data Analysis

Indirect search for New Physics (NP)

➢ Measure FCNC transitions, where NP is likely to emerge Example: OPE expansion for b→s transitions

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \begin{bmatrix} C_{i}(\mu)O_{i}(\mu) + C_{i}^{'}(\mu)O_{i}^{'}(\mu) \end{bmatrix}_{\substack{ieft-handed part\\suppressed in SM\\Buras, Münz 95}}$$

NP may • modify Wilson coefficients , C_{i}

- add new operators, O
- Measure CKM elements in different ways Any inconsistency may be a sign of NP

LHCb Data Analysis

LHCb-rare decays: Next talk by Nigel Watson, Talk by Indrek Sepp this afternoon

- LHCb has recently measured $B_s \rightarrow \mu\mu$ branching fraction and set the best limits so far on $B^0 \rightarrow \mu\mu$ branching fraction
- Several electroweak penguin decays have been discovered and analysed to look for NP contributions. (eq: $B^+ \rightarrow \pi^+ \mu^+ \mu^-$)
- Charmonium Production cross-sections:

Talk by Maksym Teklishyn this afternoon

 \succ This presentation :

Rare-decays:

A selected set of CP violation measurements in B and D decays.

B⁰_s Oscillations

NJP 15 053021 arXiv:1304.4741

Using $B_s \rightarrow D_s \pi$ with 5 D decay modes $D_s^- \rightarrow \varphi(K^+K^-)\pi^-$, $D_s^- \rightarrow K^{*0}(K^+\pi^-)K^-$, $D_s^- \rightarrow K^+K^-\pi^-$, $D_s^- \rightarrow K^+K^-\pi^-$, $D_s^- \rightarrow \pi^-\pi^+\pi^-$

- Using 34000 candidates from 1 fb⁻¹ of data in 2011,
- The frequency was determined by fitting to a PDF for decay time (t). It was made by the convolution of different functions:
 - a theoretical distribution using: decay width ($\Gamma_{\rm s}$) and Heaviside step function (θ)

$$P_t \alpha \Gamma_s \exp(-\Gamma_s t) \cosh(\Delta \Gamma_s t/2) \theta_t$$

- decay time resolution function
- decay time acceptance function
- information from flavour tagging

B⁰_s Oscillations

NJP 15 053021 arXiv:1304.4741

At production and decay different flavour: mixed same flavour : unmixed

 $\Delta m_s = 17.768 \pm 0.023 \text{ (stat)} \pm 0.006 \text{ (syst)} \text{ ps}^{-1}$ Current world average for $\Delta m_s = 17.69 \pm 0.08 \text{ ps}^{-1}$

LHCb has the most precise measurement to date on this.

CP asymmetry in
$$B^0_{(d,s)} \rightarrow K^- \pi^+$$

Measurement of direct CP violation

$$A_{CP} = \frac{X - Y}{X + Y} \text{, where } X = \Gamma(\bar{B}_{(s)}^{0} \to \bar{f}_{(s)}) \text{ and } Y = \Gamma(B_{(s)}^{0} \to f_{(s)})$$

and $f = K^{+}\pi^{-}$ and $f_{s} = K^{-}\pi^{+}$

- Decay amplitudes have contributions from tree and penguin diagrams and their interference allows this measurement.
- Sensitive to V_{ub} phase and CKM angle γ
- New Physics can contribute to penguin loop.
- LHCb used 1 fb⁻¹ of data from 2011 for this measurement

CP asymmetry in $B^0_{(d,s)} \rightarrow K^- \pi^+$

- Offline selections optimized for the A_{CP} measurement in these two channels
- Use particle ID to identify sub samples for $\pi^+\pi^-, K^+\pi^-, K^-\pi^+, K^+K^-$
- Raw asymmetries obtained from maximum likelihood fits to invariant mass spectra

arXIV 1304.6173 Phys.Rev.Lett 110 ,221601(2013) CP asymmetry in $B^0_{(d,s)} \rightarrow K^- \pi^+$

• The Raw asymmetry (A_{raw}) has A_{CP} along with instrumental (A_D) and production (A_P) asymmetries. $A_{raw} = A_{CP} + A_{\Delta}, \text{ where } A_{\Delta} = \zeta_{d(s)} A_{D}(K\pi) + \kappa_{d(s)} A_{P}(B_{(s)}^{0})$ $and \quad \zeta_{d} = 1, \zeta_{s} = -1$

•
$$A_D$$
 is determined from charm control samples in real data :
 $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and $D^{*+} \rightarrow D^0(K^+K^-)\pi^+$ decays

• A_P , K determined from the time-dependent decay rate spectra. $k_d = 0.303 \pm 0.005$ and $k_s = -0.033 \pm 0.003$.

These account for dilutions due to $B_{(s)}^0$ mixing.

$$A_{CP}(B^{0} \to K^{+}\pi^{-}) = -0.080 \pm 0.007(\text{stat}) \pm 0.003(\text{syst})$$

$$A_{CP}(B_{s}^{0} \to K^{+}\pi^{-}) = 0.27 \pm 0.04(\text{stat}) \pm 0.01(\text{syst})$$

$$6.5\sigma$$

- First observation of direct CP violation in B_s system
- Most precise measurement to date of $A_{CP}(B^0 \rightarrow K^- \pi^+)$
- These are in agreement with SM

$$\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B^0_s \to K^- \pi^+)} + \frac{\mathcal{B}(B^0_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} = 0, \qquad \text{H.J.Lipkin} \\ \text{PLB 621(2005)126}$$

$$\Delta = -0.02 \pm 0.05 \pm 0.04$$

arXIV 1304.6173 Phys.Rev.Lett 110 ,221601(2013)

arXiV 1306.1246

CP Asymmetry in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$

 Very recently LHCb measured CP violation in these channels using the 1 fb⁻¹ of data from 2011.

• 36K events in the $K\pi\pi$ mode and 22K events in the KKK mode after selections

• Use $B^{\pm} \rightarrow J/\psi K^{\pm}$ as control channel. Last error below, from the systematics of the CP asymmetry of this control channel.

$$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = 0.032 \pm 0.008 (stat) \pm 0.004 (syst) \pm 0.007$$

$$A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.043 \pm 0.009 (stat) \pm 0.003 (syst) \pm 0.007$$

CP Asymmetry measured at 2.8 σ and 3.7 σ levels
19

CP Asymmetry in $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ phase space

arXiV 1306.1246

- Asymmetries in bins of the background subtracted Dalitz plot.
- Positive asymmetry at low m_{ππ} near the ρ(770) and above the f(980) resonances
- No significant asymmetry in m_{Kπ}

• CP asymmetry in the region 0.08< $m_{\pi\pi}^2$ < 0.66 GeV²/c⁴ and $m_{K\pi}^2$ < 15 GeV²/c⁴

 $A_{CP}(K\pi\pi)=0.678\pm0.078\pm0.032\pm0.007$

8σ

CP Asymmetry in $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ phase space

arXiV 1306.1246

- Asymmetries in bins of background subtracted Dalitz plot. ($m_{KK low}^2 < m_{KK high}^2$)
- Negative asymmetry at low values of m²_{KK low} and m²_{KK high}
- No significant asymmetry at $\phi(1020)$ resonance

• CP asymmetry in the region
$$1.2 < m_{KK \, low}^2 < 2.0 \, GeV^2/c^4$$
 and $m_{KK \, high}^2 < 15 \, GeV^2/c^4$

 $A_{CP}(KKK) = -0.226 \pm 0.020 \pm 0.004 \pm 0.007$

CP violation in $B_s \rightarrow J/\psi$ KK and $B_s \rightarrow J/\psi \pi \pi$

- > CP violation : Interference between B_s mixing and decay to the same final state.
- > Recent measurements of ϕ_{s} , Γ_{s} and $\Delta\Gamma_{s}$ from 1 fb⁻¹ of data from 2011.
- > Mixing phase: $\phi_M = 2 \arg V_{ts} V_{tb}^* \simeq -2\beta_s$ Sensitive to NP.
- > For the decay: $\phi_D = \arg V_{cs} V_{cb}^* \simeq 0$

$$\mathbf{B}^0_{\mathrm{s}} \to \mathbf{J}/\boldsymbol{\psi}\mathbf{K}^+\mathbf{K}^-$$

▶ Proceeds via $B_s^0 \rightarrow J/\psi \phi, \phi \rightarrow K^+K^-$ (P-wave) and the non-resonant K⁺K⁻ (S-wave) (mass range ±30 MeV/c² around ϕ)

- \geq P-wave is a mixture of CP even and CP odd (I=0,1,2) and S-wave is CP odd
- These are disentangled using distribution of decay angles (Ω) of final state \triangleright particles, defined in the helicity basis.
- Differential decay rate equations : 3 P-wave amplitudes and 1 S-wave amplitude and their interference terms, resulting in a total of 10 terms.

$$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$$

arXiv 1204.5643

- Mainly S-wave : CP odd fraction > 97.7 % at 95% CL \geq
- No angular analysis needed; decay rate equation with only 1 term
- Maximum likelihood fit to mass and decay time.
- For both channels, one essentially measures:

 $\frac{\sin(\phi_s) \times D(\sigma_t) \times (1 - 2\omega_{tag}) \times \sin(\Delta m_s t)}{\sum}$ Decay time resolution from flavour tagging

Calibration of flavour tagging : use control channels in real data

- Opposite side tagging (OST):
 - Relies on pair production of bb quarks
 - Infers signal B flavour from that of the other b-hadron
 - Calibration from self tagging channel: ex: ${
 m B}^+
 ightarrow {
 m J}/\psi {
 m K}^+$
- Same side tagging (SST):

Uses the b hadronization process.

- Ex: b fragmentation may create an extra S, which may form a hadron (often a kaon) whose charge identifies the initial flavour.
- Calibration from a fit of time evolution in $B_s^0 \rightarrow D_s^- \pi^+$
- Optimized on MC

Effective tagging power	$\varepsilon(1-2\omega)^2$ [%]	
OST	0.89±0.017	
SST	2.29±0.06	
OST+SST	3.13±0.12±0.20	LHCb-CONF-2012-033 EPJC 72(2012)2022, arXiv:1202.4979

in $B^+ \rightarrow J/\psi K^+$

SST wrong tag probability:

measured(ω) vs. estimated (η)

$$h \quad B_s^0 \to D_s^- \pi^+$$

 $B_s^0 \rightarrow J/\psi K^+ K^-$

 $φ_s = 0.07 \pm 0.09$ (stat) ±0.01 (syst) rad $\Delta \Gamma_s = 0.100 \pm 0.016$ (stat)±0.003(syst) ps⁻¹

 $\varphi_s^{SM} = -2\beta_s = (-0.0363^{+0.0016}_{-0.0015})rad$ In SM: $\Delta\Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1}$ arXiv:1106.4041v2, arXiv:1102.4274

Combined fit for the two channels:

arXiv 1304.2600

Blue: $\Delta \Gamma_s$ positive Red : $\Delta \Gamma_s$ negative

arXiV:0908.3627

- Two solutions to decay rates
- Physical solution has δ_s δ_⊥ decreasing across φ resonance with m(K⁺K⁻)
- This solution has $\Delta \Gamma_s$ positive.
- Heavy B_s meson lives longer

For $B_s^0 \rightarrow J/\psi \pi^+ \pi^- \Gamma_s$ and $\Delta \Gamma_s$ constrained to those from $B_s^0 \rightarrow J/\psi K^+ K^ \varphi_s = -0.14^{0.17}_{-0.16} \pm 0.01 \text{ rad}$

 $φ_s = 0.01 \pm 0.07$ (stat) ±0.01 (syst) rad $\Delta \Gamma_s = 0.106 \pm 0.011$ (stat)±0.007(syst) ps ⁻¹

LHCb measurement is the most precise one, to date.

• LHCb uses several methods to measure γ from B \rightarrow DK decays

"GGSZ", "Dalitz"

- Use 3-body self-conjugate modes such as $D \to K_{_S} \pi^+ \pi^-$
- · hadronic D parameters vary across Dalitz plot
- Giri, Grossman, Soffer, Zupan, hep-ph/0303187

GLW, ADS :

R= Ratio of partial widths, A=Asymmetry

$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$$

$$R^{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos \gamma}$$

$$A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$$

relative amplitude: weak phase difference:

$$\begin{vmatrix} \frac{V_{cs} V_{ub}^*}{V_{us} V_{cb}^*} \middle| f_{col} & \arg\left(\frac{V_{cs} V_{ub}^*}{V_{us} V_{cb}^*}\right) \\
= r_B & = \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right) \\
\text{relative strong phase:} & = \delta_B & = \gamma
\end{cases}$$

$B \rightarrow Dh$, $D \rightarrow (KK, \pi\pi, K\pi)$

Fit to 16 data samples (2 (B charge) x 2 (Bachelor ID) x 4 (D decays)) to get 13 observables.

Selection of events using BDT, kinematics cuts, PID cuts for K/π .

Example in ADS mode:

red: B->DK green: B \rightarrow D π Large negative asymmetry in $B \rightarrow DK$ and a hint of positive asymmetry in $B \rightarrow D\pi$

Using 1 fb⁻¹ of data from 2011, in $B^{\pm} \rightarrow Dh$, $D \rightarrow (KK, \pi\pi, K\pi)$ (h= K[±] or π^{\pm})

 $R_{ADS}(K) = 0.0152 \pm 0.0020 \pm 0.0004$

 $A_{ADS}(K) = -0.52 \pm 0.15 \pm 0.02$

 $R_{ADS}(\pi) = 0.00410 \pm 0.00025 \pm 0.00005$

 $A_{ADS}(\pi) = 0.143 \pm 0.062 \pm 0.011$

 $R_{CP+} = 1.007 \pm 0.038 \pm 0.012$

A_{CP+}=0.145±0.032±0.010

CP asymmetry observed in:

B[±] → DK[±] ADS mode, at 4σ level, B[±] → D π^{\pm} ADS mode, at 2.4 σ level. KK and $\pi\pi$ modes, the combined asymmetry, at 4.5 σ level

arXiv:1203:3662 PLB 712:203-212,2012

 $B \rightarrow D(\pi K \pi \pi)h$: suppressed ADS mode

Phys. Lett . B 723 (2013) 44-53

GGSZ in B→DK

- D final state: K_sππ, K_sKK
- $B^+ \rightarrow [K_shh]_D K^+$ amplitude $\mathcal{A}_B(m^2_{K_sh^+}, m^2_{K_sh^-}) = \mathcal{A}_{\bar{D}^0 \rightarrow K_sh^+h^-}(m^2_{K_sh^+}, m^2_{K_sh^-})$ $+ r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0 \rightarrow K_sh^+h^-}(m^2_{K_sh^+}, m^2_{K_sh^-})$
- $(m^2_{K_sh^+}, m^2_{K_sh^-})$ is a point in the D \rightarrow K_shh Dalitz space

Binned Dalitz plot analysis

Observables: • $x_{\pm} \equiv r_B \cos(\delta_B \pm \gamma)$ • $y_{\pm} \equiv r_B \sin(\delta_B \pm \gamma)$

LHCb-CONF-2013-004

$$B^+ \rightarrow DK^+, B^+ \rightarrow D\pi^+, D \rightarrow K_s \pi^+ \pi^-$$

GGSZ in B→DK

 $B^{\pm} \rightarrow (K^0_{\rm s}\pi^+\pi^-)_D K^{\pm}$

LHCb-CONF-2013-004

Mass fits to candidates in each Dalitz bin to extract the observables.

 $\begin{aligned} x_{+} &= (-8.7 \pm 3.1 \pm 1.6 \pm 0.6) \times 10^{-2} \\ x_{-} &= (5.3 \pm 3.2 \pm 0.9 \pm 0.9) \times 10^{-2} \\ y_{+} &= (0.1 \pm 3.6 \pm 1.4 \pm 1.9) \times 10^{-2} \\ y_{-} &= (9.9 \pm 3.6 \pm 2.2 \pm 1.6) \times 10^{-2} \end{aligned}$

last term: error on the strong phase measurement used in fit from CLEO

33

Measurement of CKM angle γ

All the results obtained so far are combined to into a likelihood fit to extract γ

• CP asymmetry :
$$A_{CP}(f,t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)}$$

- Time-integrated difference: $\Delta A_{CP}(f,t) \approx a_{CP}^{dir}(f) + \frac{t}{\tau} a_{CP}^{ind}$ Time-integrated difference: $\Delta A_{CP} = A_{CP}(K^+K^-) A_{CP}(\pi^+\pi^-) = \Delta a_{CP}^{dir} + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind}$ The time dependence
- ΔA_{CP} mainly measures direct CP violation
- Assuming SU(3)_F symmetry: $a_{CP}^{dir}(K^+K^-) = -a_{CP}^{dir}(\pi^+\pi^-)$
- In SM: direct CP violation from the interference between tree and penguin in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ (Single Cabibbo Suppressed)

$$a_{\rm CP}^{\rm dir} < 0.1\%$$

of penguin amplitude

LHCb measured ∆A_{CP} from two different channels using 1 fb⁻¹ of data from 2011.
 (a) Prompt D* decays
 (b) semi-leptonic B decays.

For the D* analysis, $\delta m = m(h^+h^-\pi^+) - m(h^+h^-) - m(\pi^+)$

Clean signals after selection : 2.24M events in K⁺K⁻ and 0.69M event in $\pi^{+}\pi^{-}$

559 K events in K⁺K⁻ and 222K events in $\pi^+\pi^-$ after selection in semi-leptonic channel ³⁷

LHCb-CONF-2013-003

From the D* analysis: $\frac{\Delta \langle t \rangle}{\tau} = [11.19 \pm 0.13(\text{stat}) \pm 0.17(\text{syst})]\%$ $\Delta A_{\text{CP}} = [-0.34 \pm 0.15(\text{stat}) \pm 0.10(\text{syst})]\%$

Compared to earlier LHCb result, these use more data with improved calibration and improved analysis methods.

From the semi-leptonic analysis:

$$\frac{\Delta \langle t \rangle}{\tau} = 0.018 \pm 0.002(stat) \pm 0.007(syst)$$
PLB 723(2013)33-43
$$\Delta A_{CP} = [+0.49 \pm 0.30(stat) \pm 0.14(syst)]\%$$

- Difference between the two results = 2.2 σ
- Preliminary weighted average: $\Delta A_{CP} = (-0.15 \pm 0.16)\%$

LHCb does not confirm evidence of CP violation in Charm decays

CHARM Mixing

• LHCb observed $D^0 - \overline{D}^0$ oscillations using 1 fb⁻¹ of data from 2011

• The ratio of the time dependent decay rates:

$$\frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})} = R(t) \approx R_{D} + \sqrt{R_{D}} y' \left(\frac{t}{\tau}\right) + \frac{x'^{2} + y'^{2}}{4} \left(\frac{t}{\tau}\right)^{2}$$

interference mixing

 $\tau = average D^0 \ lifetime, x = \Delta m / \Gamma, y = \Delta \Gamma / \Gamma, x' = x \cos \delta + y \sin \delta, y' = y \cos \delta - x \sin \delta$ $\delta = strong \ phase \ difference \ between \ DCS \ and \ CF \ amplitudes$

- Soft pion (π_s) tags the flavour of D⁰
- Background of WS dominated by (D⁰ + random π) combinations
- Contamination from B \rightarrow D⁰X reduced by IP requirements on D⁰ and π_s
- D⁰ and π_s required to form a vertex, constrained to PV.
- Data divided into 13 time bins, and ratio R= WS/RS determined for each bin
- Most systematics cancel out in the ratio.
- A χ 2 minimization used to extract the three parameters (R_D, x², y).

CHARM Mixing

Fit type	Parameter	Fit result (10 ⁻³)
Mixing	R_D	3.52 ± 0.15
	У'	7.2 ± 2.4
	X' ²	-0.09 ± 0.13
No mixing	R_D	4.25 ± 0.04

'No mixing' hypothesis excluded at 9.1 σ

CHARM Mixing

HFAG averages

http://www.slac.stanford.edu/xorg/hfag/charm

	Exp.	$R_D (10^{-3})$	y' (10 ⁻³)	x'^2 (10 ⁻³)
Latest results on "WS"	LHCb	3.52 ± 0.15	7.2 ± 2.4	-0.09 ± 0.13
$D^0 \rightarrow K\pi$ decay	Belle	3.64 ± 0.17	$0.6^{+4.0}_{-3.9}$	$0.18^{+0.21}_{-0.23}$
D Thin decay.	BaBar	3.03 ± 0.19	9.7 ± 5.4	-0.22 ± 0.37
	CDF	3.51 ± 0.35	4.3 ± 4.3	0.08 ± 0.18

LHCb Upgrade

- LHCb searches for new physics in CP violation and rare decays using FCNC processes mediated by box and penguin diagrams.
- With high luminosity and high energy available from 2019 onwards, aim to collect 50 fb⁻¹ of data and reach sensitivities which are comparable or better than theoretical uncertainties.

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5~%	1~%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6~%	2~%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8 %	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+\mu^-)$	$1.5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0\to\mu^+\mu^-)/\mathcal{B}(B^0_s\to\mu^+\mu^-)$	-	$\sim 100\%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
${ m triangle}$	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	$0.65 imes 10^{-3}$	0.12×10^{-3}	_

CERN-LHCC: 2012-007 arXiv:1208.3355

LHCb trigger upgrade

- The current trigger scheme has some limitations for using for upgrade conditions.
 - Front-end readout time ~ 900ns and hence L0 rate ~ 1 MHz.
 - Due to the available bandwidth and discrimination power of hadronic L0 trigger, the trigger yield saturates at high luminosities.
- The proposed solution is to readout the whole detector at 40 MHz and use fully software triggers.
 Use the hardware first level as a 'throttle mechanism ' during the early phases of upgrade.
- Plan for a maximum luminosity of 2X10³³ cm⁻² s⁻¹
- Increase in annual yields wrt to 2011:
 - Factor of 20 for hadronic channels
 - Factor of 10 for leptonic channels

 The readout of the LHCb detectors will be upgraded accordingly.

40 MHz Detector Upgrade

Summary and Prospects

- Excellent performance of the LHCb detector in 2011-12 has led to several physics results. LHCb has become a "flavour factory".
- LHCb has started to
 - Explore new territory in searching for NP
 - Test SM with unprecedented precision
 - Make CP violation measurements in different channels

Excellent prospects to enhance its discovery potential

• > 5 fb ⁻¹ at $\sqrt{s} = 13 \,\mathrm{TeV}$ during 2014-2017

➤ An active upgrade program to run at (1-2) x 10³³ cm ⁻²s⁻¹ with √s = 14 TeV from 2019, is underway. It would produce 5 fb⁻¹ of data per year with improved trigger efficiency.

Full detector readout at 40 MHz and flexible software trigger

EXTRA SLIDES

➢ Rare decay : FCNC

Standard Model: Helicity suppressed

arXiv:1005.5310, arXiv:1012.1447 Buras et.al , JHEP 10 (2010) 009 *Branching fractions* at 10⁻⁹ *level*

- Branching ratio sensitive to NP
 eg: MSSM with large tan β
- \blacktriangleright Can provide constraints on $C_{S,P}^{(\prime)}$
- LHCb used 1 fb⁻¹ (7 TeV) data from 2011 + 1.1 fb⁻¹ (8TeV) data from 2012

PRL 110, 021801 (2013)

Talk by Nigel Watson. Indrek Sepp

Event Selection : BDT, trained on MC and calibrated using real data

Signal : $B \rightarrow h^+ h^-$ (h= K or π) Background : B_s mass sidebands

Branching Fraction :

- Mass vs BDT :
 8 bins in BDT and 9 bins in mass
- Estimate signal and background events in each bin using CLs method.

$$Br(B_s^0 \to \mu\mu) = (3.2^{+1.4}_{-1.2}(\text{stat})^{+0.5}_{-0.3}(\text{syst})) \times 10^{-9}$$

Compatible with SM : $(3.54 \pm 0.30) \times 10^{-9}$ arXiV:1204.1737

Signal significance : 3.5 σ

Current status of $B_s^0 \rightarrow \mu\mu$

95 % C.L. D0 (10.4 fb⁻¹) CDF (10 fb⁻¹) ATLAS (2.4 fb⁻¹) CMS (4.9 fb⁻¹) LHCb (1.0 fb⁻¹+1.1 fb⁻¹) Theo. Prediction t=0 Theo. Prediction time-av. 0.1 1 B(B_{S}^{0} \longrightarrow \mu^{+}\mu^{-}) [10^{-9}]

At 95% CL:

 $Br(B^0 \rightarrow \mu\mu) < 9.4 \times 10^{-10}$

Approaching SM: $(1.07 \pm 0.10) \times 10^{-10}$

Vertex detector (VELO) upgrade

Enlarge acceptance at high η	Move closer to the beam Inner aperture reduce from 5 to 3.5 mm
Irradiation dose	370 Mrad or 8×10¹⁵ n _{eq} /cm²
Low material budget	Sensor thickness 200 μm Thickness of the RF foil 300 \rightarrow 150 μm CO $_{_2}$ cooling using micro channels
High output data rate	2.8 Tbit/s (pixel) 2.4 Tbit/s (strip)

Two options considered

- Square pixel 55×55 μm^2
- VELOPix chip
- Channels 41×10⁶

- Inner pitch 30 µm
- SALT chip
- Channels 215×10³

Strip with (r, ϕ) sensors

HFAG average : ΔA_{CP}

 $\Delta a_{CP}^{dir} = (-0.329 \pm 0.121)\%, \qquad \Delta a_{CP}^{ind} = (-0.010 \pm 0.162)\%$

Agreement with NO CPV hypothesis - $CL = 2.1 \times 10^{-2}$.

No evidence of CPV in D decays.

Measure prompt J/ ψ and Y production cross-sections as a function of p_T and y at $\sqrt{s} = 8$ TeV using 51 pb⁻¹ of data from 2012

20000 (a) Candidates / (0.2 ps (b) Candidates / (5 MeV/c² LHCb LHCb $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ Total fit 2.5<y<3.0 $2.5 \le v \le 3.0$ 15000 3<p_<4 GeV/c /Ψ from b 3<p_<4 GeV/c Prompt J/W 10 Wrong PV 10000 Background 5000 3000 3050 3100 3150 3200 .2 0 $m(\mu^+\mu^-)$ [MeV/c²] t, [ps] $t_z = \frac{(z_{J/\psi} - z_{\rm PV}) \times M_{J/\psi}}{p_z}$

Pseudo decay time:

- J/ψ yields extracted from a 2D fit in each ($p_T y$) bin
- Cross section of J/ψ from b also measured.
- J/ψ and Y assumed to be unpolarized
- Full set of results in the LHCb papers

LHCb-paper-2013-071 arxiV:1304.6977

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}y\mathrm{d}p_{\mathrm{T}}}(pp \to VX) = \frac{N\left(V \to \mu^+\mu^-\right)}{\mathcal{L} \times \epsilon_{\mathrm{tot}} \times \mathcal{B}\left(V \to \mu^+\mu^-\right) \times \Delta y \times \Delta p_{\mathrm{T}}}$$

$$(V= J/\psi \text{ or } Y, \ \varepsilon = \text{detection efficiency}$$

$$\mathsf{L} = \text{ integrated luminosity, } \Delta y = 0.5, \Delta p_{\mathrm{T}} = 0.5 \text{ GeV/c})$$

Use the known branching fraction : $B(J/\psi \rightarrow \mu\mu) = (5.94 \pm 0.06) \times 10^{-2}$

Differential cross-section of Y(1S)

 cross-section X branching fraction quoted here for Y

Comparison to theory

J/ψ

- Feeddown from $\psi(2S)$ and χ_c not included in theory (~30% in total Phys. Lett. B718 (2012)431)
- Reasonable agreement with NLO NRQCD and NNLO* CSM

Υ

- Feeddown from χ_b not included in theory (~20% for $\chi_b(1P) \rightarrow \Upsilon$ (1S) γ JHEP 11(2012)31)
- NNLO needed to describe the measurements

LHCb has some of the most precise measurements on these.