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1 Historical Introduction and motivation of the decay problem

For a short period after publication of the revolutionary paper by Gamow [3], the question on mathematical description
of the decay of the wave packet seemed almost clear and requiring only a minor brushing up. To fit accurately the
Gamov’s formalism into the frames of “regular” Quantum Theory of that time, Weisskopf and Wigner suggested to
include minor imaginary corrections into the eigenvalues in a hope to rectify the formula for the evolution taking into
account the decay. It fitted the idea of the spectral nature of resonances, but, unfortunately was non-compatible with
the basic requirement of self-adjointness of the Hamiltonian involved. The competing point of view was formulated
by Fock and Krylov in an attempt to fit the description of resonance dynamics into the evolution in the subspace
of the continuous spectrum. In [5] they based on the representation of the quantum evolution via contour integral
of the resolvent of the Hamiltonian, which already included, in implicit form, an idea on the non-spectral nature
of resonances. Further development of this technique by L. Halfin in [7] revealed non-exponential behavior of the
Schrödinger wave function for large time. Since that presence of non-exponential terms is considered as a reliable
theoretical prediction, see [8], just not yet confirmed by experimentalists.

In this paper we aim on revamping of the quoted proposals with the idea to find a point of view which would permit
for the ends to meet one another. Our program does not eliminate the above theoretical analysis [5, 7], but reduces
the question on the decay to the discussion of choice of the measurement tool that would deliver the data from the
quantum system to the observer. In this paper, we consider the case when the role of the “delivering tool”is played
by the electromagnetic field, or generally, by another zero-mass field.

Probably scattering of photons by a superconductor can be considered as a simplest relevant example. Indeed, due to
the Meissner effect, magnetic field cannot penetrate the super-conducting medium. The theoretical treatment of the
phenomenon by Ginzburg and Landau (see [27]) is based on acquiring a non-zero mass by photons with the role of
Higgs boson played by the Cooper pair. Hence, both contradictory requirements of zero-mass in the outer space, and
the non-zero mass in the inner space are satisfied. Thus, we may hope to “put both ends together” in the problem .

Consider a compact domain in R3 filled with a superconductor. The Lagrangian of the electro-magnetic field in the
outer space is represented in terms of the field A,- the electromagnetic potential,- as

1

4

∫
Ω̂s

F+F, where F = dA,

(see for instance [28]). Here dA is an exterior differential of the field A, and F+F is a 3-form obtained as an exterior
product of 2-form F and its (hermitian) complement. In the boundary area Ωδ of the superconductor, due to the
interaction of the electromagnetic field with the boson field of Cooper pairs, the Lagrangian of the electromagnetic
field is modified by adding massive terms containing the product of the electromagnetic field and the field of Cooper
pairs see [28]. The depth of penetration of the magnetic field into the superconductor is estimated by the size δ of
the Cooper pair, which is normally relatively large, greater than 10−7 cm. If the energy of photons does not exceed
the Bardeen-Cooper-Schrieffer gap (the BCS - gap), the field of Cooper pairs can be eliminated and the scattering
of photons by the superconductor can be treated in the one-body photon’s sector, similar to the scattering problem
in the classical Quantum Mechanics. In the one-body photon’s sector, the scattering problem in vacuum Ω̂s can
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be reduced to the wave equation (the Klein-Gordon-Fock equation with zero mass). Similarly, the problem in Ωδ
is also reduced to the Klein-Gordon-Fock equation with non-zero mass. The corresponding scattered waves satisfy
smooth matching conditions on the common boundary of Ω̂s and Ωδ. If the domain Ωs is filled with a superconductor,
then the electromagnetic potential should vanish on the common boundary ∂Ωs ∩ ∂Ωδ. Thus, one can consider, as
a representative model, the Klein-Gordon-Fock equation in R3 = Ωs ∪ Ωδ ∪ Ω̂s assuming that the compact domain
Ωs ∪ Ωδ is filled with the superconductor, and Ωv is vacuum. The mass is zero on Ωv, but is non-zero on the δ-thin
shell Ωδ, separating the inner and the outer spaces. While Ωs is filled by the superconductor, the electromagnetic
field does not penetrate Ωs, so that we can apply a zero boundary condition on ∂Ωs ∪ ∂Ωδ. Then the spectrum of the
Klein-Gordon-Fock operator in Ωδ is discrete, and one on the complement Ωv is continuous. Hence, the scattering in
the small energy region, for energy not exceeding the creation threshold of the Cooper pair, has a resonance character.
The scattering matrix of the problem is unitary and analytic with respect to the energy on the complement of the
discrete set of resonances. For small values of the added energy E′ = E −mc2, E′ << mc2, the evolution on Ωδ can
be described in the Schrödinger form:

E = c
√
m2c2 + p2 ≈ mc2 +

p2

2m
.

Indeed, considering on Ωδ the Klein-Gordon-Fock equation with non-zero mass

~2

c2
∂2ψ

∂t2
=
[
~2∆−m2c2

]
ψ,

permits to split off the fast oscillations by the unitary transformation ψ = e−imc
2~−1tφ :

∂ψ

∂t
=

[
∂φ

∂t
e−imc

2~−1t − imc2~−1φ e−imc
2~−1t

]
≈ − imc

2

~
φ e−imc

2~−1t,

∂2ψ

∂2t
≈ −

[
2imc2

~
∂φ

∂t
+
m2c4

~2
φ

]
e−imc

2~−1t, (1)

which yields, for small momenta, the Schrödinger equation for φ

i~
∂φ

∂t
+

~2

2m
∆φ = 0. (2)

A nice feature of this equation is the possibility to interpret |φ|2 as the probability density for the particle to bound
at the location marked by space coordinates (x, t) of the wave function φ(x, t), with the total probability to find the
particle in the space is conserved

∫
|φ(x, t)|2dx = const. But the formal use of it in the large time scale would give a

non-exponential decay of the wave packet of the magnetic field. Moreover, vice versa, a straightforward analysis based
on the Lax-Phillips scattering arguments for the zero-mass field in Ωv and the non-zero mass in the Klein-Gordon-Fock
equation on Ωδ shows an exponential decay, and even reveals the spectral meaning of resonances.

Another interesting example of the exponential decay can be connected with a similar problem for a thin compact
super-conducting shell Ωδ separating the inner vacuum domain Ωs from the outer domain Ω̂s. Considering the one-
particle scattering problem with smooth matching conditions on the inner and the outer components of the boundary
of the shell, we again obtain a Lax-Phillips Scattering System. Taking into account the non-zero mass of the field on
the shell, we see that the low-energy resonances arise from the discrete spectrum of the Dirichlet problem for the Klein-
Gordon-Fock equation on the shell. A relevant physical phenomenon was observed on a multi-layer shell constructed
of carbon nano-structures (see, for instance, [40]). In that paper, the resonance pumping phenomenon was discovered.
Our previous analysis of the super-conducting shells allow us to formulate a question on the superconduction nature
of the carbon shell in the experiment, which would explain the nature of pumping based on the classical Lax-Phillips
resonance scattering (see next section).

The fields with nonzero mass play an important role in the transition from the Klein-Gordon-Fock evolution to the
Schrödinger evolution. One may guess that other possible experiments revealing an exponential decay in quantum
physics can be considered with involvement of some scalar boson fields playing the role of the Higgs field in the
corresponding problems. This gives us a pretext to underline a unique role of measurements based on zero-mass fields
in quantum physics. In combination with the symmetry breaking and mass creation, these measurements may help
to explain the exponential decay and resonance pumping in these experiments.
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2 A 1D example of scattering of zero-mass particle

In the 1D example considered in this section, the role of the delivering tool is played by a massless field governed by
the wave equation, a 1D analog of photons.

Some of the basic mathematical tools that we use to interpret the exponential decay are already prepared by math-
ematicians. Similar situation was observed in Quantum Mechanics, where an exact understanding of selfadjointness
(the physicists required for the Schrödinger theory by mid twenties ) was already prepared by Hermann Weyl in 1916,
see an adapted text in [9]. In our treatment of the exponential decay, we use analysis of the acoustic scattering problem
prepared by Peter Lax and Ralph Phillips in the 60-s of the last century (see [10]). Actually, Lax and Phillips suc-
ceeded to overcome, without even noticing it, the horror physicists survived when they discovered that the evolution
of a quantum system with positive Hamiltonian L may be generated by another operator L, which has both negative
and positive branches of spectrum. This phenomenon, discovered by Dirac in the 30-s, was rigorously analyzed by
Hegerfeld in his prominent theorem [11] only at the end of previous century. Hegerfeldt was able to show that the
evolution of a quantum system with positive Hamiltonian always has “infinite tails”. For instance, the component of
the 1D acoustic evolution in the positive frequency sector is represented by D’Alembertian waves that admit analytic
continuation into the upper half-plane, and thus cannot vanish on a set with positive measure on the real axis. This
was an essential step to legitimizing the non-semi-bounded generators of evolution. Another example of a non-semi-
bounded generator is given by the supercharge in super-symmetric quantum mechanics. So, by the end of previous
century, the trick suggested by Lax and Phillips would not look surprising any more. But in the mid-century, it was
probably still too special and suspicious for physicists: Lax and Phillips represented the evolution of the Cauchy data
u ≡

(
u, c−1ut

)
of the wave equation c−2 utt −∆u = 0 as a unitary transformation in the energy-normed space of the

Cauchy data u ≡ (u,ut)

‖ u ‖2=
1

2

∫
Ωout

[
c−2|ut|2 + |∇u|2

]
dx3. (3)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
It was shown in [10] that the unitary evolution group eiLt ≡ Ut : u(0) −→ u(t) is generated by a non-semi-bounded
operator L, an analog of the Dirac operator, that can be represents as an appropriate block operator matrix

1

i

∂u

c∂t
= i

(
0 −1
−∆ 0

)
u ≡ Lu, L2 = −∆. (4)

It turns out that (i) the generator L is self-adjoint in the energy-normed space E of all Cauchy data with finite energy,
(ii) the spectrum of L in the energy-normed space of Cauchy data supported by the complement Ωout of a compact
domain Ω ⊂ R3 is absolutely continuous and it fills in the whole real axis (iii) the unitary group Ut has incoming and
outgoing subspaces Din, Dout that are invariant with respect to the positive and negative semi-groups Ut and U−t,
t ≥ 0, respectively. In fact, these subspaces consist of the data vanishing on the positive and negative light-cones
respectively

UtDout ⊂ Dout, t ≥ 0, UtDin ⊂ Din, t ≤ 0, (5)

and Cauchy data of the incoming and outgoing waves on the complement R3\Ω ≡ Ωout are mutually orthogonal with
respect to the energy dot-product.

Fortunately, by that time the question on description of invariant subspaces of an important isometry group in the
Hilbert space was already solved by Arno Beurling [12] with no connection to the above acoustic problem. Beurling
considered in 1947 the shift operator T (right translation) in the Hilbert space l2 of all complex square-summable
sequences ~x = (x0, x1, x1, x2, x3, . . .)

(x0, x1, x1, x2, x3, . . .)
T−→ (0, x0, x1, x1, x2, x3, . . .) ≡ t~x.

One of Beurling’s problems in [12] was the description of all invariant subspaces D of T : TD ⊂ T . Obviously, the
space of all sequences,

∑
s |xs|2, with (several) zeros on the first positions, like (0, x1, x1, x2, x3, . . .), is invariant with

respect to T . What are the others invariant subspaces? It is not that easy to answer the question using the language
of the l2 space. But if we change the language by translating the question into the one of Complex Analysis and
substituting the sequences by the functions analytic in the unit disc B = {ζ : |ζ| < 1} :

~X(x0, x1, x1, x2, x3, . . .)
T−→ x0 + ζx1 + ζ2x2 + ζ3 x3 + . . . ≡ x(ζ) ≡ T~x,
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the problem of the description of invariant subspaces becomes almost trivial, and this is the beauty so that we get a
marvelous chance to view the problem from a completely new point, substituting T by the multiplication operator :
T~x −→ ζx(ζ). Indeed, this transformation is a unitary mapping of l2 onto the class of all analytic functions on the
unit disc, with square integrable boundary data on the circle Γ = {ζ : |ζ| = 1}. This is the celebrated Hardy class H2

+:
a subspace of L2(Γ) consisting of all functions which admit an analytic continuation onto the unit disc equipped with
the norm

1

2π

∫
Γ

|x(eiθ)|2dθ = |~x|2l2 .

The subspace of all sequences (0, x1, x1, x2, x3, . . .), with zero on the first position, is transformed into the class
ζH2

+ of all analytic functions in the unit disc vanishing at the center of the disc. It is clear now that all subspaces

of functions vanishing at an inner point a are invariant with respect to T and are represented as a−ζ
1−āζH

2
+. Of

course, all subspaces of the analytic functions in the unit disk generated by finite or infinite Blaschke products
Π~a(ζ) ≡ Πs

as−ζ
1−āsζ

as
|as| , with convergent series

∑
s(1 − |a2

s|) < ∞, are invariant subspaces Dout = Π~aH
2
+ of the shift

operator T : TΠ~aH
2
+ = ζΠ~aH

2
+ ⊂ Π~aH

2
+. Some uniform limits of the Blaschke products give rise to so called

singular inner functions Θµ(ζ) on the unit disc. They are represented via positive singular measures µ supported

by the unit circle as Θµ(ζ) = exp
∫
|η|=1

ζ+η
ζ−ηdµ(η). The functions Θµ also produce invariant subspaces ΘµH

2
+ of the

shift, [14, 13]. The full answer to the question about the structure of the outgoing invariant subspaces of the shift ,
ζDout ⊂ Dout ⊂ H2

+ , is given by the formula
Dout = Θµ Π H2

+.

Similarly, the problem of the description of the invariant subspaces of the left shift Ut, t < 0, in the space of all
sequences x = (. . . ,−3, −2, −1) can be considered with the use of the Hardy class H2

− of analytic functions on the
complement to the unit disc. These subspaces can be constructed from the singular inner factor and the Blaschke
product Θ,Π based on the symmetry principle Π̄(ζ) = Π(ζ̄−1) as:

Din = Θ̄µ Π̄ H2
−.

It is a remarkable fact, that the positive semi-group
{
ζl
}
, l = 0, 1, 2, 3, . . . , of the unitary group ζl on L2(Γ), restricted

to the co-invariant subspace H2
+ 	Dout ≡ K = H2

+ 	ΠH2
+ ≡ K proves to be a contracting semi-group

PKζ
l

∣∣∣∣
K
≡ Zl, l = 0, 1, 2, 3, . . . ,

with the generator Z. Indeed, since ζPH2
+
∈ PH2

+
⊥K, for l = 2, we have:

Z2 = PKζ
2PK = PKζ[PH2

+
+ PK + PH2

−
]ζPK = PKζ[PH2

+
+ PK ]ζPK = PKζPKζPK = Z2.

Moreover, the eigenvalues of the generator Z coincide with the zeros as of the Blaschke product Π~a and the correspond-

ing eigenfunctions are ψs[ζ] = Π~a(ζ)
as−ζ . In addition, the bi-orthogonal system of eigenvectors of the adjoint operator Z+

is constituted by the reproducing kernels φs(ζ) = 1
1−āsζ , so that the spectral decomposition of Z, with simple discrete

spectrum, is given by the interpolation series

f =
∑
s

Π~a(ζ)

as − ζ
f(as)
dΠ~a

dζ (as)
, f ∈ K

Similar explicit formulae are also true for the continuous shift of the real axis f(x)→ f(x− t) ≡ Utf . The role of the
incoming and outgoing subspaces Din,out for the continuous shift group in the spectral (Fourier) representation Ut ≡
eipt is played by the Hardy classes of square-integrable functions H2

± ⊂ L2(R) that admit an analytical continuation
to the upper and lower half-planes, respectively. In particular, the subspaces ΠH2

+ generated by the Blaschke products
in the upper half-plane are invariant with respect to the (continuous) shift in the Fourier representation. In general,
the invariant subspaces of the positive semi-group Ut, t ≥ 0 are parameterized by the inner functions ΘΠ in the
upper half-plane as ΘΠH2

+ ≡ Dout, and, for the negative semi-group, the corresponding representation is of the form
Θ̄Π̄H2

− = Din. The restriction of the positive semi-group of the continuous shift onto the orthogonal complement of
L2(R)	 [Din⊕Dout] ≡ K of the “incoming” and “outgoing” subspaces Din,out in L2(R) ≡ E , with K the corresponding
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co-invariant subspace, is a strongly-continuous Lax-Phillips semi-group PKUt
∣∣
K =: eiBt, t > 0, of contractions generated

by a dissipative operator B. The spectral properties of the generator B are completely determined by the scattering
matrix S ≡ ΘΠ associated with the unitary group Ut and the corresponding unperturbed group U0

t which is a
colligation of the components of the evolution on the reduced space E0 =: Din⊕Dout, see [19]. Again, similarly to the
above discrete case, the spectral analysis of the Lax-Phillips semi-group can be done in an explicit form in terms of
the corresponding inner function ΘΠ, the scattering matrix.

Here is another source of beauty: the duality between the geometrical problem on invariant subspaces and relevant
spectral questions for contracting and dissipative operators and classical questions on interpolation and approximation
from the theory of Analytic functions. Unfortunately, the simple calculations above never appeared in elementary
courses of Complex Analysis for physicists or engineers.

The question on exponential decay for the acoustic problem on the complement of the scatterer Ω in a large ball BR
served as a central motivation for [10]. This problem is reduced to the study of spectral properties of the generator
B of the Lax-Phillips semi-group: if all eigenvalues of the generator B are situated strictly in the upper spectral
half-plane =λ > β > 0, then the Lax-Phillips semi-group admits an exponential estimation

‖ eiBtu0 ‖≤ Ce−β
′t ‖ u0 ‖, t ≥ 0,

for any β′ < β, with an appropriate absolute constant C, depending on β′. Highly nontrivial analysis was developed
to prove the bound =λ > β > 0, λ ∈ σB, for compact obstacles Ω that satisfy the exterior cone condition. Generally,
the whole machinery, developed in [10] to reach the quoted exponential estimate for acoustic scattering, is based on
Harmonic Analysis of matrix-valued analytic functions u ∈ L2(E). It was motivated by the problem of description
of all invariant subspaces of the standard shift groups u(p) → eiptu(p) ≡ u(p, t) in the space L2(E) of vector-valued,
square-integrable functions u(p) ∈ E on the real axis −∞ < p <∞. In fact, the above evolution group Ut is unitarily
equivalent to the shift group, and the incoming subspaces of the evolution group Ut are equivalent to subspaces of
the Hardy class H2

−(E) ⊂ L2(E) of all square integrable functions admitting an analytic continuation into the lower
half-plane =p < 0, see [14]. The outgoing subspaces of the evolution group are unitarily equivalent either to the Hardy
class H2

+(E) ⊂ L2(E), or to subspaces ΘH2
+ of the Hardy class defined by the inner factors Θ, which are unitary on

the real axis and admit an analytic continuation into the upper half-plane =p > 0. In the case when Π is a Blaschke
product

Π(p) =
∏
l

[
p− pl
p− p̄l

θlPl + P⊥l

]
,

with appropriate phase factors θl and projections Pl, P
⊥
l = I − Pl, the quantities p̄l coincide with the eigenvalues of

the adjoint generator B+, and the eigenfunctions of the adjoint generator, in the ”incoming” spectral representation
of the original unitary group Ut in the energy-normed space E , coincide with the reproducing kernels ϕl = el

p−p̄l . The

bi-orthogonal system of eigenfunctions of the original operator B is formed as ψl = Θ(p)
p−pl e

+
l , with e+ ∈ ker Θ(pl),

see [13, 15, 16]. In the general case, these facts are derived from an extended theory of the “functional model”
(see, for instance, [13, 15, 16]), which covers the Lax-Phillips generators with absolutely continuous spectrum. The
modern theory of the Functional Model allows one to reduce all the questions of the spectral theory of the Lax-Phillips
semi-group to the relevant questions of the theory of analytic functions and/or Harmonic Analysis.

The crucial role of the theory of analytic functions for the theory of nonselfadjoint operator was predicted by M.
G. Krein in his talk at the Moscow International Congress of Mathematicians in 1966, (see, [17, 18]). The problem
on exponential Decay should be connected, from the point of view of mathematicians, with the list of problems on
spectral analysis of dissipative or contracting operators. In the simplest case of a one-dimensional acoustic problem
that we discuss in section 3, most of the above facts of spectral analysis of the Lax-Phillips semi-group are established
via straightforward calculations.

It must be noted that the first attempt to bridge the general theory of nonselfadjoint (in particular, dissipative)
operators with relevant physics was undertaken by M. S. Livshits [20]. He was motivated by the observation that the
problem of analysis of nonself-adjoint details of complex physical systems appears each time we attempt to substitute a
whole complex system by a simpler surrogate system with similar properties. In [20], M. Livshits suggested a simplified
model of a waveguide attached to a resonator, produced by substitution of a nonself-adjoint detail of the original system
by a ”triangular model”, which, at the time was the only available general model of a dissipative operator. Based on
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Livshits’ discovery, a new, more convenient “functional model” was suggested by B. Sz.-Nagy and C. Foias (see [13]).
But the role of the scattering matrix as a basic parameter of the functional model was not yet recognized at that
stage. Few years later, a seminal paper [19] provided an important connection between the Lax–Phillips scattering
theory and the Sz.-Nagy–Foias Functional Model, see [10, 13]. One of he most important achievements of the theory
was to give the spectral meaning to resonances, which never happened in the pure quantum mechanical treatment of
the problem of the exponential decay.

All these important events succeeded just inside Mathematics. Physicists did not see, until now, any connection
between an elegant analysis used by the community of analysts in their study of the acoustic problem or the corre-
sponding abstract shift groups. One of the reasons for that is that the unitary group generated by the semi-bounded
Schrödinger operator does not have orthogonal incoming and outgoing subspaces, as it follows from the Hegerfeldt
Theorem [11].

Nevertheless, an elegant analysis provided by the Lax–Phillips approach served as a motivation for the further research
in a close area followed by publishing numerous physical papers. In particular, in [22, 23], the standard Hilbert space
L2 of square-integrable functions was supplied with additional structures transforming it into a space similar to the
one used in [10]. In [24], a model Hamiltonian is constructed and an artificial analytic scattering matrix is suggested.
In the case studied by Horwitz and Piron, the most important property of the model system in the Lax-Phillips
approach, the orthogonality of the incoming and outgoing subspaces, was just formally derived from the analyticity
of the constructed model scattering matrix. In recent papers, H. Baumgärtel with coauthors attempted to match
the quantum mechanical condition of positivity of the generator of the evolution with spectral interpretation of the
resonances to give the spectral meaning to the corresponding ”Gamov vectors” (see [25, 26]). Unfortunately, on this
way all essential advantages of the Nagy-Foias functional model such as explicit expressions for the eigenvectors of the
Lax-Phillips semigroup, the Gamov vectors, completeness of the corresponding bi-orthogonal system, and the relevant
spectral decomposition were lost, because of the absence of natural, physically motivated, orthogonal pair of incoming
and outgoing subspaces. Besides, no physical consequences were derived in [25, 26] from the proposed matching of
Quantum Mechanics with the corresponding analog of the Lax-Phillips theory. This most likely suggests that the
scheme proposed in the papers is sentenced, according to the Arnold algorithm, to remain, for another period inside
mathematics until all these details are completed.

Contrary to that, in our version of bridging standard Quantum Mechanics with the Lax-Phillips theory, instead of
inventing an artificial construction added on top of the standard quantum space of all square-integrable functions in
order to imitate the Lax-Phillips structure, we consider excitations of the zero mass field playing the role of a channel
passing information to the outside observer on the inner quantum system. Although the evolution of the “inner” the
Quantum System, for a finite time, can be represented in the Schrödinger form as eiLt with a positive Hamiltonian
L, the study of its asymptotics as t → ∞ requires a treatment based on the complete zero-mass field evolution.
The substitution of the Lorenz invariant picture by the Schrödinger picture of evolution can only be done under
the “positivity of mass” condition (see next section). It is not trivial to match this requirement with the zero-mass
condition for the Lax-Phillips scheme.

Thus, the central question in our treatment becomes the matching of the Lax-Phillips scattering scheme with Quantum
Mechanics with the positive Hamiltonian, that is the question on the physical realization. And again, the answer to
this question is not general and does not look obvious.

3 An example: Analysis of the model of Decay observed
in a 1D analog of the electro-magnetic experiment.

Our review of the Lax-Phillips technique and the basic results presented in section 1 shows just the tip of the iceberg.
The rest of the estimations, The Complex and Harmonic Analysis remained under cover. In the previous sections of
this paper we provided only a sketch of the results that could be obtained by the classical Lax-Phillips technique for
the corresponding multi-dimensional decay problem. We now aim at the simplest 1D model, for which all analytical
details of the Lax-Phillips resonance scattering theory can be derived explicitly with the use of standard tools of spectral
theory of ordinary differential operators. Note that the 1D model of photons was legitimized by [30]. We consider
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here a 1D model of scattering of 1D photons by a superconducting shell Ωδ in a form of a zero-mass Klein-Gordon-
Fock equation with quantum well potential supported by (−a,−δ) with zero boundary condition at the endpoint
x = −a. The potential on the interval (−δ, 0) ≡ Ωδ is determined by the mass of photons in a thin surface layer of the
superconductor, presented by a rectangular potential barrier. The quantum well is attached to the positive half-axis
(0,∞):

c−2utt −
∂2u

∂x2
+ VH(x)u = 0, −a < x <∞, u(−a) = 0. (6)

Instead of the super-conducting layer Ωδ supporting the non-zero mass photon’s field, we may assume that the potential
has a a repulsing singularity Hδ(x), H > 0, at the origin, VH(x) = V (x) + Hδ(x), and a smooth real component
V (x), −a < x < 0. This δ-singularity emulates the condition of domination of the energy of photons by the BCS
gap and plays the role of a high potential barrier that separates the inner part and the outer parts Ωs ≡ (−a, 0),,
Ω̂s = (0,∞), with the zero-mass field in the outer vacuum space x > 0 and on the inner vacuum space (−a, 0).
Changing the ”height” H of the barrier, one can approach the limit H =∞, which corresponds to the zero boundary
condition u(0) = 0 decoupling the inner and the outer subsystems. The role of excitations in the model is played by the
one-dimensional “photons” in the outer space x > 0. The corresponding excitations inside the well [−a, 0] = Ωs are not
observed independently, but only due to their connection to the photon’s field in vacuum [0,∞) via the excitations on
the shell. Following our proposal in previous section, we introduce the slow varying component ψ of the wave-function
u = ψ(x) e−imc

2 ~−1t on the shell and assume that the variation of the kinetic energy associated with slow variables
d2

dt2 c
−2 ‖ ψt ‖2 is relatively small and can be neglected so that we get the Schrödinger equation with ω = mc2/~ (see

(1) in the previous section). The corresponding Schrödinger equation describes the evolution of the slow component
of the excitation’s field in the quantum well, passed from the evolution inside the well to the evolution of the 1D
photon’s field outside. Analysis of the wave-packets based on the Schrödinger equation (6), derived by the separation
of the fast and slow variables, reveals a polynomial decay rate caused by the branching point at the origin p = 0 in
the plane of the spectral parameter (see [7]). This theoretical proposal was never confirmed experimentally (see the
corresponding discussion in section 2). We guess that the realistic decay rate can be theoretically extracted from the
original equation (6) based on the analysis of the corresponding Lax-Phillips dynamics (see below and more technical
details in [10, 15]).

Notice, first of all, that the basic Hilbert space associated with the Schrödinger equation is the space of all square-
integrable functions L2(−a,∞), while the Hilbert space associated with (6) is an energy-normed space E of the Cauchy
data u = (u, c−1ut) ≡ (u0, u1),

‖ u ‖2E=
1

2

∫ ∞
−a

[
|ux|2 + VHuū+ c−2|ut|2

]
dx. (7)

The basic equation (6) can be represented as a first order equation for the vector of Cauchy data, with a symmetric
(self-adjoint) generator L:

1

i c

∂u

dt
= i

(
0 −1

− d2

dx2 + VH 0

)
u. (8)

The evolution (8) of the Cauchy data is defined by the unitary group exp iLt ≡ Ut, which has an orthogonal pair
of incoming and outgoing subspaces Din,out, consisting of Cauchy data {(u, ux)} , {(u, −ux)} of the corresponding
d’Alembertian waves u(x ± ct), and supported by the positive half-axis 0 < x < ∞, see [10]. The orthogonal
complement K ≡ E 	 [Din ⊕ Dout], the corresponding co-invariant subspace , consists of the Cauchy data supported
essentially by the quantum well [−a, 0] and equal to u = (const, 0) on the half-axis (0,∞). It is very easy to derive
the semi-group property of the evolution reduced onto the co-invariant subspace-the Lax-Phillips semi-group:

PK eiLt
∣∣∣∣
K
≡ eiBt, t > 0, (9)

and calculate the corresponding generator as

B = i

(
0 −1

− d2

dx2 + VH 0

)
with the zero boundary condition at the end x = −a and the impedance boundary condition at the origin[
u1 + du0

dx

] ∣∣∣∣
x=+0

= 0. Similarly, the generator −B+ of the adjoint semi-group e−iB
+t is determined by the same

7



differential expression with the dual impedance boundary condition at the origin
[
u1 − du0

dx

] ∣∣∣∣
x=+0

= 0. Both the

generators B,−B+ are dissipative operators (see [10]), with discrete spectrum. It is important that the spectrum of B
is defined by the zeros of the corresponding Lax-Phillips scattering matrix, the resonances.

Indeed, the incoming and outgoing subspaces Din,out of the Cauchy data are constituted by the Cauchy data of
D’Alembertian waves Φ(x± ct) supported by the positive half-axis. Then the spectral images of them with the use of
the incoming scattered waves Ψin define the rescription Jin of the problem in the “incoming ” spectral representation
of L, attributing Din to the Hardy class H2

− of all square-integrable functions admitting an analytic continuation to
the lower half-plane =p < 0 of the spectral parameter p. This spectral representation is defined by the incoming
scattered waves of L

Ψin(x, p) =

( 1
ip

1

)
ψin(x, p), (10)

where ψin(x, p) is the solution of the equation −d
2ψin

dx2 + VH(x)ψin = p2 ψin, satisfying the zero boundary condition at
the end x = −a and matching the scattering Ansatz

ψin(x, p) = eipx + S(p)e−ipx, x > 0, ψout(x, p) = ψ̄in(x, p)

at the origin to an appropriate solution ϕin,out(x, p) of the original equation −d
2ϕ
dx2 + VH(x)ϕ = λϕ ≡ p2 ϕ on the

well (−a, 0), and also satisfying the zero boundary condition at the end x = −a : ϕ(−a, p) = 0. The corresponding
Weyl function mH(λ) ≡ ϕ′(0, p) ϕ−1(0, p) + H = m(λ) + H has a negative imaginary part in the upper half-plane
=λ > 0. The stationary scattering matrix is found from the matching condition at the origin, taking into account the

δ-function :[ψ′]

∣∣∣∣
0

−Hψ(0) = 0:

S(p) =
ip−mH(λ)

ip+mH(λ)
, λ = p2. (11)

This function is analytic in the lower half-plane =p < 0, and it has a sequence of zeros ps, =ps < 0, which is symmetric
with respect to reflection ps = −p̄−s. The scattered waves ψ obtained by matching ψin, ψout to φin,out form a complete

orthogonal in L2(−a,∞) systems of eigenfunctions of the spectral problem −d
2ψ
dx2 + V (x)ψ = p2 ψ, ψ(−a, p) = 0 in

L2(−a,∞):

δ(x− s) =
1

2π

∫ ∞
0

ψ(x, p)ψ̄(s, p)dp,

and the corresponding eigenfunctions Ψ(x, p) =

( 1
ip

1

)
ψ(x, |p|), −∞ < p < ∞, play the role of eigenfunctions of

the generator L of the evolution of the Klein-Gordon-Fock equation, LΨin(∗, p) = pΨin(∗, p). The spectrum of L is
(−∞,∞). The incoming spectral representation

u
Jin−→ 〈Ψin,u〉E =

1

2

∫ ∞
0

[
Ψ̄′0,in(x)u′0(x) + VH(x)Ψ̄0,in(x)u′0(x) + Ψ̄1,in(p, x)u1(x)

]
dx = Jinu (12)

transforms the incoming subspace Din into the Hardy class H2
− of square-integrable functions on the real axis and

the outgoing subspace Dout gets mapped to the invariant subspace S̄(p)H2
+ of the positive shift semi-group f(p) →

eiptf(p), t > 0. Thus, the co-invariant subspace K is transformed into H2
+ 	 S̄H2

+ ≡ K, and the Lax-Phillips semi-

group becomes PKe
ipt

∣∣∣∣
K

≡ eiBt. In this representation, the spectrum of the generator B = JinBJ +
in coincides with

the zeros p̄s of S̄(p̄), and the eigenfunctions are just given by

φs ≡ S̄(p̄)
√

2|=ps|(p− p̄s)−1. (13)

Together with the eigenfunctions
φ+ ≡

√
2|=ps|(p− ps)−1 (14)
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of the adjoint generator B+, they form a complete bi-orthogonal system in K. So that

B =
∑
s

φs〉
ps

〈φs, φ+
s 〉
〈φ+
s and eiBt =

∑
s

φs〉
eip̄s t

〈φs, φ+
s 〉
〈φ+
s . (15)

Here, 〈φs, φ+
s 〉 =

∏
r 6=s

1−p̄s/p̄r
1−ps/pr ≡ Πs. Recall that the system {φs} , {φ+

s } is similar to an orthonormal basis if and only

if the Carleson condition (see [15]) is fulfilled:

inf
r

∏
s6=r

|ps − pr|
|p̄s − pr|

> 0.

Under the Carleson condition there exists an orthogonal basis {νs} that is connected with the normalized families
{φs} , {φ+

s } by an invertible transformation:

φs = T νs, φ+
s =

[
T −1

]+
νs, with ‖T ‖ ,

∥∥∥[T −1
]+∥∥∥ <∞.

Unfortunately, the Carleson condition is never fulfilled for potential of the type VH . However, this condition may be
fulfilled for the corresponding polar problem with the potential substituted by a density, a coefficient in front of the
spectral parameter, and the non-stationary equation ρ/c2 utt + uxx = 0.

Notice that the eigenvalues p̄s, ps of B, B+ depend on the parameterH and approach the eigenvalues of the Schrödinger

operator LH = −∂
2u
∂x2 + VH(x) in L2(−a, 0) with zero boundary conditions at the ends −a, 0. The resonances p̄s, the

zeros of the Lax-Phillips Scattering matrix SLP = [SH(p)]
−1

,

SLP (p) =
ip+ [m(λ) +H]

ip− [m(λ) +H]
, with λ = p2,

can be found from the equation ip+ [m(λ) +H] = 0. For large values of H, the resonances are situated in the upper
half-plane near the poles of m(λ), the eigenvalues λDs of the Dirichlet spectral problem on the interval (−a, 0):

ip+H +
qs

λ− λDs
+ bs = 0.

Denoting λDs = [pDs ]2, we have the approximate expression for resonances ps approaching pDs as H → +∞,

ps ≈ pDs +
qs(ip

D
s +H)

2pDs (|pDs |2 + (bs +H)2)
≈ pDs +

qs
2pDs H

+
iqs

2H2
. (16)

The eigenfunctions φs, φ
+
s of the generators B, B+ of the Lax-Phillips semi-group are calculated in spectral repre-

sentation of the generator L of the evolution of the Klein-Gordon-Fock equation according to (13,14) by the inverse

spectral transformation. Their second components, for large H are close to the bound states of the eigenvalues
(
pDs
)2

.

We can develop even more constructive explicitly solvable abstract model of a quantum dot based on a zero-range
potential with an inner structure, which allows a reasonably precise fitting to the experimental data, similarly to one
suggested in [37], which would explain recently discovered giant ”topological resonances ” occuring in scattering of
the electromagnetic waves by carbon nanostructures, see, for instance, [40]. But we leave this interesting material for
another publication.

The spectral analysis of the Lax-Phillips semi-group, described in the brief review above, was based, on the one
hand, on the presence of the continuous spectrum of the zero-mass Klein-Gordon-Fock evolution group generator L
, and, on the other hand, on the observation that the group possesses a pair of orthogonal incoming and outgoing
subspaces. More specifically, the continuous spectrum of L fills in the whole real axis and the parts of the evolution
in the incoming and outgoing subspaces are unitarily equivalent to the negative and positive semi-groups generated
(in the p-representation) by the shift f → eiptf in the subspaces H2

− and SLPH
2
+, respectively. As a result, the

remaining part of the corresponding positive evolution semi-group eiBt, t > 0, reduced onto the co-invariant subspace
Jin : K −→ H2

+ 	 SLPH2
+ ≡ K, is unitarily equivalent to the Lax-Phillips semi-group

PKUt
∣∣
K

J+
in−→ PKe

ikt
∣∣
K
, t > 0.
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4 The spectral meaning of resonances.

Nevertheless, bridging together both of the contradictory concepts of the WW and KF is not the main achievement
of the Lax-Phillips point of view. We suggest that the main achievement is the discovery of the spectral meaning
of resonances: once we reduce the unitary evolution onto the co-invariant space K = H2

+ 	 SLPH2
+, the result is

represented, via Jin, by the Lax-Phillips semi-group

eiBtu =
∑
s

e−ip̄st
φs〉〈φ+

s , u〉
〈φs, φ+

s 〉
. (17)

Here the ”Gamov vectors” φs, φ
+
s have an unambiguous spectral meaning as the eigenvectors of the Lax-Phillips

semigroup generator B, and p̄s are the corresponding eigenvalues. The spectrum of the generator is discrete, but
the whole picture of the restricted evolution on the co-invariant subspace arose because of the specific features of
the Lax-Phillips dynamics, first of all of those that are due to the presence of the constant multiplicity continuous
spectrum on R = (−∞, ∞) for the shift group, exactly as it was expected in [5]. But the authors of [5] missed another
essential point: the orthogonality in the energy-normed space of the incoming and outgoing invariant subspaces of
the wave equation evolution. So , one can conclude that in the special case when the condition of orthogonality on
the incoming and outgoing subspaces for the wave evolution is satisfied, the KF scheme of the exponential decay is
confirmed mathematically. In that case , both the KF and WW schemes give expected results including that of the
discreteness of the spectrum of resonances.

5 Quality of an oscillation system and the Resonance Pumping.

Note that the spectral decomposition for the Lax-Phillips semi-group ensures an exponentially decaying evolution for
any single term of the spectral expansion of the semi-group, with the decrement =ps. It is customary to interpret the
slow decay of the terms of the spectral expansion as a “high quality” of the corresponding oscillatory system. There
is, in principle, another method for the estimation of quality of the oscillatory system that is based on estimating the
growth of the amplitudes of forced oscillations under periodic excitation. In radio-physics, these two estimations of
”quality”, based on the decay and on the ”pumping”, are considered to be alternative estimations of the quality, but
the equivalence of them needs a justification using the spectral formulation of the Decay problem.

Indeed, let us consider the periodic excitation of the oscillatory system in the form

1

i

du

dt
= Bu+ eiωtν

with zero incident value. Using the spectral representation of the Lax-Phillips semi-group, one obtains that

u(t) =
∑
s

i

∫ t

0

ei(ω−p̄s)τdτeip̄st
φs〉〈φ+

s , ν〉
〈φs, φ+

s 〉
= eiωt

∑
s

1− ei(p̄s−ω)t

(ω − p̄s)
φs〉〈φ+

s , ν〉
〈φs, φ+

s 〉
.

The phenomenon of resonance pumping is then observed when the frequency ω is close to one of the eigenvalues of the
Lax–Phillips generator. For instance, if p̄s − ω = −i=ps, recall that −=ps > 0, then the forced oscillation regime is

u(t) =
e=p1t − 1

=p1
eiωt

φ1〉〈φ+
1 , ν〉

〈φ1, φ
+
s 〉

+
∑
s>1

1− ei(p̄s−ω)t

i(ω − p̄s)
φs〉〈φ+

s , ν〉
〈φs, φ+

s 〉
.

Therefore, the forced amplitude of the first term is linearly growing with time, until t ≈ (=p1)−1, but eventually , at

large time scale, it saturates at the value −(=p1)−1 φ1〉〈φ+
1 ,ν〉

〈φ1,φ
+
1 〉

.
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6 Complementarity of the Lax-Phillips Scattering Scheme and the
Quantum Zeno Effect.

The celebrated Zeno Paradox, see [31], can also be treated from the viewpoint of the Lax–Phillips evolution. Indeed,
consider the Lax-Phillips evolution defined by the unitary group Ut = eiLt in an energy normed space E and suppose
that the group possesses an orthogonal pair Din,out of incoming and outgoing subspaces. The restriction PKUtPK,
t > 0, of the positive semi-group onto the co-invariant subspace K ≡ E 	 [Din ⊕ Dout] is the Lax-Phillips semi-
group PKUtPK ≡ eiBt with the simple (with no self-adjoint/symmetric parts) dissipative generator B with discrete
spectrum (parameterized by the characteristic function SLP , the Lax-Phillips scattering matrix, defined by a Blaschke
product). Introducing the amplitude 〈eiLtφ, φ〉E ≡ aφ(t) of the returning probability pt ≡ āφ aφ, for ”smooth” elements

φ ∈ K∩DB such that Bφ ∈ DB we represent the amplitude as a(t) = 〈eiBtφ, φ〉E = 1 + it〈Bφ, φ〉E − t2

2 〈B
2φ, φ〉E + . . . .

Then, Taylor’s Theorem up to second order applied to the returning probability yields

p(t) = āφ aφ = 1− 2t=〈Bφ, φ〉E − t2
[
<〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+ · · · .

If =〈Bφ, φ〉E 6= 0, then 1 − 2t=〈Bφ, φ〉E ≈ e−2t=〈Bφ, φ〉E , and hence, despite a multiple control of the evolution we
have p(t) ≈ [p(t/n)]n. This is the case of an exponential decay with the decrement Γ = 2=〈Bφ, φ〉E . The alternative
condition =〈Bφ, φ〉E = 0 implies

p(t) = 1− t2
[
<〈B2φ, φ〉E − |〈Bφ, φ〉E |2

]
+ . . . ≈ 1−At2

which would give the following asymptotics for the probability under the evolution with the multiple control at the
sequence of moments tm = m

n t, m = 1, 2, . . . ,

[p(t/n]n) ≈ [1−A/n2]n ≈ [e−A]1/n ≈ 1 as t→∞.

This result corresponds to the quantum Zeno effect. The condition =〈Bφ, φ〉E = 0 is not compatible with dissipativity
of the simple (with no self-adjoint parts) generator B with Risz-basis property of eigenfunctions. Indeed the opposite
condition 〈=Bφ, φ〉 > 0 is obviously satisfied for all vectors from the domain of B in the coinvariant subspace, if
the system of it’s eigenvectors is a Riesz basis. Thus , we conclude that the Zeno effect is not compatible with the
Lax–Phillips evolution for elements φ from the coinvariant subspace such that =〈Bφ, φ〉E > 0.

Vice versa, the general Schrödinger type unitary evolution Utφ = eiLt φ of a smooth state φ is compatible with the
Zeno effect (whenever L is a self-adjoint generator in the Hilbert space E).

Indeed, the corresponding infinitesimal evolution for a smooth normalized state φ yields

p(t) = 〈eiLt φ, φ〉E〈φ, eiLt φ〉E ≈ 1− t2
[
〈L2φ, φ〉E − (〈Lφ, φ〉E)2

]
+ . . . .

Hence, in an experiment with the multiple control at the moments of time tm = m
n t, m = 1, 2, . . . , we obtain:

[p(t/n)]
n ≈

(
1− t2

n2

[
〈L2φ, φ〉E − (〈Lφ, φ〉E)2

])n
≈ e−[〈L2φ,φ〉E−(〈Lφ,φ〉E)2]t2n−1

→ 1, when n→∞.

This corresponds to the standard Zeno effect in Quantum Mechanics, see [8]. It is worth mentioning that Quantum
Mechanics is a description of dynamics and probability is not intrinsically involved in that. But probability arises
as a detail of the measurement process: it is clearly seen from the preceding analysis that the interplay between the
dynamics and the measurement process is different for the Schrödinger evolution [8] and for the Lax-Phillips one.

7 Conclusion

Our version of matching of a zero-mass field in the outer space with the Schrödinger evolution on the inner space of the
quantum system allows one to derive the exponential decay based on the classical Lax-Phillips technique. Contrary
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to the constructions suggested in [22, 23] and and those in the recent papers [25, 26], we use explicit functional model
formulae for the eigenvalues and eigenvectors of the corresponding dissipative generator that gives rise to the reduced
dynamics on the corresponding coinvariant subspace. For low energy, the dynamics on the inner space is matched with
the corresponding Schrödinger dynamics that provides the standard probabilistic interpretation of the wave-function
but would formally produce non-exponential terms in the large-time scale. But the original dynamics, before being
reduced to Schrödinger’s scenario, exhibits an exponential decay for large time, with non-exponential terms absent.
Our approach also reveals the spectral meaning of the resonances and the resonance states, and permits to bridge,
on this base, the alternative concepts of resonances and the exponential decay proposed by Weisskopf–Wigner and
Krylov–Fock. In turn, this proves that the lifetime of a resonance and the velocity of the resonance pumping are
directly connected. We also establish duality between the exponential decay and the absence of the quantum Zeno
effect on resonance initial data for the quantum system under a permanent control.
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