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Power-like contributions to the amplitude

PDG fit:
o28(P) — 18.350.0% 1 60.1570-34 + 32,8505

tot

G, mbn

Optical theorem:
1
Otot — Enge/(q = 0) = QSMe/(q = 0)

s”z, GeV

Indication:

@ High energy elastic scattering goes via quasiparticle (“Reggeon”)
exchanges with powerlike asymptotic in c.m.energy.

@ Leading contirbution — Pomeron, Mp ~ sBA ~ By, (A>0
y = Ins — overall rapidity)
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Elastic scattering — shrinkage of diffractive cone

Elastic slope, GeV_:
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M(s = e, t) ~ exp[Ay — (R? 4+ /y)t]
@ implies reasonable assumptions about the analytic properties
of T(s,t)

v

The power-like behaviour violates unitarity bound (o¢or < C In? s).

V.
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Impact parameter representation

Fourier transform:

f(Y,b) = ﬁ [d?qe P M(Y,q) .

= [ &= IM(Y,q)l? = [ d2b]f(Y,b)P.

o oY) =23M(Y,q=0) = 2/ d’bf(Y,b),

Definition o'"°(b) = 23f(b) — |f(b)|?
Unitarity constraint: 0 < Sf(b) <2 = 0<o™(b)<1

Interpretation: o'"°'(b) = probability of inelastic interaction
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Geometrical models

Imfes) o dimish
1 1

N

R b R b

Unitarity limit: £(b) = 20(R — b) = o™™!(b) = 0.
Black disk limit: f(b) = (R — b) = o'™!(b) = (R — b), 0! = 1/20"°t.

The data suggest:

@ shrinkage of diffracitve cone = growing size
@ presence of dip = deviations from Gaussian profile shape

@ The inelastic profile in the center is close to the upper limit
(e.g. o™!(b) = 0.94 at /s = 53 GeV)
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Inelastic diffraction — a special case of inelastic event
Exam

CDF Run I Preliminary
Hot spot? Q

ble Event Displays from CDF Run |l
L::.»

Rapidity gap

Illustration: talk by Chris Quigg at Spaatind'2012
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Soft inelastic diffraction
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Low-M? diffraction

Multichannel approach (Good, Walker '60):

|p) = c1|1) + a2(2);

a%—l—a%:l

[1), |2) — scattering eigenstates (amplitudes iFi(y, b) and iFa(y, b))

/ P2 b[02Fy(b)+a2Fo(b)]:

"= / d*bla3Fi(b)+a3Fa(b))?

D_ / d2b g an(Fi (b) — Fa(b))]?

F

F

[—

1

Oinel

% b

R. Kolevatov

RD approach in soft diffraction



Low-M? diffraction

Multichannel approach (Good, Walker '60):

p) = ca|l) +a2f2); af+a3=1
2) — scattering eigenstates (amplitudes iF1(y, b) and iFy(y, b))

1),

A F o

1 1
14; % b

Lessons from the example

1: Has a peripheral nature
2: Black disc limit for the elastic amplitude implies o7 ~ In s:
(growing ring).
This holds also for large-M? diffraction which however has a
different origin.
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Contributions to o4 from inelastic cuts

Contributions to imaginary part (Cutkosky rules):
@ Cut the diagram for the elastic scattering amplitude
@ Put cut lines on the mass shell, integrate over the phase space

Single “ladder” exchange — uniform rapidity distribution

2%/\/71:2%(%) = g :I‘Edr,,—> TERRINNIN
Double “ladder” |

23 =

n s/,

elastic + LM SD  abs. corrections t023T1  double dN/dy
1 ] _uupnmnnmn .,
n s/, Y n /s, Y
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High-M? diffraction

Rapidity gaps — splitting of the “ladder”:

Single diffraction dissociation
| 11111

s‘»'r'=1 Lj
Yer= I M
Double diffraction dissociation

L1
— SSo
YerInge

+ abs. corrections

+ abs. corrections

@ Motivates the effective theory of the Pomeron (Reggeon)
exchanges and interactions
@ Multy-IP exchantes, enhanced & loop graphs

e Tame the growth, restore s-channel unitarity
o Give inelastic contributions with rapidity gaps

Account of all enhanced graphs is an untrivial task



Systematic account of enhanced graphs — RFT

The elastic amplitude iT = A/(87s) is factorized:

T=> Voi®Gm® Vm

n,m

Gmn — process independent, obtained within 2D+1 field theory (only P):
1 =
£ =561y —8)6 — o/ (Vo0 )(Vp6) + A616 + Line.

Minimal choice (classic): Lins = ir_?,Png'qb(qﬁJr + @) \T/ /k

Infinite # of vertices | I rnd™ot" H
Fine tuning of the vertices, some contributions neglected
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Systematic account of enhanced graphs — RFT

The elastic amplitude iT = A/(87s) is factorized:

T=> Voi®Gm® Vm

n,m

Gmn — process independent, obtained within 2D+1 field theory (only P):
1 =
£ =561y —8)6 — o/ (Vo0 )(Vp6) + A616 + Line.

RPN
Infinite § of vertices [ I rond™pt" H
“Almost minimal™: i r;ptp(p! + @) + X¢T2¢2 Y/k >

the reaction-diffusion approach is applicable for numerical com-
putation of all-loop Green functions. [ ]
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The reaction-diffusion (stochastic) approach.

Consider a  system  of  classic  “par-

tons” in the  transverse  plane  with:

.. ........ e Diffusion (chaotical movement) D; ZaN

g e Splitting (X — prob. per unit time) -4

e Death (mq) &
e o Fusion (0, = [ d?bp,(b)) e
o Annihilation (om, = [ d?b pm,(b)) e

Parton number and positions are described in terms of
probability densities pn(y, By) (N =0,1,..; By = {b1,..., bn})]|

with normalization py(y) = 7 [ pn(y. Bu) [1dBn; > pn = 1.
0
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Inclusive distributions

S- parton inclusive distributions:

S
7(s()ﬁ Zs) = ZN: (N—s)!/dBN PN(}/; BN)E5(ZI - bi);
des ViZs)=>, (NNf!s)!pN(y) = us(y). — factorial moments.
Example: Start with a single parton with only diffusion and splitting

allowed.
exp(\y) exp(—b*/4Dy)

fl parton b) —

— the bare Pomeron propagator in b-representation.

The set of evolution equations for 7(Z;), (s =1,...) coincides
with the set of equations for the Green functions of the RFT.
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The amplitude.

To compute the RFT elastic amplitude:

@ Hadron—nIP vertices = distribution of partons

at y = 0 evolution time: £(0, Z5) = /es/2 VAR /l
e MC evolution = set of £(y, Bs) (f( ) for 0 %)

the projectile (target) (Y~ i 2)
o With some narrow g(b), [g(b)d’b=¢e: \< \
~ L' VR R
T(Y,b) =SM(Y,b) = (A|T|A) =
& s 1
/dstZsf(y Zs)fs

:Z(
s=1

T does not depend on the linkage point y (“boost invariance”) if
X [ g(b)d*b = [ pm,(b)d*b + 3 [ pu(b)d’b
& equality of fusion and splitting vertices in the RFT.
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Correspondence RFT-Stochastic model

We use the simplest form of g(b), pm,(b) and p,(b):
pmy(b) = mz 6(a — |bl);  py(b) = v 6(a — [b]);

g(b) = 0(a — |b]):.
with a — some small scale; € = 7a?.
RFT stochastic model
Rapidity y Evolution time y
Slope o Diffusion coefficient D
A= Oé(O) -1 A — mi
Splitting vertex rsp /e
Fusion vertex r;p (m2 + 3v)\/e
Quartic coupling x 2(ma +v)e

Few things to note:
Boost invariance (A = my + §) < equality of fusion and splitting vertices
The 2 — 2 vertex cannot be set to zero (mp,v > 0).
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Calculation method — elastic amplitude

Convenient choice — set the linkage point to target rapidity:
o f(y =0,Zs) = Ns(Zs)/e/?
e for a given realization via MC evolution
frample(y )= > 8z — %) .- 0(zs — Ki,)
{Riy % YEXN
N
o Tompte = D (1) ise® Y Bs(% —b,..., %, —b).

s=1 h<ia...<ls
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Calculation method — the SD cut

For the SD cut substituting “event-by-event Green functions” gives

SD _ el /
Tsample - 2Tsample — !sample
/ - el ; tinctions:
T ample 1s computed the same way as T . with two distinctions:

@ Not one, but two sets from the projectile side

@ which are evolved independently until the Ay,,, and then
combined into a single one

Resumé: The elastic scattering amplitude and its SD cut are
computed within the same numerical framework.
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Model parameters

@ Two-channel eikonal p—nP vertices to incorporate low-M?
diffraction

@ Account the secondary Reggeons contribution to the lowest
order

@ Real part of the Pomeron exchange amplitude evaluated via
Gribov—Migdal relation

o Neglect central diffraction in calculation of SD cross sections
(CD contribution is accounted twice in calculation of 2-side
SD, the extra contribution should have been subtracted).

I [ BT B
4 el
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Model parameters

rsp — fixed from [Kaidalov'79]
a — regularization scale
1+ A — bare Pomeron intercept
o/ — Pomeron slope
p) = All) +B202); 1B =G| =CG=1-G.
P couplings to [1) and [2): g1/ = go(1 £ 1)
Ri, Ry — size of the p—P vertex (Gaussian)
Strategy:
1 Eikonal fit to otot, 0¢j, doel/dt keeping
low-M? osp ~ 1.5mbn at \/s = 35GeV/ /c
2 All-loop fit to otor, 0e/, doer/dt starting with parameter set
from [1]
3 Calculation of diffractive cross sections with parameters
obtained at [2]
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Calculation results

Total and elastic cross sections:

otot(y/s), mbn

oel(v/s), mbn
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(t), mbn GeV—2
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002040608 1d‘2
t,

A

C1=01,Co=1—Cy =0.9; Ry =0.51GeV~!; Ry =2.8 GeV™1; gy =46.7 GeV™1; g» = 11.7 GeV ™~ };
r3p = 0.087 GeV ! [Kaidalov'79].
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Single diffraction

osp(+/s), mbn Profile, \/s = 240 GeV/c Profile, v/s = 13.5 TeV/c
14 1 - 1 T
gap = 3, exp inel inel
12 gap=3, calc sD —— s ——
low-mass 0.8 LMSD —— 0.8 LMSD ——
10
g 0.6 0.6
8 0.4 0.4
4
0.2 0.2
2
0 o] 0
10 100 1000 10 0 05 1 15 2 25 3 0 05 1 15 2 53
VS GeV b, fm B’ fm
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M? (rapidity gap) dependence, preliminary

Single-diffractive cross section as a function of yg;ig, /s =5TeV:

(linear behaviour corresponds to 1/M%-scaling of do/dM?)

O'SD(y;i;), mbn

11

10

9

1 AHIN
8
S=ln—S_
gap 2
. Yo 3T
d.
dymr

— M2 _d_
X dM%

2 4 6 8 10 12 14 16 18
min

Ygap
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Conclusions

o Total, elastic and single diffractive cross sections are computed
in RFT within the same numerical framework to all orders in
the number of loops;

o A satisfactory description on total and elastic cross sections is
obtained within the all-loop framework;

o The single diffractive cross sections energy behaviour is
compatible with logarithmic growth.
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Backup — scale and 4P vertex dependence

-2
Total cross sections, mbn Elastic cross sections, mbn Elastic slope, GeV
T T TTTTmT TT \IIHIl T T \IIHIl T TTTTT] T \I\I\Il T T \I\I\Il T T IIHIHl T IIHIHl T IIHIHl I.

elkonal
o pp data
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3> x1 = > x2; ay = aa, = 0,018 fm; a3 = = 0.036 fm. Cy, = C2 = 0.5, n = 0.55.
Z = 0?&95; 25": 0).<154 terzz; RQ‘,r = 3.62 GeViE‘;l go = 4.7 Gerl'l; r3p = 0.087”GeV75P [Kaidalov'79].

Fits with C; = C, = 0.5 and Ry = R,. Much worse description of % at
larger t compared to fits with C; # G, and Ry # R, (though still a nice
fit of slope B)

R. Kolevatov RD approach in soft diffraction



Backup — scale and 4P vertex dependence

15

10

Inelastic and diffractive profiles

Single diffractive cross sections, mbn Profiles, 3”2:150 GeV Profiles, 3”2=2’_> TeV
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Backup — secondary trajectories

pp: Spr(B) = SAn(0) + [SA4(8) + SA-(B)] 1 - S0 o)
%fpp(b) = [?RAR+ + ReAgr_ ] [1 — \XAp ]

po: Ayplb) = WAo(t) + [BAL(B) ~ IA-(B)] 1 = IAp()
%fp (b) = [%ARJr — ReAR ] [1 — \XAp ]

pp SD: .
o (D) = T3 (D) somy [1 + AR, (B) + Ar_(D)|* — 23(Ar, (b) + Ar_ (b))]

Ai(y, b) = niﬁiw exp (—(,b72>

20y + 2R3 4(aly + R%)
. 1+ cosma+(0)
=4 TV
s ! sinta4(0)
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