Reaction-diffusion approach in soft diffraction

<u>Rodion Kolevatov</u> (SPbSU and SUBATECH)

in collaboration with K Boreskov (ITEP)

QFTHEP-2013, StPetersburg, 28 June

Power-like contributions to the amplitude

PDG fit:

$$\sigma_{tot}^{pp(\bar{p})} = 18.3s^{0.095} + 60.1s^{-0.34} \pm 32.8s^{-0.55}$$

Optical theorem:
 $\sigma_{tot} = \frac{1}{s} 2\Im A_{el}(q=0) \equiv 2\Im M_{el}(q=0)$

Indication:

- High energy elastic scattering goes via quasiparticle ("Reggeon") exchanges with powerlike asymptotic in c.m.energy.
- Leading contirbution Pomeron, $M_{\mathbb{P}} \sim s^{\Delta} \sim e^{\Delta y}$, ($\Delta > 0$ $y = \ln s$ – overall rapidity)

Elastic scattering – shrinkage of diffractive cone

 $M(s = e^{y}, t) \sim \exp[\Delta y - (R^2 + lpha' y)t]$

• implies reasonable assumptions about the analytic properties of $\mathcal{T}(s,t)$

Caveat:

The power-like behaviour violates unitarity bound ($\sigma_{tot} \lesssim C \ln^2 s$).

A 30 b

Fourier transform:

$$f(Y, \mathbf{b}) = \frac{1}{(2\pi)^2} \int d^2 q \ e^{-i\mathbf{q}\mathbf{b}} M(Y, \mathbf{q}) \ .$$

$$\bullet \ \sigma^{\text{el}} = \int \frac{d^2 q}{(2\pi)^2} |M(Y, \mathbf{q})|^2 = \int d^2 b \ |f(Y, \mathbf{b})|^2 .$$

$$\bullet \ \sigma^{\text{tot}}(Y) = 2 \Im M(Y, \mathbf{q} = 0) = 2 \int d^2 b \ \Im f(Y, \mathbf{b}),$$

 $\begin{array}{l} \underline{\textbf{Definition}} \ \sigma^{\text{inel}}(b) \equiv 2\Im f(\mathbf{b}) - |f(\mathbf{b})|^2 \\ \text{Unitarity constraint: } 0 < \Im f(b) < 2 \quad \Rightarrow \quad 0 \leq \sigma^{\text{inel}}(b) \leq 1 \end{array}$

Interpretation: $\sigma^{inel}(b) \equiv$ probability of inelastic interaction

Geometrical models

Unitarity limit: $f(b) = 2\theta(R - b) \Rightarrow \sigma^{\text{inel}}(b) = 0$. Black disk limit: $f(b) = \theta(R - b) \Rightarrow \sigma^{\text{inel}}(b) = \theta(R - b), \ \sigma^{\text{el}} = 1/2\sigma^{\text{tot}}$.

The data suggest:

- shrinkage of diffracitve cone \Rightarrow growing size
- \bullet presence of dip \Rightarrow deviations from Gaussian profile shape
- The inelastic profile in the center is close to the upper limit (e.g. $\sigma^{\text{inel}}(b) = 0.94$ at $\sqrt{s} = 53$ GeV)

Inelastic diffraction – a special case of inelastic event

Illustration: talk by Chris Quigg at Spaatind 2012

Soft inelastic diffraction

 $\sigma_{SD} \sim 10 \text{ mbn} @ 7 \text{TeV}$ [TOTEM preliminary @ Trento pA workshop 05/2013]

Multichannel approach (Good, Walker '60):

$$|\mathbf{p}\rangle = \alpha_1 |1\rangle + \alpha_2 |2\rangle; \quad \alpha_1^2 + \alpha_2^2 = 1$$

|1
angle, |2
angle – scattering eigenstates (amplitudes $iF_1(y,b)$ and $iF_2(y,b)$)

$$\sigma^{\text{tot}} = 2 \int d^2 b [\alpha_1^2 F_1(b) + \alpha_2^2 F_2(b)]; \quad \sigma^{\text{el}} = \int d^2 b [\alpha_1^2 F_1(b) + \alpha_2^2 F_2(b)]^2$$

R. Kolevatov RD approach in soft diffraction

Low- M^2 diffraction

Multichannel approach (Good, Walker '60):

$$|p
angle = lpha_1|1
angle + lpha_2|2
angle; \quad lpha_1^2 + lpha_2^2 = 1$$

|1
angle, |2
angle – scattering eigenstates (amplitudes $iF_1(y,b)$ and $iF_2(y,b)$)

Lessons from the example

- 1: Has a peripheral nature
- 2: Black disc limit for the elastic amplitude implies $\sigma_{diffr} \sim \ln s$: (growing ring).

This holds also for large- M^2 diffraction which however has a different origin.

Contributions to imaginary part (Cutkosky rules):

- Cut the diagram for the elastic scattering amplitude

High- M^2 diffraction

- Motivates the effective theory of the Pomeron (Reggeon) exchanges and interactions
- $\bullet\,$ Multy- $\mathbb P$ exchantes, enhanced & loop graphs
 - Tame the growth, restore s-channel unitarity
 - Give inelastic contributions with rapidity gaps

Account of all enhanced graphs is an untrivial task

Systematic account of enhanced graphs – RFT

The elastic amplitude $iT \equiv A/(8\pi s)$ is factorized:

$$T = \sum_{n,m} V_n \otimes G_{nm} \otimes V_m$$

 G_{mn} – process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$\mathcal{L} = \frac{1}{2}\phi^{\dagger}(\overleftarrow{\partial_{y}} - \overrightarrow{\partial_{y}})\phi - \alpha'(\nabla_{\mathbf{b}}\phi^{\dagger})(\nabla_{\mathbf{b}}\phi) + \Delta\phi^{\dagger}\phi + \mathcal{L}_{int}$$

 $\underline{\text{Minimal choice (classic):}} \ \mathcal{L}_{int} = i \ r_{3P} \phi^{\dagger} \phi(\phi^{\dagger} + \phi)$

 $\frac{\text{Infinite $\ddagger of vertices}}{\text{Fine tuning of the vertices, some contributions neglected}} \quad [KMR, Ostapchenko, MP+ABK]: r_{mn}\phi^{m}\phi^{\dagger^{n}}$

Systematic account of enhanced graphs – RFT

The elastic amplitude $iT \equiv A/(8\pi s)$ is factorized:

$$T = \sum_{n,m} V_n \otimes G_{nm} \otimes V_m$$

 G_{mn} – process independent, obtained within 2D+1 field theory (only \mathbb{P}):

$$\mathcal{L} = \frac{1}{2}\phi^{\dagger}(\overleftarrow{\partial_{y}} - \overrightarrow{\partial_{y}})\phi - \alpha'(\nabla_{\mathbf{b}}\phi^{\dagger})(\nabla_{\mathbf{b}}\phi) + \Delta\phi^{\dagger}\phi + \mathcal{L}_{int}$$

Minimal choice (classic): $\mathcal{L}_{int} = i r_{3P} \phi^{\dagger} \phi (\phi^{\dagger} + \phi)$

Infinite # of vertices[KMR, Ostapchenko, MP+ABK]: $r_{mn}\phi^{m}\phi^{\dagger n}$ "Almost minimal": i $r_{3P}\phi^{\dagger}\phi(\phi^{\dagger}+\phi) + \chi\phi^{\dagger^{2}}\phi^{2}$ \checkmark the reaction-diffusion approach is applicable for numerical computation of all-loop Green functions.[Grassberger'78; Boreskov'01]

The reaction-diffusion (stochastic) approach.

Consider a system of "parclassic tons" in the transverse plane with: • Diffusion (chaotical movement) D; •X • Splitting $(\lambda - \text{prob. per unit time})$ ⊷~. • Death (m_1) **→**⊘ • Fusion $(\sigma_{\nu} \equiv \int d^2 b p_{\nu}(b))$ • Annihilation ($\sigma_{m_2} \equiv \int d^2 b \, p_{m_2}(b)$) 2:0 Parton number and positions are described in terms of probability densities $\rho_N(y, \mathcal{B}_N)$ $(N = 0, 1, ...; \mathcal{B}_N \equiv \{b_1, ..., b_N\})$

with normalization $p_N(y) \equiv \frac{1}{N!} \int \rho_N(y, \mathcal{B}_N) \prod d\mathcal{B}_N; \quad \sum_{i} p_N = 1.$

Inclusive distributions

$$\int d\mathcal{Z}_s f_s(y;\mathcal{Z}_s) = \sum rac{N!}{(N-s)!} p_N(y) \equiv \mu_s(y).$$
 – factorial moments.

Example: Start with a single parton with only diffusion and splitting allowed.

$$f_1^{1 \text{ parton}}(y,b) = rac{\exp(\lambda y)\exp(-b^2/4Dy)}{4\pi Dy}$$

- the bare Pomeron propagator in b-representation.

The set of evolution equations for $f_s(Z_s)$, (s = 1,...) coincides with the set of equations for the Green functions of the RFT.

To compute the RFT elastic amplitude:

- Hadron- $n\mathbb{P}$ vertices \Rightarrow distribution of "partons" at y = 0 evolution time: $\tilde{f}_s(0, \mathcal{Z}_s) = N_s(\mathcal{Z}_s)/\epsilon^{s/2}$
- MC evolution \Rightarrow set of $f_s(y, \mathcal{B}_s)$ $(\tilde{f}_s(y, \tilde{\mathcal{B}}_s))$ for the projectile (target)
- With some narrow g(b), $\int g(b)d^2b \equiv \epsilon$:

$$T(Y,b) \equiv \Im M(Y,b) = \langle A|T|\tilde{A} \rangle =$$

= $\sum_{s=1}^{\infty} \frac{(-1)^{s-1}}{s!} \int d\mathcal{Z}_s d\tilde{\mathcal{Z}}_s f_s(y;\mathcal{Z}_s) \tilde{f}_s(Y-y;\tilde{\mathcal{Z}}_s) \prod_{i=1}^{s} g(\mathbf{z}_i - \tilde{\mathbf{z}}_i - \mathbf{b}).$

T does not depend on the linkage point y ("boost invariance") if $\lambda \int g(b)d^2b = \int p_{m_2}(b)d^2b + \frac{1}{2}\int p_{\nu}(b)d^2b$, \Leftrightarrow equality of fusion and splitting vertices in the RFT.

Correspondence RFT-Stochastic model

We use the simplest form of
$$g(b)$$
, $p_{m_2}(b)$ and $p_{\nu}(b)$:
 $p_{m_2}(\mathbf{b}) = m_2 \ \theta(a - |\mathbf{b}|); \quad p_{\nu}(\mathbf{b}) = \nu \ \theta(a - |\mathbf{b}|);$
 $g(\mathbf{b}) = \theta(a - |\mathbf{b}|);$
with a - some small scale; $\epsilon \equiv \pi a^2$.

RFT	stochastic model
Rapidity <i>y</i>	Evolution time y
Slope $lpha'$	Diffusion coefficient D
$\Delta = lpha(0) - 1$	$\lambda-m_1$
Splitting vertex r _{3P}	$\lambda\sqrt{\epsilon}$
Fusion vertex r _{3P}	$(m_2 + \frac{1}{2}\nu)\sqrt{\epsilon}$
Quartic coupling χ	$\frac{1}{2}(m_2 + \nu)\epsilon$

Few things to note:

Boost invariance $(\lambda = m_2 + \frac{\nu}{2}) \Leftrightarrow$ equality of fusion and splitting vertices The 2 \rightarrow 2 vertex cannot be set to zero $(m_2, \nu > 0)$. Convenient choice - set the linkage point to target rapidity:

•
$$\tilde{f}_s(y=0,\mathcal{Z}_s)=N_s(\mathcal{Z}_s)/\epsilon^{s/2}$$

• for a given realization via MC evolution

$$f_{s}^{\text{sample}}(Y, \mathcal{Z}_{s}) = \sum_{\{\hat{\mathbf{x}}_{i_{1}}, \dots, \hat{\mathbf{x}}_{i_{s}}\} \in \hat{\mathcal{X}}_{N}} \delta(\mathbf{z}_{1} - \hat{\mathbf{x}}_{i_{1}}) \dots \delta(\mathbf{z}_{s} - \hat{\mathbf{x}}_{i_{s}})$$

$$Tel \sum_{i_{1}, \dots, i_{s}} \sum_{i_{s}, \dots, i_{s}} \sum_{$$

•
$$\mathcal{T}_{\text{sample}}^{el} = \sum_{s=1}^{s-1} (-1)^{s-1} \tilde{\mu}_s \epsilon^s \sum_{i_1 < i_2 \dots < i_s} \tilde{p}_s(\hat{\mathbf{x}}_{i_1} - \mathbf{b}, \dots, \hat{\mathbf{x}}_{i_s} - \mathbf{b}).$$

For the SD cut substituting "event-by-event Green functions" gives

$$T_{\rm sample}^{SD} = 2 T_{\rm sample}^{el} - T_{\rm sample}'$$

 $T'_{\rm sample}$ is computed the same way as $T^{e\prime}_{\rm sample}$ with two distinctions:

- Not one, but two sets from the projectile side
- which are evolved independently until the Δy_{gap} and then combined into a single one

<u>**Resumé:**</u> The elastic scattering amplitude and its SD cut are computed within the same numerical framework.

- Two-channel eikonal p−nP vertices to incorporate low-M² diffraction
- Account the secondary Reggeons contribution to the lowest order
- Real part of the Pomeron exchange amplitude evaluated via Gribov-Migdal relation
- Neglect central diffraction in calculation of SD cross sections (CD contribution is accounted twice in calculation of 2-side SD, the extra contribution should have been subtracted).

Model parameters

 $\begin{array}{l} r_{3\mathbb{P}} - \text{fixed from [Kaidalov'79]} \\ a - \text{regularization scale} \\ 1 + \Delta - \text{bare Pomeron intercept} \\ \alpha' - \text{Pomeron slope} \\ |p\rangle = \beta_1 |1\rangle + \beta_2 |2\rangle; \quad |\beta_1|^2 \equiv C_1; \ |\beta_2|^2 \equiv C_2 = 1 - C_1. \\ \mathbb{P} \text{ couplings to } |1\rangle \text{ and } |2\rangle: \ g_{1/2} = g_0(1 \pm \eta) \\ R_1, \ R_2 - \text{size of the } p - \mathbb{P} \text{ vertex (Gaussian)} \\ \end{array}$

- 1 Eikonal fit to σ_{tot} , σ_{el} , $d\sigma_{\rm el}/dt$ keeping low- $M^2 \sigma_{SD} \approx 1.5$ mbn at $\sqrt{s} = 35 GeV/c$
- 2 All-loop fit to σ_{tot} , σ_{el} , $d\sigma_{\rm el}/dt$ starting with parameter set from [1]
- 3 Calculation of diffractive cross sections with parameters obtained at [2]

Calculation results

 $\begin{array}{l} \Delta=0.19; \ \alpha'=0.236 \ {\rm GeV}^{-2}; \\ C_1=0.1, \ C_2=1-C_1=0.9; \ R_1=0.51 \ {\rm GeV}^{-1}; \ R_2=2.8 \ {\rm GeV}^{-1}; \ g_1=46.7 \ {\rm GeV}^{-1}; \ g_2=11.7 \ {\rm GeV}^{-1}; \\ r_{3P}=0.087 \ {\rm GeV}^{-1} \ [{\rm Kaidalov}^{\,79}]. \end{array}$

Single diffraction

M^2 (rapidity gap) dependence, preliminary

Single-diffractive cross section as a function of $y_{\text{gap}}^{\text{min}}$, $\sqrt{s} = 5 \text{ TeV}$: (linear behaviour corresponds to $1/M_X^2$ -scaling of $d\sigma/dM^2$)

- Total, elastic and single diffractive cross sections are computed in RFT within the same numerical framework to all orders in the number of loops;
- A satisfactory description on total and elastic cross sections is obtained within the all-loop framework;
- The single diffractive cross sections energy behaviour is compatible with logarithmic growth.

Backup – scale and $4\mathbb{P}$ vertex dependence

Backup – scale and $4\mathbb{P}$ vertex dependence

Inelastic and diffractive profiles

Backup – secondary trajectories

$$p_{P}: \ \Im f_{p_{P}}(b) = \Im A_{P}(b) + [\Im A_{+}(b) + \Im A_{-}(b)] [1 - \Im A_{P}(b)] \\ \Re f_{p_{P}}(b) = [\Re A_{R_{+}} + ReA_{R_{-}}] [1 - \Im A_{P}(b)] \\ p_{P}: \ \Im f_{p_{P}}(b) = \Im A_{P}(b) + [\Im A_{+}(b) - \Im A_{-}(b)] [1 - \Im A_{P}(b)] \\ \Re f_{p_{P}}(b) = [\Re A_{R_{+}} - ReA_{R_{-}}] [1 - \Im A_{P}(b)] \end{cases}$$

pp SD:

$$f_{\rho\rho}^{\text{Diff}}(b) = \left. f_{\rho\rho}^{\text{Diff}}(b) \right|_{\mathbb{P}\text{only}} \left[1 + |A_{R_+}(b) + A_{R_-}(b)|^2 - 2\Im(A_{R_+}(b) + A_{R_-}(b)) \right]$$

$$A_{\pm}(y,b) = \eta_{\pm}\beta_{\pm}^{2} \frac{\exp(\Delta_{\pm}y)}{2\alpha'_{\pm}y + 2R_{\pm}^{2}} \exp\left(-\frac{b^{2}}{4(\alpha'_{\pm}y + R_{\pm}^{2})}\right)$$
$$\eta_{\pm} = \pm i - \frac{1 \pm \cos \pi \alpha_{\pm}(0)}{\sin \pi \alpha_{\pm}(0)}$$

æ

→ 3 → 4 3