

Review of ATLAS Higgs \rightarrow WW Results with 25 fb⁻¹ of Data

Nikolina Ilic, University of Toronto QFTHEP 2013, St. Petersburg, Russia

Outline

- Introduction
- Backgrounds
 - ► W+jets and Wy, Wy*, WZ, ZZ
 - Z/γ* +jets
 - Тор
 - WW

Signal Extraction

- Gluon Gluon Fusion (ggf)
- Vector Boson Fusion (VBF)

Results

- 7TeV+8TeV Combined
- VBF and couplings
- Spin
- Conclusions

Introduction

Search in 4 channels

- Different Flavour (DF): $e\mu/\mu e + E_T^{miss}$
- Same Flavour (SF) : $ee/\mu\mu + E_T^{miss}$

Split by jet multiplicity: 0, $I, \ge 2jet$

Introduction

Search in 4 channels

- Different Flavour (DF): $e\mu/\mu e + E_T^{miss}$
- Same Flavour (SF) : $ee/\mu\mu + E_T^{miss}$

Large BR over wide range of M_H Poor mass resolution

Split by jet multiplicity: 0, $1, \ge 2$ jet

Introduction

Search in 4 channels

- Different Flavour (DF): $e\mu/\mu e + E_T^{miss}$
- Same Flavour (SF) : $ee/\mu\mu + E_T^{miss}$

Split by jet multiplicity: 0, $1, \ge 2$ jet

Large BR over wide range of M_H Poor mass resolution Lots of background to dig through!

Backgrounds: W+jet/ Wy, WZ, ZZ

W+jets

- Small but kinematic distributions are similar to signal
- Hard to model in MC so estimated from data

Backgrounds: W+jet/ Wy, WZ, ZZ

W+jets

- Small but kinematic distributions are similar to signal
- Hard to model in MC so estimated from data

- Small and estimated from MC
- Reduced with 2 lepton selection
- Background estimations checked in same sign validation region

- Background reduction depends on flavour channel and jet multiplicity
 - Reduce γ^* : $m_{\ell\ell} > 10$ (12) GeV for DF (SF)
 - Reduce Z: remove events around the Z mass peak
 - Reduce $Z/\gamma^*: E_T^{miss}$ variables > 20- 45 GeV. In $Z/\gamma^* \rightarrow \tau\tau$ events, the leptons emerge back to back and E_T^{miss} from neutrinos cancel
 - Reduce Z/γ^* : $p_T^{\ell\ell} > 30$ for 0jet

Backgrounds: What is left?

- After W+jets, Wy, WZ, ZZ and Z/y* + jets background is reduced, what is left?
- Z/γ^* +jets in SF is reduced with cuts on hadronic recoil, and the less pileup sensitive p_T^{miss}

Nikolina Ilic 2013-06-23

Backgrounds: Top

- Modelled by MC, corrected to data from a control region which contain b tagged jets
- To reduce top background
 - N_{b-jet} = 0 in ≥ 1 jet, p_T (all objects) < 45 GeV in ≥ 2 jet

Backgrounds: WW

 Modelled by MC and corrected to data from CR for 0/1j, taken from MC (Sherpa+MC@NLO) for ≥ 2j

Backgrounds: WW

- Modelled by MC and corrected to data from CR for 0/1j, taken from MC (Sherpa+MC@NLO) for ≥ 2j
- Opening angle between the two leptons $(\Delta \varphi_{\ell \ell})$ is small for signal since Higgs is spin 0 and there is spin correlation between the two W bosons

Signal Extraction: ggF

- After selections to reduce backgrounds, signal extracted
- Split SR to improve sensitivity (different Signal/Bkg ratio)

Split SR to improve

sensitivity (different Signal/Bkg ratio)

Final likelihood fit is to m_T

$$m_T^2 = \left(\sqrt{m_{ll}^2 + |\vec{p}_{T_{ll}}|^2} + E_T^{\text{miss}}\right)^2 - \left(\vec{p}_{T_{ll}} + \vec{E}_T^{\text{miss}}\right)^2$$

After selections to reduce backgrounds, signal extracted

Signal Extraction: ggF

VBF signal is WW+2 forward jets with a large rapidity gap

- ▶ p_T (all objects) < 45 GeV to reduce dominant $t\bar{t}$ background
- $m_{jj} > 500 \text{ GeV}$, rapidity($\Delta Y_{\text{lead jet, sublead jet}}$) > 2.8
- No additional jets between the two forward ones to reduce $t\overline{t}$ and ggF
- Require leptons to be between forward jets
- Define signal region: $m_{\ell\ell} < 60$, $|\Delta \varphi_{\ell\ell}| < 1.8$ and fit m_T in 4 bins

16

- At m_H = I 40 GeV
 - Observed significance of 4.1σ
- Study excess of events at m_H = 125 GeV that was observed by H→yy/ZZ
 - Expected Significance : 3.7σ
 - Observed Significance : 3.8σ

• Study signal strength, $\mu = \frac{\sigma_{obs}}{\sigma_{SM}}$, at m_H = 125 GeV

 $\mu_{obs} = 1.01 \pm 0.21 (stat.) \pm 0.19 (theoretsyst.) \pm 0.12 (expt_syst.) \pm 0.04 (lumi.)$

 $= 1.01 \pm 0.31$

Signal Yield $(\sigma \cdot BR)$ WW bkg normalisation B-tagging efficiency Jet energy scale/resolution

Results: VBF and Couplings

At m_H = 125 GeV (ggF is background)

- Expected Significance : Ι.6σ
- Observed Significance : 2.5σ

 $\mu_{obs,VBF} = 1.66 \pm 0.79$

- At m_H = 125 GeV (ggF is background)
 - Expected Significance : Ι.6σ
 - Observed Significance : 2.5σ

 $\mu_{obs,VBF} = 1.66 \pm 0.79$

Nikolina Ilic 2013-06-23

Spin

- Try to differentiate between Higgs with spin 0⁺ and graviton-like spin 2⁺ particle
- Focus on Different Flavour, 0 jet channel and 2012 data
- Use a Boosted Decision Tree (BDT) analysis, train 4 variables: m_T , $\Delta \varphi_{\ell\ell}$, $m_{\ell\ell}$, $p_T^{\ell\ell}$
- For spin 2⁺ the fraction of gg vs $\overline{q}q$ production is unknown so scan is performed over 5 different fractions $(f_{q\overline{q}})$
- Data are compatible with spin 0⁺
- 2⁺ q
 q
 excluded at 99% CL, gg
 excluded at 95% CL

$$q = \log \frac{\mathcal{L}(H_{0^+})}{\mathcal{L}(H_{2_m^+})} = \log \frac{\mathcal{L}(\epsilon = 1, \hat{\mu}_{\epsilon=1}, \hat{\theta}_{\epsilon=1})}{\mathcal{L}(\epsilon = 0, \hat{\mu}_{\epsilon=0}, \hat{\theta}_{\epsilon=0})}$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1$$

- The H→WW→ ℓvℓv channel is presented in the mass range of 115 GeV - 200GeV with the full 25fb ⁻¹ 7TeV+8 TeV dataset in 4 flavour channels split by 3 jet multiplicities
- The largest significance of 4.1 σ occurs at m_H = 140 GeV
- For $m_H = 125$ GeV:

• $\mu_{obs} = 1.01 \pm 0.31$, $\mu_{obs,VBF} = 1.66 \pm 0.79$

 Spin analysis favours spin 0⁺ Higgs, and rejects spin 2⁺ with > 95% CL

References

- ▶ The Atlas Collaboration, Study of spin properties of the Higgs-like boson in the H→WW channel with 21 fb⁻¹ of \sqrt{s} = 8 TeV data collected with the ATLAS detector, ATLAS-CONF-2013-31, CERN, Geneva, 2013
- The Atlas Collaboration, Measurement of the properties of the Higgs-like boson in the WW $\rightarrow \ell \nu \ell \nu$ decay channel with the ATLAS detector using 25 fb⁻¹ of proton-proton collision data, ATLAS-CONF-2013-030, CERN, Geneva, 2013
- J. Jovicevic, Probing the Standard Model Higgs boson in the WW decay mode with the ATLAS detector at the LHC, Licentiate Thesis, KTH Engineering Sciences, Stockholm, Sweden, 2013

BACKUP

Results: 7TeV+8TeV Combined

- Previous 7 TeV analysis improved with 2012 updates, better WW Modelling (MC@NLO → Powheg), improved lepton definition for W+jets reduction
- ▶ Event Yields for 0.75 $m_H < m_T < m_H (m_T < 1.2 m_H \text{ for } \ge 2j)$

7 TeV	Signal m _H = 125	Bkg	Data	8 TeV	Signal m _H = 125	Bkg	Data
0 jet	24±5	6 ±	154	0 jet	97±20	739±39	831
l jet	7±2	47±6	62	l jet	40±13	261±28	309
≥2 jet	1.4±0.2	4.6±0.8	2	≥2 jet	10.6±1.4	36±4	55

 Leading systematics are theoretical systematics on signal yields, jet energy scale/resolution and b-tagging efficiency

- Estimated using data driven method since hard to model in MC
- Control Region: select I good lepton and I lepton does not satisfy strict selection requirements (Denominator Lepton)

$$N_{W+j}^{Bkg} = f \times N_{W+j}^{CR}$$
 $f = \frac{N_{Good \ Lepton}}{N_{Denomiator}} \longrightarrow \overset{\sim 45\% \text{ und}}{\overset{\circ}{\text{difference}}}$ difference wights, picture contamination of the second sec

- Calculated from dijet events. ~45% uncertainty due to differences between di-jet and wjets, pileup and real lepton contamination from W/Z
- Includes QCD background estimation, when both leptons are misidentified as jets
- A validation region with same sign leptons containing mostly W+jets is used to validate this method

Z/γ^* Estimation

• $Z/\gamma^* \to \tau \tau$

- Background normalised to data using a different flavour CR defined by $m_{\ell\ell}$ < 80GeV and $|\Delta \phi|$ >2.8
- ▶ The ≥ 2 jet CR in addition to above requires N_{b-jet} = 0 and p_T^{tot} <45 GeV
- $Z/\gamma^* \rightarrow \ell \ell$
 - Small in different flavour, so taken from MC
 - In same flavour, N_{jet}≤1, f_{recoil} is used to define CR. For N_{jet}≥2 E_t^{miss} m_{ℓℓ} in the Z peak is used to estimate DY since the statistics are to low and there are too many jets to use f_{recoil} method

$$f_{\text{recoil}} = \frac{ \substack{ \substack{ \text{quadrant opp. } \vec{p}_{T_{ll}} \\ \downarrow \\ \sum_{i \in \text{soft jets}} w_i \times \vec{p}_{T_i} \\ \vec{p}_{T_{ll}} } }{ \vec{p}_{T_{ll}} }$$

Top Estimation

MC Top normalised to data yields in CR after subtracting non-top backgrounds in Ij and 2 j

► 0j :
$$N_{top}^{est} = N_{top}^{data} + P_{0j}^{est}$$
, $P_{0j}^{est} = P_{0j}^{mc} \times \frac{\left(P_{veto}^{BtagMC}\right)^2}{\left(P_{veto}^{BtagMC}\right)^2}$

$$= \frac{N_{No \ probing \ jets}}{N^{Btag}} \quad \text{From btaged}$$

► ≥Ij:
$$N^{SR} = N^{CR} \alpha$$
, $\alpha = \frac{N_{SR}}{N_{CR}}$ is from simulation

CR region is defined using same selection but with N_{biet}=1 and requirements on $\Delta\varphi_{\,\ell\ell}$ and $m_{\ell\ell}$ removed

• $\alpha = 1.04 \pm .02$ (stat) for 1j, $\alpha = 0.59 \pm .07$ (stat) for 2jet

btagged

CR

Spin

Do 2 BDT trainings for 0⁺ and 2⁺ and perform 2D fit on BDT₀ and BDT₂

			0.4 $ATLAS Preliminary - backgrounds$ $H \rightarrow WW^{(1)} \rightarrow ev\mu\nu + \mu vev + 0 jet$ 0.35
Variable	Spin analysis	Rate analysis [5]	² _≥ 0.25 0 ⁺ 2 ⁺
c	common $e\mu/\mu e$ l	epton selection	¹ 0.2 Background
$E_{\rm T,rel}^{\rm miss}$	> 20 GeV	> 25 GeV	[₹] 0.15
Njets	0 jets	$0, 1, \ge 2$ jet selections	
$p_{\mathrm{T}}^{\ell\ell}$	> 20 GeV	> 30 GeV	
$m_{\ell\ell}$	< 80 GeV	< 50 GeV	
$\Delta \phi_{\ell\ell}$	< 2.8	< 1.8	
		·	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 BDT ₀

Systematics

	Signal processes (%)			Background processes (%)		
Source	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Theoretical uncertainties						
QCD scale for ggF signal for $N_{jet} \ge 0$	13	-	-	-	-	-
QCD scale for ggF signal for $N_{jet} \ge 1$	10	27	-	-	-	-
QCD scale for ggF signal for $N_{jet} \ge 2$	-	15	4	-	-	-
QCD scale for ggF signal for $N_{jet} \ge 3$	-	-	4	-	-	-
Parton shower and UE model (signal only)	3	10	5	-	-	-
PDF model	8	7	3	1	1	1
$H \rightarrow WW$ branching ratio	4	4	4	-	-	-
QCD scale (acceptance)	4	4	3	-	-	-
WW normalisation	-	-	-	1	2	4
Experimental uncertainties						
Jet energy scale and resolution	5	2	6	2	3	7
<i>b</i> -tagging efficiency	-	-	-	-	7	2
$f_{\rm recoil}$ efficiency	1	1	-	4	2	-

Full Selection

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
Pre-selection	Two is Leptor $e\mu + \mu \mu$ $ee + \mu\mu$	solated leptons $(\ell = e, \mu)$ with ns with $p_{\rm T}^{\rm lead} > 25$ and $p_{\rm T}^{\rm sublet}$ $e: m_{\ell\ell} > 10$ $\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 12$	th opposite charge ^{ad} > 15 5
Missing transverse momentum and hadronic recoil	$\begin{array}{l} e\mu + \mu e: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 25\\ ee + \mu \mu: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ p_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ f_{\mathrm{recoil}} < 0.05 \end{array}$	$\begin{array}{l} e\mu + \mu e: \; E_{\rm T,rel}^{\rm miss} > 25 \\ ee + \mu \mu: \; E_{\rm T,rel}^{\rm miss} > 45 \\ ee + \mu \mu: \; p_{\rm miss}^{\rm miss} > 45 \\ ee + \mu \mu: \; f_{\rm recoil} < 0.2 \end{array}$	$e\mu + \mu e: E_{\rm T}^{\rm miss} > 20$ $ee + \mu\mu: E_{\rm T}^{\rm miss} > 45$ $ee + \mu\mu: E_{\rm T,STVF}^{\rm miss} > 35$
General selection	$ \Delta \phi_{\ell\ell,MET} > \pi/2 p_{\rm T}^{\ell\ell} > 30 $	$N_{b\text{-jet}} = 0$ - $e\mu + \mu e: Z/\gamma^* \to \tau \tau \text{ veto}$	$N_{b\text{-jet}} = 0$ $p_{T}^{\text{tot}} < 45$ $e\mu + \mu e: Z/\gamma^* \to \tau\tau \text{ veto}$
VBF topology		-	$m_{jj} > 500$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20$) in rapidity gap Require both ℓ in rapidity gap
$H \to WW^{(*)} \to \ell \nu \ell \nu$ topology	$\begin{array}{l} m_{\ell\ell} < 50 \\ \Delta \phi_{\ell\ell} < 1.8 \\ e\mu + \mu e: \text{ split } m_{\ell\ell} \\ \text{Fit } m_{\text{T}} \end{array}$	$\begin{array}{l} m_{\ell\ell} < 50 \\ \Delta \phi_{\ell\ell} < 1.8 \\ e\mu + \mu e: \text{ split } m_{\ell\ell} \\ \text{Fit } m_{\text{T}} \end{array}$	$m_{\ell\ell} < 60$ $ \Delta \phi_{\ell\ell} < 1.8$ - Fit $m_{\rm T}$

Monte Carlo

Signal	MC generator	$\tau \cdot \mathcal{B} (pb)$	Background	MC generator	$\sigma \cdot \mathcal{B}(pb)$
ggF	POWHEG [30]+PYTHIA8 [31]	0.44	$q\bar{q}, gq \rightarrow WW$	Powheg+Pythia6 [32]	5.7
VBF	POWHEG+PYTHIA8	0.035	$q\bar{q}, gq \rightarrow WW+2j$	Sherpa [33] with no $O(\alpha_s)$ terms	0.039
VH	Pythia8	0.13	$gg \rightarrow WW$	GG2WW 3.1.2 [34, 35]+HERWIG [36]	0.16
			tī	MC@NLO [37]+Herwig	240
			Single top: tW, tb	MC@NLO+Herwig	28
			Single top: tqb	AcerMC [38]+Pythia6	88
			Z/γ^* , inclusive	Alpgen+Herwig	16000
			$Z^{(*)} \rightarrow \ell\ell + 2j$	Sherpa processes up to $O(\alpha_s)$	1.2
			$Z^{(*)}Z^{(*)} \to 4\ell$	Powheg+Pythia8	0.73
			$WZ/W\gamma^*, m_{Z/\gamma^*} > 7$	Powheg+Pythia8	0.83
			$W\gamma^*, m_{\gamma^*} \leq 7$	MadGraph [39–41]+Рутнія6	11
			$W\gamma$	Alpgen+Herwig	370