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Power-like contributions to the amplitude

PDG �t:
σ
pp(p̄)
tot = 18.3s0.095 + 60.1s−0.34 ± 32.8s−0.55

Optical theorem:

σtot =
1

s
2=Ael (q = 0) ≡ 2=Mel (q = 0)

Indication:

High energy elastic scattering goes via quasiparticle (�Reggeon�)
exchanges with powerlike asymptotic in c.m.energy.

Leading contirbution � Pomeron, MP ∼ s∆ ∼ e∆y , (∆ > 0
y = ln s � overall rapidity)
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Elastic scattering � shrinkage of di�ractive cone

dσel
dt

= 1

2π
|M(s, t)|2

B ≡ − d
dt

lndσel

dt

∣∣∣∣
t=0

M(s = ey , t) ∼ exp[∆y − (R2 + α′y)t]
implies reasonable assumptions about the analytic properties
of T (s, t)

Caveat:

The power-like behaviour violates unitarity bound (σtot . C ln2 s).
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Impact parameter representation

Fourier transform:

f (Y ,b) = 1
(2π)2

∫
d2q e−iqbM(Y ,q) .

σel =
∫

d2q
(2π)2

|M(Y ,q)|2 =
∫
d2b |f (Y ,b)|2.

σtot(Y ) = 2=M(Y ,q = 0) = 2

∫
d2b=f (Y ,b),

De�nition σinel(b) ≡ 2=f (b)− |f (b)|2
Unitarity constraint: 0 < =f (b) < 2 ⇒ 0 ≤ σinel(b) ≤ 1

Interpretation: σinel(b) ≡ probability of inelastic interaction
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Geometrical models

Unitarity limit: f (b) = 2θ(R − b) ⇒ σinel(b) = 0.
Black disk limit: f (b) = θ(R − b) ⇒ σinel(b) = θ(R − b), σel = 1/2σtot.

The data suggest:

shrinkage of di�racitve cone ⇒ growing size

presence of dip ⇒ deviations from Gaussian pro�le shape

The inelastic pro�le in the center is close to the upper limit
(e.g. σinel(b) = 0.94 at

√
s = 53 GeV)
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Inelastic di�raction � a special case of inelastic event

y = 1
2 ln

E+pz
E−pz

Illustration: talk by Chris Quigg at Spaatind'2012
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Soft inelastic di�raction

Single di�raction

Double di�raction

Central di�raction

∆ygap = ln s/M2
X � rapidity gap

σSD ∼ 10 mbn @ 7TeV [ TOTEM preliminary @ Trento pA workshop 05/2013 ]
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Low-M2 di�raction

Multichannel approach (Good, Walker '60):

|p〉 = α1|1〉+ α2|2〉; α21 + α22 = 1

|1〉, |2〉 � scattering eigenstates (amplitudes iF1(y , b) and iF2(y , b))

σtot = 2

∫
d2b[α21F1(b)+α22F2(b)]; σel =

∫
d2b[α21F1(b)+α22F2(b)]2

σSD =

∫
d2b [α1α2(F1(b)− F2(b))]2
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Low-M2 di�raction

Multichannel approach (Good, Walker '60):

|p〉 = α1|1〉+ α2|2〉; α21 + α22 = 1

|1〉, |2〉 � scattering eigenstates (amplitudes iF1(y , b) and iF2(y , b))

Lessons from the example

1: Has a peripheral nature

2: Black disc limit for the elastic amplitude implies σdi�r ∼ ln s:
(growing ring).

This holds also for large-M2 di�raction which however has a
di�erent origin.
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Contributions to σtot from inelastic cuts

Contributions to imaginary part (Cutkosky rules):

Cut the diagram for the elastic scattering amplitude

Put cut lines on the mass shell, integrate over the phase space

Single �ladder� exchange � uniform rapidity distribution

2=M1 = 2=
( )

= =
∫ ∣∣∣ ∣∣∣ dτn −→

Double �ladder�

2=

( )
= ︸ ︷︷ ︸

elastic + LM SD

+ +︸ ︷︷ ︸
abs. corrections to2=T1

+ ︸ ︷︷ ︸
double dN/dy
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High-M2 di�raction

Rapidity gaps � splitting of the �ladder�:

Single di�raction dissociation

+ abs. corrections

Double di�raction dissociation

+ abs. corrections

Motivates the e�ective theory of the Pomeron (Reggeon)
exchanges and interactions

Multy-P exchantes, enhanced & loop graphs

Tame the growth, restore s-channel unitarity
Give inelastic contributions with rapidity gaps

Account of all enhanced graphs is an untrivial task
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Systematic account of enhanced graphs � RFT

The elastic amplitude iT ≡ A/(8πs) is factorized:

T =
∑
n,m

Vn ⊗ Gnm ⊗ Vm

Gmn � process independent, obtained within 2D+1 �eld theory (only P):

L =
1

2
φ†(
←−
∂y −

−→
∂y )φ− α′(∇bφ

†)(∇bφ) + ∆φ†φ+ Lint .

Minimal choice (classic): Lint = i r3Pφ
†φ(φ† + φ)

In�nite ] of vertices [ KMR, Ostapchenko, MP+ABK ]: rmnφ
mφ†

n

Fine tuning of the vertices, some contributions neglected

�Almost minimal�: i r3Pφ
†φ(φ† + φ) + χφ†

2
φ2

the reaction-di�usion approach is applicable for numerical com-
putation of all-loop Green functions. [ Grassberger'78; Boreskov'01 ]
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The reaction-di�usion (stochastic) approach.

Consider a system of classic �par-
tons� in the transverse plane with:

Di�usion (chaotical movement) D;

Splitting (λ � prob. per unit time)

Death (m1)

Fusion (σν ≡
∫
d2b pν(b))

Annihilation (σm2 ≡
∫
d2b pm2(b))

Parton number and positions are described in terms of

probability densities ρN(y ,BN) (N = 0, 1, ...;BN ≡ {b1, . . . , bN})

with normalization pN(y) ≡ 1
N!

∫
ρN(y ,BN)

∏
dBN ;

∞∑
0
pN = 1.
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Inclusive distributions

S-parton inclusive distributions:

fs(y ;Zs) =
∑
N

1

(N − s)!

∫
dBN ρN(y ;BN)

s∏
i=1

δ(zi − bi );

∫
dZs fs(y ;Zs) =

∑
N!

(N−s)! pN(y) ≡ µs(y). � factorial moments.

Example: Start with a single parton with only di�usion and splitting
allowed.

f
1 parton
1 (y , b) =

exp(λy) exp(−b2/4Dy)

4πDy
.

� the bare Pomeron propagator in b-representation.

The set of evolution equations for fs(Zs), (s = 1, . . .) coincides

with the set of equations for the Green functions of the RFT.
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The amplitude.

To compute the RFT elastic amplitude:

Hadron�nP vertices ⇒ distribution of �partons�
at y = 0 evolution time: f̃s(0,Zs) = Ns(Zs)/εs/2

MC evolution ⇒ set of fs(y ,Bs) (f̃s(y , B̃s)) for
the projectile (target)

With some narrow g(b),
∫
g(b)d2b ≡ ε:

T (Y , b) ≡ =M(Y , b) = 〈A|T |Ã〉 =

=
∞∑
s=1

(−1)s−1

s!

∫
dZsdZ̃s fs(y ;Zs)f̃s(Y − y ; Z̃s)

s∏
i=1

g(zi − z̃i − b).

T does not depend on the linkage point y (�boost invariance�) if
λ
∫
g(b)d2b =

∫
pm2(b)d2b + 1

2

∫
pν(b)d2b ,

⇔ equality of fusion and splitting vertices in the RFT.
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Correspondence RFT�Stochastic model

We use the simplest form of g(b), pm2(b) and pν(b):
pm2(b) = m2 θ(a − |b|); pν(b) = ν θ(a − |b|);

g(b) = θ(a − |b|);.
with a � some small scale; ε ≡ πa2.

RFT stochastic model

Rapidity y Evolution time y
Slope α′ Di�usion coe�cient D

∆ = α(0)− 1 λ−m1

Splitting vertex r3P λ
√
ε

Fusion vertex r3P (m2 + 1
2ν)
√
ε

Quartic coupling χ 1
2(m2 + ν)ε

Few things to note:

Boost invariance (λ = m2 + ν
2 ) ⇔ equality of fusion and splitting vertices.

The 2→ 2 vertex cannot be set to zero (m2, ν > 0).
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Calculation method � elastic amplitude

Convenient choice � set the linkage point to target rapidity:

f̃s(y = 0,Zs) = Ns(Zs)/εs/2

for a given realization via MC evolution

f sample
s (Y ,Zs) =

∑
{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

T el
sample =

N∑
s=1

(−1)s−1µ̃sε
s
∑

i1<i2...<is

p̃s(x̂i1 − b, . . . , x̂is − b).
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Calculation method � the SD cut

For the SD cut substituting �event-by-event Green functions� gives

T SD
sample = 2T el

sample − T ′sample

T ′sample is computed the same way as T el
sample with two distinctions:

Not one, but two sets from the projectile side

which are evolved independently until the ∆ygap and then
combined into a single one

Resumé: The elastic scattering amplitude and its SD cut are
computed within the same numerical framework.
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Model parameters

Two-channel eikonal p�nP vertices to incorporate low-M2

di�raction

Account the secondary Reggeons contribution to the lowest
order

Real part of the Pomeron exchange amplitude evaluated via
Gribov�Migdal relation

Neglect central di�raction in calculation of SD cross sections
(CD contribution is accounted twice in calculation of 2-side
SD, the extra contribution should have been subtracted).
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Model parameters

r3P � �xed from [Kaidalov'79]
a � regularization scale
1 + ∆ � bare Pomeron intercept
α′ � Pomeron slope
|p〉 = β1|1〉+ β2|2〉; |β1|2 ≡ C1; |β2|2 ≡ C2 = 1− C1.
P couplings to |1〉 and |2〉: g1/2 = g0(1± η)
R1, R2 � size of the p�P vertex (Gaussian)
Strategy:

1 Eikonal �t to σtot , σel , dσel/dt keeping
low-M2 σSD ≈ 1.5mbn at

√
s = 35GeV /c

2 All-loop �t to σtot , σel , dσel/dt starting with parameter set
from [1]

3 Calculation of di�ractive cross sections with parameters
obtained at [2]
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Calculation results

Total and elastic cross sections:
σtot(

√
s), mbn σel (

√
s), mbn dσel

dt (t), mbn GeV−2

√
s, GeV

√
s, GeV t, GeV2

∆ = 0.19; α′ = 0.236 GeV−2;
C1 = 0.1, C2 = 1− C1 = 0.9; R1 = 0.51 GeV−1; R2 = 2.8 GeV−1; g1 = 46.7 GeV−1; g2 = 11.7 GeV−1;
r3P = 0.087 GeV−1 [Kaidalov'79].
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Single di�raction

σSD(
√
s), mbn Pro�le,

√
s = 240 GeV/c Pro�le,

√
s = 13.5 TeV/c

√
s, GeV b, fm b, fm
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M
2 (rapidity gap) dependence, preliminary

Single-di�ractive cross section as a function of ymin
gap ,
√
s = 5TeV :

(linear behaviour corresponds to 1/M2
X -scaling of dσ/dM2)

σSD(ymin
gap ), mbn

ymin
gap

d

dymin
gap

= −M2
X

d

dM2
X
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Conclusions

Total, elastic and single di�ractive cross sections are computed
in RFT within the same numerical framework to all orders in
the number of loops;

A satisfactory description on total and elastic cross sections is
obtained within the all-loop framework;

The single di�ractive cross sections energy behaviour is
compatible with logarithmic growth.
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Backup � scale and 4P vertex dependence

χ3 > χ1 = χ4 > χ2; a1 = a2 = 0.018 fm; a3 = a4 = 0.036 fm. C1 = C2 = 0.5, η = 0.55.
∆ = 0.195; α′ = 0.154 GeV−2; R2 = 3.62 GeV−2; g0 = 4.7 GeV−1; r3P = 0.087 GeV−1 [Kaidalov'79].

Fits with C1 = C2 = 0.5 and R1 = R2. Much worse description of
dσel
dt

at

larger t compared to �ts with C1 6= C2 and R1 6= R2 (though still a nice

�t of slope B)
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Backup � scale and 4P vertex dependence

Inelastic and di�ractive pro�les
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Backup � secondary trajectories

pp: =fpp(b) = =AP(b) + [=A+(b) + =A−(b)] [1−=AP(b)]
<fpp(b) =

[
<AR+ + ReAR−

]
[1−=AP(b)]

pp: =fpp(b) = =AP(b) + [=A+(b)−=A−(b)] [1−=AP(b)]
<fpp(b) =

[
<AR+ − ReAR−

]
[1−=AP(b)]

pp SD:
f Di�
pp (b) = f Di�

pp (b)
∣∣
Ponly

[
1 + |AR+ (b) + AR−(b)|2 − 2=(AR+ (b) + AR−(b))

]
A±(y , b) = η±β

2
±

exp(∆±y)

2α′±y + 2R2
±

exp

(
− b2

4(α′±y + R2
±)

)
η± = ±i − 1± cosπα±(0)

sinπα±(0)
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