Study of the Drell-Yan process with CMS. QFTHEP 2013: XXIth International Workshop High Energy Physics and Quantum Field Theory, 23-30 Jun 2013, Saint Petersburg, Saint Petersburg (Russian Federation)

I. Gorbunov, On behalf of the CMS Collaboration

JINR, Dubna

June 24, 2013

CMS Detector

Global muon momentum resolution:

 $dp_T/p_T = 1 - 1.5\%$ at $p_T = 10$ GeV, $dp_T/p_T = 6 - 17\%$ at $p_T = 1$ TeV Electron energy resolution: dE/E < 0.5% fro E > 100 GeV

Measurement of the Drell-Yan Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

Based On: CMS-PAS-SMP-13-003

Available on the CERN CDS information server

CMS PAS SMP-13-003

CMS Physics Analysis Summary

Contact: cms-pag-conveners-smp@cern.ch

2013/04/23

Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Measurements are presented for the measurements of the differential and touble differential Drell-Yan cross section using an integrated luminosity of 4.5 fb⁻¹ (dimucn) and 4.8 fb⁻¹ (dielectron) of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s} = 7$ feV. The cross sections $d\sigma/4M$ are measured in the mass range 15 GeV to 1500 GeV for the dimuton, dielectron, and combined channels. Results are also presented on the measurement of the double-differential cross section $d\sigma/dMM$ in the dimuton channel. The double-differential cross section measure-

I. Gorbunov Ilya.Gorbunov@cern.ch

Study of the Drell-Yan process with CMS.

The Drell-Yan process

- The production of lepton pairs in pp-collisions is described by the s-channel exchange of $\gamma^{\star}Z$
- Theoretical calculations of $d\sigma/dM(II)$ and $d^2\sigma/dM(II)Y$ (M(II) - dilepton invariant mass, Y - dilepton rapidity) established up to NNI O order
- Comparison of Data and MC provide stringent tests of QCD and Measurements are done at $\sqrt{s}=7~TeV$ significant constraints on the evaluation PDFs
- DY is a mojor background for $t\bar{t}$ as for searches for new physics (high mass dilepton resonances)

on CMS data correstponding to $L = 4.5 \ fb^{-1}$ (dimuon) and $L = 4.8 \ fb^{-1}$ (dielectron) in and diboson measurements as well $_{20} < M(II) < 1500$ GeV range, results are normalized to the cross section in the Z region (60 < M(II) < 120 GeV)

Cross sections are calculated as

$$\sigma = \frac{N_u}{A\epsilon\rho L'} \tag{1}$$

where N_u is the unfolded background-subtracted yield and A acceptance, ϵ - efficiency (estimated from simulation). ρ - factor that accounts for differences in the efficiency between data and simulation. *L* is not required for the measurements since the cross sections are normalized to the Z region.

Muon Selection

- Dimuon trigger with minimum p_T threshold
- One muon with $|\eta| <$ 2.4 and $p_{T} >$ 14 GeV and one with $p_{T} >$ 9 GeV
- Standart CMS muon identification and quality criteria (number of hits etc.)
- Impact parameter in the transverse plane less then 2mm
- \bullet Angle between the two muons must differ from π by more than 5 mrad
- Dimuon vertex χ^2 probability smaller than 2%.
- Isolation of both muons

$$\begin{split} I_{rel} &= (\sum p_T(tracks) + \sum E_T(had))/p_T(\mu) < 0.15, \text{ where} \\ \sum E_T(had) \text{ - sum of the } E_T \text{ of hadronic deposits and} \\ \sum p_T(tracks) \text{ sum of the } p_T \text{ of the additional tracker tracks} \\ \text{ in cone } \Delta R &= \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.3 \end{split}$$

Electron Selection

- Dielectron trigger with E_T threshold 17 GeV for one of the electrons and 8 GeV for the other
- Candidate is required to be consistent with a particle originating from the primary vertex
- Electron identification criteria based on shower shape and track-cluster matching are applied
- No missing hits in the pixel detector
- Eliminating those electrons for which a partner track consistent with a conversion hypothesis is found
- Isolation

 $(\sum p_T(tracks) + \sum E_T(had) + \sum E_T(em))/p_T(e) < 0.15$, where $\sum E_T(em)$ is the sum of the E_T of electromagnetic deposits, except for electrons with $E_T < 20$ GeV where requirement is less than 0.1

- $|\eta| < 1.44$ or $1.57 < |\eta| < 2.5$
- Electron $E_T > 10 \ GeV$

Acceptance and Efficiency

DY acceptance (blue, filled circles), efficiency (red, open triangles), and their product (black, open squares) per invariant mass bin, for the mu^+mu^- (left) and e^+e^- (right) channels

Background 1

The observed dimuon (left) and dielectron (right) invariant mass spectra within the detector acceptance for data and Monte Carlo events and corresponding data to MC ratio of yields. The FEWZ-POWHEG correction is applied to the Monte Carlo signal events. Electron energy correction is applied to data and simulated events. QCD and ttbar background yields as predicted by data-driven methods.

I. Gorbunov Ilya.Gorbunov@cern.ch

Background 2

The observed dimuon rapidity spectra per invariant mass slice for data and Monte Carlo events.

Normalized rapidity-invariant mass spectrum

The Drell-Yan rapidity-invariant mass spectrum in detector acceptance, normalized to the Z resonance region, $r = 1/\sigma_Z * d^2\sigma/dMdY$.

Comparison with theory expectations

Comparison with theory expectations with various NNLO PDF sets: CT10, HERA, NNPDF2.1, MSTW08, CT10W, JR09, ABKM.

I. Gorbunov Ilya.Gorbunov@cern.ch Study of the Drell-Yan process with CMS.

Normalized invariant mass spectrum

The Drell-Yan invariant mass spectrum in the dimuon (left) and dielectron (right) channel, normalized to the Z region,

 $r = 1/\sigma_Z * d\sigma/dM$, as measured and as predicted by NNLO, for the full phase space.

Combined DY invariant mass

The Drell-Yan invariant mass spectrum in the combined channel, normalized to the Z region, $r = 1/\sigma_Z * d\sigma/dM$ (NNLO).

A_{FB} and the Drell-Yan process

Vector and axial-vector currents in the process $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ lead to P-symmetry breaking and forward-backward asymmetry (A_{FB}) in the number of Drell-Yan lepton pairs:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \tag{2}$$

$$\sigma_F = \int_0^1 \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) \quad (3)$$

$$\sigma_B = \int_{-1}^0 \frac{d\sigma}{d(\cos\theta)} d(\cos\theta) \quad (4)$$

Where θ - is the angle between μ^- and quark momentum in dimuon center of mass frame.

Application of A_{FB}

AFE vs Mass, 1 TeV (Pythia)

Measurement of the A_{FB} can provide:

- Test of the SM in the new energy region
- Provide at the Z-pole a precise measurement of $\sin^2 \theta_W$

Deviations from the SM predictions for A_{FB} may indicate the existence of:

- A new neutral gauge boson
- Quark-lepton compositeness
- Existence of supersymmetric particles

16/23

• Extra dimensions, etc.

In case of BSM physics A_{FB} can help to determine it's nature

Reference System

- On *pp* colliders quark and antiquark directions are unknown
- Dimuon boost direction is assumed to be the quark direction

The Collins-Soper frame where the angle θ^* is defined to be the angle between the lepton momentum and a z-axis that bisects the angle between q and \bar{q} directions is used. This frame reduces the uncertainties due to the transverse momentum of quarks.

$$\frac{d\sigma}{d\cos\theta^{\star}} = A(1 + \cos^2\theta^{\star}) + B\cos\theta$$
(5)

Main sources of background:

- For low masses
 - $Z \to \tau \tau$
 - QCD dijets
- tt for high masses

 A_{FB} measurement lead to a large systematic uncertainty and thus requires correction on the following effects:

- Finite detector resolution and alignment
- QED FSR
- Acceptance
- Unknown quark antiquark direction at the LHC

Selection Cuts for Muon Candidates

Kinematics:

- Oppositely charged global and tracker muons
- $|\eta| < 2.4$ and $p_T > 20~GeV$

Quality requirements:

- \bullet > 10 tracker hits, > 1 pixel hits, > 1 muon hits
- > 2 muon stations
- $\chi^2 < 10$ for the global fit
- Small impact parameter $d_0 < 0.2$
- Remove back-to-back dimuons $\alpha > 2.5$ mrad

Isolation:

Tracker+HCAL isolation

 $(\sum p_T(tracks) + \sum E_T(had))/p_T(\mu) < 0.15$

Selection Cuts for Electron Candidates

Kinematics:

- Oppositely charged electrons
- $|\eta| < 1.444$ or $1.566 < |\eta| < 2.5$
- HLT ECAL L1-trigger requiring an ECAL cluster with minimum E_T between 10 to 17 GeV

Quality requirements:

- Minimum supercluster E_T of 20 GeV
- No missing Tracker hits before the first one
- Reject when a conversion partner track close to the electron
- Using shower shape variables

Isolation:

Isolation using the Tracker and calorimeters

CMS Results with 5 fb^{-1}

arXiv:1207.3973; CMS-EWK-11-004; CERN-PH-EP-2012-187. - 2012. - 29 p.

CMS Results $(\sin^2 \theta_W)$

$$\frac{d\sigma_{pp \to l^+ l^- X}(Y, s, \cos \theta^\star)}{dY ds d \cos \theta^\star} \propto \sum_{q=u, d, s, c, b} [\hat{\sigma}_{qq}^{even}(s, \cos^2 \theta^\star, \sin^2 \theta_W) + D_{q\bar{q}}(s, Y) \times \hat{\sigma}_{q\bar{q}}^{odd}(s, \cos \theta^\star, \sin^2 \theta_W) F_{q\bar{q}}(s, Y)$$
(6)

$$\sin^2 \theta_W = 0.2287 \pm 0.0020(stat.) \pm 0.0025(syst.)$$
(7)

Systematic uncertainties in the measurement of $\sin^2 \theta_W$:

Source	Correction	Uncertaintie
PDF	-	± 0.0013
FSR	-	± 0.0011
LO model (EWK)	-	± 0.0002
LO model (QCD)	+0.0012	± 0.0012
Resolution/alignment	+0.0007	± 0.0013
Acceptance and Efficiency	-	± 0.0003
Background	-	± 0.0001
Total	+0.0019	± 0.0025

Phys. Rev. D 84, 112002 (2011)

- Drell-Yan process is a good probe for new physics
- $\sin^2 \theta_W$, A_{FB} and DY cross section measurements are consistent with the Standard Model predictions within uncertainties