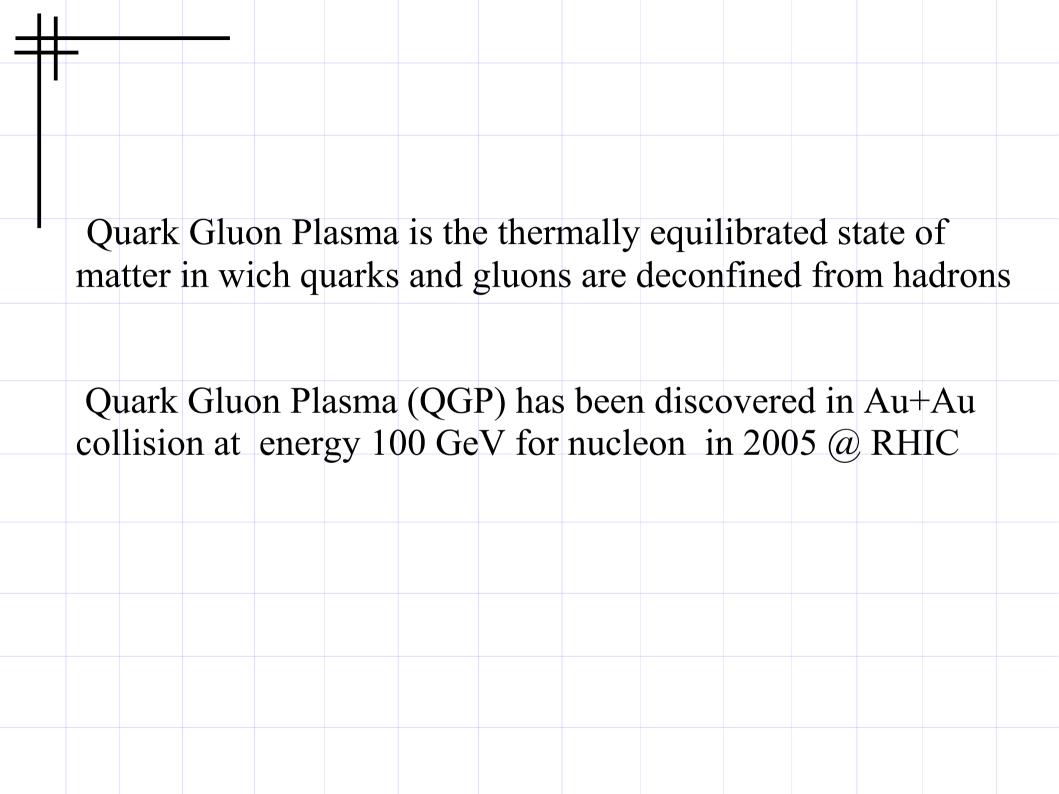
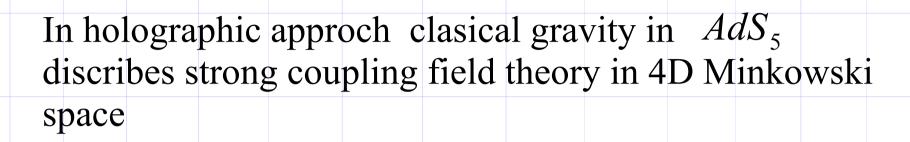
Heavy-ion collisions in modified AdS spaces

Pozdeeva E.O

based on work I.Ya. Aref'eva, E.O.Pozdeeva, T.O.Pozdeeva to be bublished in Theor.Math.Phys. 176(1)(2013)

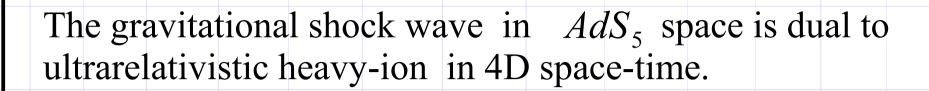
QFTHEP 2013





There is hypothesis that QGP formation in 4D space corresponds to Black Holes creation in dual 5D space.

Gubser, Klebanov, Polyakov, 9802109 Witten, 9802150



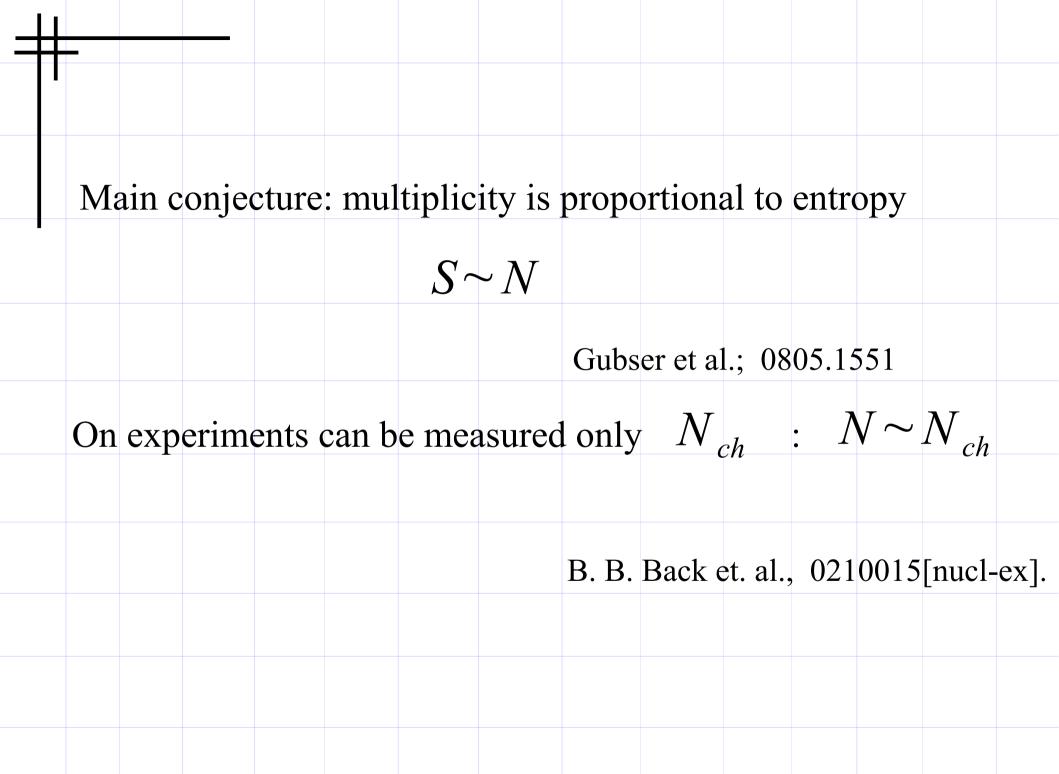
Thus,

- heavy-ion collisions can be represented such as gravitational shock waves collisions in AdS_5
- QGP formation is equivalent to BH creation in AdS_5

Gubser et al.; 0805.1551, 0902.4062

Problem:

- How to get dependence of experimental multiplicity on energy from holographic model.
- Simplest holographic model is related with N=4 SYM [But QCD is not SYM]
- Our goal: to study more complicate models to fit experimental data.



Accordingly experiment the charged-particles pseudorapidity density depends on colliding energy

$$dN_{ch}/d\eta \propto s^{0.15}$$

for Pb-Pb and Au-Au - collisions

$$dN_{ch}/d\eta \propto s^{0.11}$$
 pp collision

$$E = (1/2)\sqrt{s_{NN}}$$
 - colliding energy for nucleon

K. Aamodt et al. [ALICE Collaboration], 1011.3916 [nucl-ex].

DISCREPANCY

The simple holographic model gives

$$dN_{ch}/d\eta \propto s^{2/3}$$

$$S \ge S_{trapped} = A_{trapped} / 4G_N$$

The trapped surface is surface whose null normals all propagate inward.

S. W. Hawking and D. Page, Thermodynamics Of Black Holes In Anti-de Sitter Space, Commun. Math. Phys. 87(1983) 577

C. S. Pe, ca, J. P. S. Lemos, 9805004 [gr-qc]

- N=4 SYM is not QCD
- For holographic description of QCD a modified AdS_5 is used to study dependence of entropy on energy

Gursoya, Kiritsis et al.,0707.1324, 0707.1349

• Early the modification of AdS_5 space-time by introduction of wrapping factor was applied for shock waves with the specialy distributed colliding masses.

Kiritsis, 1111.1931

• We consider collisions of walls with averaged mass in modified 5D space-time.

The shock wave with mass spread over transversal surface (shock wall wave) is a simplification of a point source shock wave.

We describe heavy-ion collisions by the wall-wall shock wave collisions in AdS_5 (or in its modification)

S. Lin, E. Shuryak, 1011.1918[hep-th]

I. Y. Aref'eva, A. A. Bagrov and E. O. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions," JHEP 1205, 117 (2012)

The Einstein equation for particle in dilaton field has the form:

$$\left(R_{\mu\nu} - \frac{g_{\mu\nu}}{2}R\right) - \frac{g_{\mu\nu}}{2}\left(-\frac{4}{3}(\partial\Phi_s)^2 + V(\Phi_s)\right) - \frac{4}{3}\partial_{\mu}\Phi_s\,\partial_{\nu}\Phi_s - g_{\mu\nu}\frac{d(d-1)}{2L^2} = 8\pi G_5 J_{\mu\nu},$$

where
$$J_{++} = \frac{E}{b^3(z)} \, \delta(x^1) \delta(x^2) \delta(z - z_*) \delta(x^+).$$

We consider the shock wave metric

$$ds^{2} = b^{2}(z)(dz^{2} + dx^{i} dx^{i} - dx^{+} dx^{-} + \phi(z, x^{1}, x^{2})\delta(x^{+})(dx^{+})^{2})$$

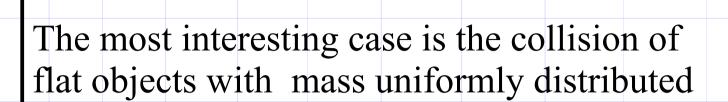
Aref'eva I.Ya. 0912.5482[hep-th]

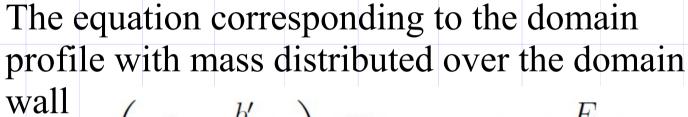
M. Hotta, M. Tanaka, Shock-wave geometry with nonvanishing cosmological constant, Class. Quantum Grav. **10**, 307, 1993

Using shock wave ansatz we reduce the Einstein equation to the differential equation for shock wave profile and two equations defining the connection of field and field potential with b-factor:

$$\left(\partial_{x^{1}}^{2} + \partial_{x^{2}}^{2} + \partial_{z}^{2} + \frac{3b'}{b}\partial_{z}\right)\phi(z, x_{\perp}) = -16\pi G_{5}\frac{E}{b^{3}}\delta(x^{1})\delta(x^{2})\delta(z_{*} - z)$$

$$V(\Phi_s) = \frac{3}{b^2} \left(\frac{b''}{b} + \frac{2(b')^2}{b^2} - \frac{4b^2}{L^2} \right) \qquad \Phi'_s = \pm \frac{3}{2} \sqrt{\left(\frac{2(b')^2}{b^2} - \frac{b''}{b} \right)}$$





$$\left(\partial_z^2 + 3\frac{b'}{b}\partial_z\right)\phi^W(z) = -16\pi G_5 \frac{E}{b^3}\delta(z_* - z)$$

and equation corresponding to the domain profile with mass distributed over the finite region with radius L

$$\left(\partial_{z}^{2} + \frac{3b'}{b}\partial_{z}\right)\phi^{w}(z) = -16\pi G_{5}\frac{E^{*}}{b^{3}}\delta(z_{*} - z), \quad E^{*} = \frac{E}{L^{2}}$$

coincide up to a constant factor L^2

The solutions to equations with mass uniformly distributed over finite and infinite surfaces coincide up to constant L^2

$$\phi^w(z) = \frac{\phi^W(z)}{L^2}$$

We identify the black hole creation with trapped surface formation. The formation conditions are applied to schock wall wave profile at the trapped surface boundary points

$$(\partial_z \phi^w)^2 \mid_{TS} = 4$$

The trapped surface area is calculated as follows

$$S_{trap} = \frac{1}{2G_5} \int_C \sqrt{\det|g_{AdS_3}|} dz d^2 x_{\perp}$$

where $\det |g_{AdS_3}|$ is the metric determinant of AdS_3

The relative area s dened with the formula

$$s = \frac{S_{trap}}{\int d^2x_{\perp}}$$

We modify AdS space-time using 4 wrapping factors types

$$b = \left(\frac{L}{z - z_0}\right)^a$$

$$b = \frac{L}{z} \exp\left(-\frac{z^2}{R^2}\right)$$

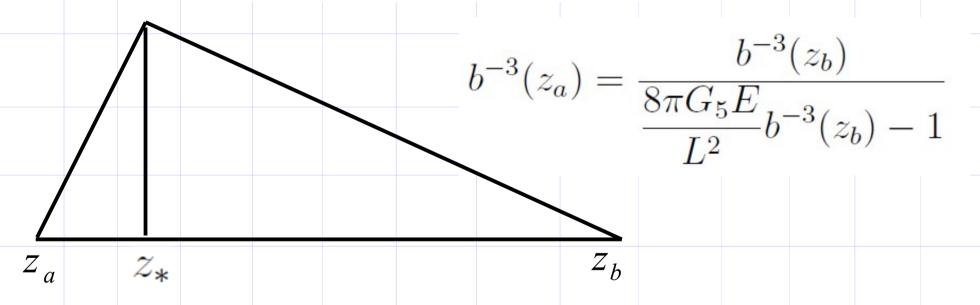
$$b = \exp\left(-\frac{z}{R}\right)$$

$$b = \left(\frac{L}{z}\right)^a \exp\left(-\frac{z^2}{R^2}\right)$$

where a>0, R=1 fm, $L\approx 4.4$ fm

Using the solution to general form of domain equation (for any wrapping factor) and the trapped surface conditions we obtain the relations

$$F(z_*) = \frac{b^{-3}(z_b)F(z_a) + b^{-3}(z_a)F(z_b)}{b^{-3}(z_a) + b^{-3}(z_b)} \quad ; \quad \partial_z F(z) = b^{-3}(z)$$



between trapped surface boundary ($z_a < z_b$) points and collision point z_*

For the wrapping factor $b = \exp\left(-\frac{z}{R}\right)$ we have obtained

following relations between boundary points and collision point

$$Z_A = \frac{L^2}{16\pi G_5 E} \cdot \frac{Z_B}{Z_B - \frac{L^2}{16\pi G_5 E}}, \quad Z_0 = \frac{L^2}{8\pi G_5 E}$$

$$Z_0 = \exp\left(\frac{3z_*}{R}\right), \quad Z_A = \exp\left(\frac{3z_a}{R}\right), \quad Z_B = \exp\left(\frac{3z_b}{R}\right)$$

For the considered case the collision point is fixed by energy.

The relative area of trapped surface defined by

$$s = \frac{3}{2RG_5} \left(\frac{1}{\exp\left(\frac{3z_a}{R}\right)} - \frac{1}{\exp\left(\frac{3z_b}{R}\right)} \right) = \frac{3}{2RG_5} \left(\frac{1}{Z_A} - \frac{1}{Z_B} \right)$$

The maximum entropy value is obtained for $Z_b \gg 1$, in this approximation

$$Z_a \sim \frac{L^2}{16\pi G_5 E}, \qquad s \sim \frac{24\pi E}{RL^2}$$

The dependence of entropy on entropy is linear for the exponential wrapping factor

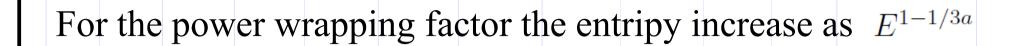
Power b-factor $b = (L/z)^a$ gives following relative area of trapped surface

$$s = \frac{1}{2G_5(3a-1)} \left(z_A \left(\frac{L}{z_A} \right)^{3a} - z_B \left(\frac{L}{z_B} \right)^{3a} \right)$$

$$z_{A} = \left(\frac{z_{B}^{3a}}{-1 + z_{B}^{3a}C^{2}}\right)^{\frac{1}{3a}} z_{*} = \left(\frac{z_{A}^{3a}z_{B}^{3a}(z_{B} + z_{A})}{z_{A}^{3a} + z_{B}^{3a}}\right)^{\frac{1}{3a+1}} C^{2} = \frac{8\pi G_{5}E}{L^{3a+2}}$$

The maximal entropy value will at $Z_b \gg 1$ in assumption 3a > 1

$$s \mid_{z_b \to \infty} = \frac{L^{3a}}{2G_5(3a-1)} z_A^{1-3a} = \frac{L}{2G_5} \left(\frac{8\pi G_5}{L^2}\right)^{\frac{3a-1}{3a}} E^{\frac{3a-1}{3a}}$$



The multiplicity of particles produced in heavy ions (PbPb-and AuAu-collisions) collisions dependents on energy as $s_{NN}^{0,15}$ in the range $10-10^3$ GeV.

This model can coinside with experimental data at $a \approx 0.47$

K. Aamodt et al. [ALICE Collaboration], arXiv:1011.3916 [nucl-ex].

Mixed factor of the form $b = \frac{L}{z} \exp\left(-\frac{z^2}{R^2}\right)$ gives the another relative area of quasi-trapped surface energy dependence

$$s = \frac{L^3}{2G_5} \left(-\frac{1}{2\exp\left(\frac{3z_b^2}{R^2}\right) z_b^2} + \frac{1}{2\exp\left(\frac{3z_a^2}{R^2}\right) z_a^2} + \frac{3\operatorname{Ei}\left(1, \frac{3z_b^2}{R^2}\right)}{2R^2} - \frac{3\operatorname{Ei}\left(1, \frac{3z_a^2}{R^2}\right)}{2R^2} \right) \right) = \frac{1}{2G_5}$$

which has the maximal value at $z_b \rightarrow \infty$

$$s \mid_{z_b \to \infty} = \frac{3}{4} \frac{L^3}{G_5 R^2} \left(-\text{Ei}\left(1, \frac{3z_a^2}{R^2}\right) + \frac{1}{3} \frac{R^2}{\exp\left(\frac{3z_a^2}{R^2}\right) z_a^2} \right)$$

and roughly is $E^{\frac{2}{3}}(1+0.007 \ln \hat{E}) - 3$ at $10 \text{GeV} \le E < 1 \text{ TeV}$

The wrapping factor
$$b = \left(\frac{L}{z}\right)^a \exp\left(-\frac{z^2}{R^2}\right)$$

gives the most complicate relative area of trapped surface energy dependence

$$s = \frac{F(z_B) - F(z_A)}{2G_5}$$

$$F(z) = \frac{\left(\frac{L}{z}\right)^{3a} z \exp\left(-\frac{3z^2}{2R^2}\right) \left(2\left(\frac{3z^2}{R^2}\right)^{\frac{3a-1}{4}} \mathbf{M}\left(\frac{-3a+1}{4}, \frac{3(-a+1)}{4}, \frac{3z^2}{R^2}\right) + 3(1-a) \exp\left(-\frac{3z^2}{2R^2}\right)\right)}{3\left(-1+3a\right)\left(-1+a\right)}$$

$$\mathbf{M}(\mu, \nu, z) = \exp\left(-\frac{z}{2}\right) z^{\frac{1}{2} + \nu} {}_{1}F_{1}\left(\frac{1}{2} + \nu - \mu, 1 + 2\nu, z\right)$$

Wich has maximal value at
$$z_B \to \infty$$
 : $S \to \frac{-F(z_A)}{2G_5}$

The entropy can be roughly estimate at a=1/2 such as

$$S \sim E^{0.3}(1 + C_1(\ln(E + 100))) - C_2$$

$$C_1 = -0.738$$
, $C_2 = 0.393$ at $10 < E < 100$ GeV

$$C_1 = -0.073$$
, $C_2 = 0.827$ at $100 < E < 1000$ GeV

Conclusions

The black holes formation in the domain wall-wall collisions is investigated in the deformed AdS_5 with b-factors.

The several b-factor types: power, exponential and mixed are considered.

The dependence of the entropy on the energy for different b-factors is analyzed.

These results (with the account of AdS/CFT-duality) allow to simulate the dependence of multiplicity on the energy of the colliding heavy-ions

$$b = (L/z)^a$$
, $a \approx 0.47$, $S \sim E^{0.3}$

(in agreement with experimental data $s_{NN}^{0,15}$).

The additional logarithms appear when considering the mixed factor.