Geometric properties and charged particles yields behind Glauber model in high energy pA and AA collisions

T.Drozhzhova, G.Feofilov, V.Kovalenko, <u>A.Seryakov</u>
Saint-Petersburg State University (Lab. of Ultra-High Energy Physics)

Saint-Petersburg June 28, 2013

Terminology

- Nucleon-participants (N_{part}) nucleons collided at least once
- Nucleon-spectators ($N_{spec}=2A-N_{part}$ =216 $-N_{part}$) nucleons which didn't interact
- Number of nucleon-nucleon collisions (N_{coll})
- Multiplicity of charged particles (N_{ch})

Charged-particle pseudorapidity density at midrapidity normalized to Npart

- AA-collision sequence of nucleon-nucleon collisions.
- Nuclear density distribution of the Woods-Saxon.
- Trajectories of nucleons are linear
- σ_{inel}^{nn} =const \leftarrow from experiments

$$\rho(r) = \rho_0 \frac{1}{1 + exp\left(\frac{r - R}{\alpha}\right)} \qquad \alpha = 0.545$$

$$R = 1.07A^{1/3} fm_{s}$$

$$\alpha = 0.545$$

$$R = 1.07A^{1/3} fm$$

 ρ_0 – nucleon density in the center of nucleus

R – radius of the nucleus

A – atomic number

 α -diffusivity

Energy loss in nucleon collisions due to particle production are not considered

- AA-collision sequence of nucleon-nucleon collisions.
- Nuclear density distribution of the Woods-Saxon.
- Trajectories of nucleons are linear
- σ_{inel}^{nn} =const from experiments

$$\rho(r) = \rho_0 \frac{1}{1 + exp\left(\frac{r - R}{\alpha}\right)} \qquad \alpha = 0.545$$

$$R = 1.07A^{1/3} fm$$

$$\alpha = 0.545$$

$$R = 1.07A^{1/3} fm$$

 ho_0 — nucleon density in the center of nucleus

R – radius of the nucleus

A – atomic number

 α -diffusivity

Number of nucleon-participants (Npart) and nucleon-nucleon collisions (Ncoll)

Energy loss in nucleon collisions due to particle production are not considered

A. Ivanov: Long-range correlations and collectivity in pp and AA collisions, SPSU 2010, 42

Calculated for each nucleon-nucleon collision

(2011) 21002

$$N_{ch}^{AA}(\sqrt{s}) = N_{ch}^{pp}(\sqrt{s}) * N_{coll}$$

A. Ivanov: Long-range correlations and collectivity in pp and AA collisions, SPSU 2010, 42

Calculated for each nucleon-nucleon collision

Models with energy-momentum conservation

- Modified Glauber model
- Non-Glauber MC model (V. Kovalenko)
- HIJING

Models with energy-momentum conservation

- Modified Glauber model
- Non-Glauber MC model (V. Kovalenko)
- HIJING

Modified Glauber model (MGM)

Each nucleon in collisions loses in the inelastic collision the fixed portion (1-k)
of momentum in the center of mass system[1]:

$$p' = kp$$

- This loss of momentum goes to the production of charged and neutral particles
- One can define parameter k by fitting the available experimental data on charged-particle multiplicity yields in AA collisions
- New: Nucleon core
- New: Secondary collisions collisions between nucleons of one nucleus

Total multiplicity of charged particles for the most central AA collisions

[1] B. Back et al. (PHOBOS Collaboration) Comparison of the Total Charged-Particle Multiplicity in High-Energy Heavy Ion Collisions with e+e- and pp/p(anti)p Data // arXiv:nucl-ex/0301017v1 28 Jan 2003

[2] ALICE experimental pseudo-rapidity distribution 2011 APW Guilbaud Maxime & Hans Dalsgaard 16.04.2012

[3] K. Aamodt et al. (ALICE Collaboration) Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at VSNN = 2.76 TeV, arXiv:1304.0347 [nucl-ex], 2013

[1]B. Back et al. (PHOBOS Collaboration) Comparison of the Total Charged-Particle Multiplicity in High-Energy Heavy Ion Collisions with e+e- and pp/p(anti)p Data// arXiv:nucl-ex/0301017v1 28 Jan 2003

[2]ALICE experimental pseudo-rapidity distribution 2011 APW Guilbaud Maxime & Hans Dalsgaard 16.04.2012

[3]K. Aamodt et al. (ALICE Collaboration) Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at VSNN = 2.76 TeV, arXiv:1304.0347 [nucl-ex], 2013

Models with energy-momentum conservation

- Modified Glauber model
- Non-Glauber MC model (V. Kovalenko) see report at the present workshop
- HIJING

Non-Glauber MC model

- Partonic picture of nucleons interaction.
- Every parton can interact with other one <u>only once</u> (contrary to Glauber supposition of constant nucleon cross section)
- Nucleon is participating in the collision if at least one of it's partons collides with parton from another nucleus.
- Parameters of the model are constrained from the p-p data on total inelastic cross section and multiplicity
- Additional requirement is consistent description of the multiplicity in min. bias p-Pb collisions

V. Kovalenko, Phys. Atom Nucl 76 (accepted), arXiv:1211.6209 [hep-ph];

V. Kovalenko, V. Vechernin. PoS (Baldin ISHEPP XXI) 077, 2012, arXiv:1212.2590 [nucl-th]

Systematic uncertainties of the model

Charged multiplicity over Npart

Models with energy-momentum conservation

- Modified Glauber model
- Non-Glauber MC model
- HIJING

HIJING

- HIJING is the MC event generator for hadron production in high energy pp, pA, AA collisions.
- Gives reasonable description of multiplicity yields.

HIJING, R. Xu, W.-T. Deng, and X.-N. Wang, arXiv:1204.1998 Wei-tian Deng, Xin-Nian Wang, Rong Xu Phys.Lett.B701:133-136,2011 B. Abelev et al. (ALICE Collaboration) Phys. Rev. Lett. 110, 032301 (2013)

pA collisions

- Glauber model
- Modified Glauber model
- Non-Glauber MC model
- HIJING

pPb collisions 5.02 TeV

pA collisions

	<npart> at 5.02 TeV ALICE p-Pb MinBias</npart>	<npart> at 200GeV PHOBOS d-Au MinBias</npart>	<npart> at 2.76 TeV ALICE Pb-Pb 0-5% centrality</npart>
Glauber	7.87 (A.Ser) 7.9±0.6 (ALICE[1])	8.4 (A.Ser)	408 (A.Ser)
MGM	4.3±0.3	5.0±0.3	397
Non-Glauber	6.2±0.6		
HIJING	6.5	8.1±0.7 [2]	

^[1] B. Abelev et al. (ALICE Collaboration) Phys. Rev. Lett. 110, 032301 (2013)
[2] B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett.93, 082301 (2004)
[3] AMPTJ. Albaete, N. Armesto, R. Baier, et al., Int. J. Mod. Phys. E 22, 1330007 (2013), arXiv:1301.3395

Corrections

Charged-particle pseudorapidity density at midrapidity normalized to Npart

MinBias	<npart> at 5.02 TeV ALICE p-Pb</npart>
Glauber	7.87 (A.Ser) 7.9±0.6 (ALICE)
MGM	4.3±0.3
Non- Glauber	6.2±0.6
HIJING	6.5

Conclusions

- MGM, non-Glauber, HIJING and AMPT all these models gives smaller values of <Npart> compared to Glauber
- This indicates considerable stopping of nucleons in AA and pA interactions at the LHC energies.

MinBias	<npart> at 5.02 TeV ALICE p-Pb</npart>	
Glauber	7.87 (A.Ser) 7.9±0.6 (ALICE)	
MGM	4.3±0.3	
Non-Glauber	6.2±0.6	
HIJING	6.5	

Backup

pPb 5.02 TeV

Backup

Backup

PbPb 2.76 TeV

For the most central collisions:

$$N_{part}^{MMG} \cong N_{part}^{SMG}$$

$$N_{coll}{}^{MMG} = 0.35 N_{coll}{}^{SMG}$$